

ACCEPTED VERSION

Chunhua Shen, Guosheng Lin, and Anton van den Hengel
StructBoost: boosting methods for predicting structured output variables
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014; 36(10):2089-2103

© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE
permission.

DOI: http://dx.doi.org/10.1109/TPAMI.2014.2315792

http://hdl.handle.net/2440/96999

PERMISSIONS

http://www.ieee.org/publications_standards/publications/rights/rights_policies.html

Authors and/or their employers shall have the right to post the accepted version of
IEEE-copyrighted articles on their own personal servers or the servers of their
institutions or employers without permission from IEEE, provided that the posted
version includes a prominently displayed IEEE copyright notice (as shown in 8.1.9.B,
above) and, when published, a full citation to the original IEEE publication, including a
Digital Object Identifier (DOI). Authors shall not post the final, published versions of
their articles.

7 December, 2015

http://dx.doi.org/10.1109/TPAMI.2014.2315792
http://hdl.handle.net/2440/96999
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html

1

StructBoost: Boosting Methods for Predicting
Structured Output Variables

Chunhua Shen, Guosheng Lin, Anton van den Hengel

Abstract—Boosting is a method for learning a single accurate predictor by linearly combining a set of less accurate weak learners.
Recently, structured learning has found many applications in computer vision. Inspired by structured support vector machines (SSVM),
here we propose a new boosting algorithm for structured output prediction, which we refer to as StructBoost. StructBoost supports
nonlinear structured learning by combining a set of weak structured learners.
As SSVM generalizes SVM, our StructBoost generalizes standard boosting approaches such as AdaBoost, or LPBoost to structured
learning. The resulting optimization problem of StructBoost is more challenging than SSVM in the sense that it may involve exponentially
many variables and constraints. In contrast, for SSVM one usually has an exponential number of constraints and a cutting-plane method
is used. In order to efficiently solve StructBoost, we formulate an equivalent 1-slack formulation and solve it using a combination of
cutting planes and column generation. We show the versatility and usefulness of StructBoost on a range of problems such as optimizing
the tree loss for hierarchical multi-class classification, optimizing the Pascal overlap criterion for robust visual tracking and learning
conditional random field parameters for image segmentation.

Index Terms—Boosting, ensemble learning, AdaBoost, structured learning, conditional random field.

F

• The authors are with School of Computer Science, The University of
Adelaide, SA 5005, Australia. Correspondence should be addressed to C. Shen
(e-mail: chunhua.shen@adelaie.edu.au).

ar
X

iv
:1

30
2.

32
83

v3
 [

cs
.L

G
]

 9
 F

eb
 2

01
4

2

CONTENTS

1 Introduction 3
1.1 Main contributions . 3
1.2 Related work . 3
1.3 Notation . 4

2 Structured boosting 4
2.1 1-slack formulation for fast optimization . 5
2.2 Cutting-plane optimization for the 1-slack primal . 6
2.3 Discussion . 7

3 Examples of StructBoost 7
3.1 Binary classification . 7
3.2 Ordinal regression and AUC optimization . 7
3.3 Multi-class boosting . 7
3.4 Hierarchical classification with taxonomies . 8
3.5 Optimization of the Pascal image overlap criterion . 8
3.6 CRF parameter learning . 9

4 Experiments 10
4.1 AUC optimization . 10
4.2 Multi-class classification . 10
4.3 Hierarchical multi-class classification . 12
4.4 Visual tracking . 12
4.5 CRF parameter learning for image segmentation . 13

5 Conclusion 13

References 15

6 Supplementary—StructBoost: Boosting methods for predicting structured output variables 17
6.1 Dual formulation of m-slack . 17
6.2 Dual formulation of 1-slack . 17
6.3 Convergence analysis of StructBoost . 18

3

1 INTRODUCTION

Structured learning has attracted considerable attention
in machine learning and computer vision in recent years
(see, for example [1]–[4]). Conventional supervised learning
problems, such as classification and regression, aim to
learn a function that predicts the best value for a response
variable y ∈ R for an input vector x ∈ Rd on the basis of a
set of example input-output pairs. In many applications,
however, the outputs are often complex and cannot be
well represented by a single scalar because the classes
may have inter-class dependencies, or the most appropriate
outputs are objects (vectors, sequences, trees, etc.). Such
problems are referred to as structured output prediction.
Structured support vector machines (SSVM) [4] generalize
the multi-class SVM of [5] and [6] to the much broader
problem of predicting interdependent and structured out-
puts. SSVM uses discriminant functions that take advantage
of the dependencies and structure of outputs. In SSVM,
the general form of the learned discriminant function is
F (x,y;w) : X × Y 7→ R over input-output pairs and the
prediction is achieved by maximizing F (x,y;w) over all
possible y ∈ Y. Note that to introduce non-linearity, the
discriminant function can be defined by an implicit feature
mapping function that is only accessible as a particular
inner product in a reproducing kernel Hilbert space. This
is the so-called kernel trick.

On the other hand, boosting algorithms linearly combine
a set of moderately accurate weak learners to form a
nonlinear strong predictor, whose prediction performance
is usually highly accurate. Recently, Shen and Hao [7] pro-
posed a direct formulation for multi-class boosting using
the loss functions of multi-class SVMs [5], [6]. Inspired by
the general boosting framework of Shen and Li [8], they im-
plemented multi-class boosting using column generation.
Here we go further by generalizing multi-class boosting
of Shen and Hao to broad structured output prediction
problems. StructBoost thus enables nonlinear structured
learning by combining a set of weak structured learners.

The effectiveness of SSVM has been limited by the fact
that only the linear kernel is typically used. This limitation
arises largely as a result of the computational expense of
training and applying kernelized SSVMs. Nonlinear kernels
often deliver improved prediction accuracy over that of
linear kernels, but at the cost of significantly higher mem-
ory requirements and computation time. This is particu-
larly the case when the training size is large, because the
number of support vectors is linearly proportional to the
size of training data [9]. Boosting, however, learns models
which are much faster to evaluate. Boosting can also select
relevant features during the course of learning by using
particular weak learners such as decision stumps or deci-
sion trees, while almost all nonlinear kernels are defined
on the entire feature space. It thus remains difficult (if not
impossible) to see how kernel methods can select/learn
explicit features. For boosting, the learning procedure also
selects or induces relevant features. The final model learned
by boosting methods are thus often significantly simpler

and computationally cheaper. In this sense, the proposed
StructBoost possesses the advantages of both nonlinear
SSVM and boosting methods.

1.1 Main contributions

The main contributions of this work are three-fold.
1. We propose StructBoost, a new fully-corrective boost-

ing method that combines a set of weak structured
learners for predicting a broad range of structured
outputs. We also discuss special cases of this general
structured learning framework, including multi-class
classification, ordinal regression, optimization of com-
plex measures such as the Pascal image overlap cri-
terion and conditional random field (CRF) parameters
learning for image segmentation.

2. To implement StructBoost, we adapt the efficient
cutting-plane method—originally designed for effi-
cient linear SVM training [10]—for our purpose. We
equivalently reformulate the m-slack optimization to
1-slack optimization.

3. We apply the proposed StructBoost to a range of com-
puter vision problems and show that StructBoost can
indeed achieve state-of-the-art performance in some
of the key problems in the field. In particular, we
demonstrate a state-of-the-art object tracker trained
by StructBoost. We also demonstrate an application
for CRF and super-pixel based image segmentation,
using StructBoost together with graph cuts for CRF
parameter learning.

Since StructBoost builds upon the fully corrective boost-
ing of Shen and Li [8], it inherits the desirable properties
of column generation based boosting, such as a fast con-
vergence rate and clear explanations from the primal-dual
convex optimization perspective.

1.2 Related work

The two state-of-the-art structured learning methods are
CRF [11] and SSVM [4], which capture the interdependency
among output variables. Note that CRFs formulate global
training for structured prediction as a convex optimiza-
tion problem. SSVM also follows this path but employs a
different loss function (hinge loss) and optimization meth-
ods. Our StructBoost is directly inspired by SSVM. Struct-
Boost can be seen as an extension of boosting methods to
structured prediction. It therefore builds upon the column
generation approach to boosting from [8] and the direct
formulation for multi-class boosting [7]. Indeed, we show
that the multi-class boosting of [7] is a special case of the
general framework presented here.

CRF and SSVM have been applied to various problems in
machine learning and computer vision mainly because the
learned models can easily integrate prior knowledge given
a problem of interest. For example, the linear chain CRF has
been widely used in natural language processing [11], [12].
SSVM takes the context into account using the joint feature
maps over the input-output pairs, where features can be

4

represented equivalently as in CRF [10]. CRF is particularly
of interest in computer vision for its success in semantic
image segmentation [13]. A critical issue of semantic image
segmentation is to integrate local and global features for
the prediction of local pixel/segment labels. Semantical seg-
mentation is achieved by exploiting the class information
with a CRF model. SSVM can also be used for similar
purposes as demonstrated in [14]. Blaschko and Lampert [3]
trained SSVM models to predict the bounding box of objects
in a given image, by optimizing the Pascal bounding box
overlap score. The work in [1] introduced structured learn-
ing to real-time object detection and tracking, which also
optimizes the Pascal box overlap score. SSVM has also been
used to learn statistics that capture the spatial arrangements
of various object classes in images [15]. The trained model
can then simultaneously predict a structured labeling of the
entire image. Based on the idea of large-margin learning in
SSVM, Szummer et al. [16] learned optimal parameters of
a CRF, avoiding tedious cross validation. The survey of [2]
provided a comprehensive review of structured learning
and its application in computer vision.

Dietterich et al. [17] learned the CRF energy functions
using gradient tree boosting. There the functional gradient
of the CRF conditional likelihood is calculated, such that a
regression tree (weak learner) is induced as in gradient
boosting. An ensemble of trees is produced by iterating
this procedure. In contrast, we learn CRF within the large-
margin framework, by generalizing the work of [16], [18]
where CRF parameters are learned using SSVM. In our
case, we do not require approximations such as pseudo-
likelihood. Another relevant work is [19], where Munoz
et al. used the functional gradient boosting methodology
to discriminatively learn max-margin Markov networks
(M3N), as proposed by Taskar et al. [20]. The random fields’
potential functions are learned following gradient boosting
[21].

There are a few structured boosting methods in the
literature. As we discuss here, all of them are based on
gradient boosting, which are not as general as that which
we propose here. Ratliff et al. [22], [23] proposed a boosting-
based approach for imitation learning based on structured
prediction, called maximum margin planning (MMP). Their
method is named as MMPBoost. To train MMPBoost, a
demonstrated policy is provided as example behavior as the
input, and the problem is to learn a function over features of
the environment that produce policies with similar behav-
ior. Although MMPBoost is structured learning in that the
output is a vector, it differs from ours fundamentally. First,
the optimization procedure of MMPBoost is not directly de-
fined on the joint function F (x,y;w). Second, MMPBoost
is based on gradient descent boosting [21], and StructBoost
is built upon fully corrective boosting of Shen and Li [8],
[24].

Parker et al. [25] have also successfully applied gradient
tree boosting to learning sequence alignment. Later, Parker
[26] developed a margin-based structured perceptron up-
date and showed that it can incorporate general notions of
misclassification cost as well as kernels. In these methods,

the objective function typically consists of an exponential
number of terms that correspond to all possible pairs of
(y,y′). Approximation is made to make the computation
of gradient tractable [25]. Wang et al. [27] learned a local
predictor using standard methods, e.g., SVM, but then
achieved improved structured classification by exploiting
the influence of misclassified components after structured
prediction, and iteratively re-training the local predictor.
This approach is heuristic and it is more like a post-
processing procedure—it does not directly optimize the
structured learning objective.

1.3 Notation

A bold lower-case letter (u, v) denotes a column vector. An
element-wise inequality between two vectors or matrices
such as u ≥ v means ui ≥ vi for all i. Let x be an input; y
be an output and the input-output pair be (x,y) ∈ X× Y,
with X ⊂ Rd. Unlike classification (Y = {1, 2, . . . , k}) or
regression (Y ⊂ R) problems, we are interested in the case
where elements of Y are structured variables such as vectors,
strings, or graphs. Recall that the proposed StructBoost is
a structured boosting method, which combines a set of
weak structured learners (or weak compatibility functions).
We denote by H the set of weak structured learners.
Note that H is typically very large, or even infinite. Each
weak structured learner: ψ(·, ·) ∈ H, is a function that
maps an input-output pair (x,y) to a scalar value which
measures the compatibility of the input and output. We
define column vector Ψ(x,y) = [ψ1(x,y), · · · , ψn(x,y)]>

to be the outputs of all weak structured learners. Thus
Ψ(x,y) plays the same sole as the joint mapping vector in
SSVM, which relates input x and output y. The form of a
weak structured learner is task-dependent. We show some
examples of ψ(·, ·) in Section 3. The discriminant function
that we aim to learn is F : X×Y 7→ R, which measures the
compatibility over input-output pairs. It has the form of

F (x,y;w) = w>Ψ(x,y) =
∑
jwjψj(x,y), (1)

with w ≥ 0. As in other structured learning models, the
process for predicting a structured output (or inference) is
to find an output y that maximizes the joint compatibility
function:

y? = argmax
y

F (x,y;w) = argmax
y

w>Ψ(x,y). (2)

We denote by 1 a column vector of all 1’s, whose dimension
shall be clear from the context.

We describe the StructBoost approach in Section 6.1,
including how to efficiently solve the resulting optimiza-
tion problem. We then highlight applications in various
domains in Section 3. Experimental results are shown in
Section 4 and we conclude the paper in the last section.

2 STRUCTURED BOOSTING

We first introduce the general structured boosting frame-
work, and then apply it to a range of specific problems:
classification, ordinal regression, optimizing special criteria

5

such as the area under the ROC curve and the Pascal image
area overlap ratio, and learning CRF parameters.

To measure the accuracy of prediction we use a loss
function, and as is the case with SSVM, we accept arbitrary
loss functions ∆ : Y × Y 7→ R. ∆(y,y′) calculates the
loss associated with a prediction y′ against the true label
value y. Note that in general we assume that ∆(y,y) = 0,
∆(y,y′) > 0 for any y′ 6= y and the loss is upper bounded.

The formulation of StructBoost can be written as (m-slack
primal):

min
w≥0,ξ≥0

1>w + C
m 1>ξ (3a)

s.t. : w>
[
Ψ(xi,yi)−Ψ(xi,y)

]
≥ ∆(yi,y)− ξi,

∀i = 1, . . . ,m; and ∀y ∈ Y. (3b)

Here we have used the `1 norm as the regularization
function to control the complexity of the learned model.
To simplify the notation, we introduce

δψi(y) = ψ(xi,yi)− ψ(xi,y); (4)

and,

δΨi(y) = Ψ(xi,yi)−Ψ(xi,y); (5)

then the constraints in (35) can be re-written as:

w>δΨi(y) ≥ ∆(yi,y)− ξi.

There are two major obstacles to solve problem (35). First,
as in conventional boosting, because the set of weak struc-
tured learners ψ(·, ·) can be exponentially large or even
infinite, the dimension of w can be exponentially large or
infinite. Thus, in general, we are not able to directly solve
for w. Second, as in SSVM, the number of constraints (35b)
can be extremely or infinitely large. For example, in the
case of multi-label or multi-class classification, the label
y can be represented as a binary vector (or string) and
clearly the possible number of y such that y is exponential
in the length of the vector, which is 2|Y|. In other words,
problem (35) can have an extremely or infinitely large number
of variables and constraints. This is significantly more chal-
lenging than solving standard boosting or SSVM in terms of
optimization. In standard boosting, one has a large number
of variables while in SSVM, one has a large number of
constraints.

For the moment, let us put aside the difficulty of the large
number of constraints, and focus on how to iteratively solve
for w using column generation as in boosting methods [8],
[28], [29]. We derive the Lagrange dual of the optimization
of (35) as:

max
µ≥0

∑
i,y

µ(i,y)∆(yi,y) (6a)

s.t. :
∑
i,y µ(i,y)δΨi(y) ≤ 1, (6b)

0 ≤
∑
y µ(i,y) ≤ C

m ,∀i = 1, . . . ,m. (6c)

Here µ are the Lagrange dual variables (Lagrange multipli-
ers). We denote by µ(i,y) the dual variable associated with

the margin constraints (35b) for label y and training pair
(xi,yi).

The idea of column generation is to split the original
primal problem in (35) into two problems: a master problem
and a subproblem. The master problem is the original
problem with only a subset of variables (or constraints for
the dual form) being considered. The subproblem is to add
new variables (or constraints for the dual form) into the
master problem. With the primal-dual pair of (35) and (37)
and following the general framework of column generation
based boosting [8], [28], [29], we can obtain our StructBoost
as follows:
Iterate the following two steps until converge :

1) Solve the following subproblem, which generates the
best weak structured learner by finding the most
violated constraint in the dual:

ψ?(·, ·) = argmax
ψ(·,·)

∑
i,y

µ(i,y)δψi(y). (7)

2) Add the selected structured weak learner ψ?(·, ·) into
the master problem (either the primal form or the
dual form) and re-solve for the primal solution w and
dual solution µ.

The stopping criterion can be that no violated weak learner
can be found. Formally, for the selected ψ?(·, ·) with (7) and
a preset precision εcg > 0, if the following relation holds:∑

i,y

µ(i,y)δψ
?
i (y) ≤ 1− εcg, (8)

we terminate the iteration. Algorithm 1 presents the de-
tails of column generation for StructBoost. This approach,
however, may not be practical because it is very expensive
to solve the master problem (the reduced problem of (35))
at each column generation (boosting iteration), which still
can have extremely many constraints due to the set of
{y ∈ Y}. The direct formulation for multi-class boosting in
[7] can be seen as a specific instance of this approach, which
is in general very slow. We therefore propose to employ
the 1-slack formulation for efficient optimization, which is
described in the next section.

2.1 1-slack formulation for fast optimization

Inspired by the cutting-plane method for fast training of
linear SVM [10] and SSVM [30], we rewrite the above
problem into an equivalent “1-slack” form so that the
efficient cutting-plane method can be employed to solve
the optimization problem (35):

min
w≥0,ξ≥0

1>w + Cξ (9a)

s.t. :
1

m
w>
[m∑
i=1

ci · δΨi(y)

]
≥ 1

m

m∑
i=1

ci∆(yi,y)− ξ,

∀c ∈ {0, 1}m;∀y ∈ Y, i = 1, · · · ,m. (9b)

The following theorem shows the equivalence of prob-
lems (35) and (38).

6

Theorem 2.1. A solution of problem (38) is also a solution of
problem (35) and vice versa. The connections are: w?

(38) = w?
(35)

and ξ?(38) = 1
m1>ξ?(35).

Proof: This proof adapts the proof in [10]. Given a fixed
w, the only variable ξ(35) in (35) can be solved by

ξi,(35) = max
y

{
0,∆(yi,y)−w>δΨi(y)

}
,∀i.

For (38), the optimal ξ(38) given a w can be computed as:

ξ(38) =
1

m
max
c,y

{
m∑
i=1

ci∆(yi,y)−w>
[m∑
i=1

ciδΨi(y)
]}

=
1

m

m∑
i=1

{
max

ci∈{0,1},y
ci∆(yi,y)− ciw>δΨi(y)

}

=
1

m

m∑
i=1

max
y

{
0,∆(yi,y)−w>δΨi(y)

}
=

1

m
1>ξ(35).

Note that c ∈ {0, 1}m in the above equalities. Clearly the
objective functions of both problems coincide for any fixed
w and the optimal ξ(35) and ξ(38).

As demonstrated in [10] and SSVM [30], cutting-plane
methods can be used to solve the 1-slack primal problem
(38) efficiently. This 1-slack formulation has been used to
train linear SVM in linear time. When solving for w, (38)
is similar to `1-norm regularized SVM—except the extra
non-negativeness constraint on w in our case.

In order to utilize column generation for designing boost-
ing methods, we need to derive the Lagrange dual of the
1-slack primal optimization problem, which can be written
as follows:

max
λ≥0

∑
c,y

λ(c,y)

m∑
i=1

ci∆(yi,y) (10a)

s.t. :
1

m

∑
c,y

λ(c,y)

[m∑
i=1

ci · δΨi(y)

]
≤ 1, (10b)

0 ≤
∑
c,y λ(c,y) ≤ C. (10c)

Here c enumerates all possible c ∈ {0, 1}m. We denote
by λ(c,y) the Lagrange dual variable (Lagrange multiplier)
associated with the inequality constraint in (9b) for c ∈
{0, 1}m and label y. The subproblem to find the most
violated constraint in the dual form for generating weak
structured learners is:

ψ?(·, ·) = argmax
ψ(·,·)

∑
c,y

λ(c,y)
∑
i

ciδψi(y)

= argmax
ψ(·,·)

∑
i,y

∑
c

λ(c,y)ci︸ ︷︷ ︸
:=µ(i,y)

δψi(y). (11)

We have changed the order of summation in order to have
a similar form as in the m-slack case.

Algorithm 1 Column generation for StructBoost
1: Input: training examples (x1;y1), (x2;y2), · · · ; parameter C; ter-
mination threshold εcg, and the maximum iteration number.
2: Initialize: for each i, (i = 1, . . . ,m), randomly pick any y(0)i ∈ Y,
initialize µ(i,y) = C

m
for y = y

(0)
i , and µ(i,y) = 0 for all y ∈ Y\y(0)i .

3: Repeat
4: − Find and add a weak structured learner ψ?(·, ·) by solving the
subproblem (7) or (11).
5: − Call Algorithm 2 to obtain w and µ.
7: Until either (8) is met or the maximum number of iterations is
reached.
8: Output: the discriminant function F (x,y;w) = w>Ψ(x,y).

Algorithm 2 Cutting planes for solving the 1-slack primal
1: Input: the cutting-plane termination threshold εcp, and inputs from
Algorithm 1.
2: Initialize: working set W ← ∅; ci = 1, y′i ← any element in Y, for
i = 1, . . . ,m.
3: Repeat
4: − W←W ∪ {(c1, . . . , cm,y′1, . . . ,y′m)}.
5: − Obtain primal and dual solutions w, ξ; λ by solving

min
w≥0,ξ≥0

1>w + Cξ

s.t. : ∀(c1, . . . , cm,y′1, . . . ,y′m) ∈W :

1

m
w>
[m∑
i=1

ci · δΨi(y
′
i)

]
≥

1

m

m∑
i=1

ci∆(yi,y
′
i)− ξ.

6: − For i = 1, . . . ,m
7: y′i = argmax y ∆(yi,y)−w>δΨi(y);

8: ci =

{
1 ∆(yi,y

′
i)−w>δΨi(y

′
i) > 0;

0 otherwise.
9: End for
10: Until 1

m
w>
[
m∑
i=1

ciδΨi(y
′
i)

]
≥ 1

m

m∑
i=1

ci∆(yi,y
′
i)− ξ − εcp.

11: − Update µ(i,y) =
∑

c λ(c,y)ci for ∀i = 1, . . . ,m; ∀y ∈ Y\yi.
12: Output: w and µ.

2.2 Cutting-plane optimization for the 1-slack primal

Despite the extra nonnegative-ness constraint w ≥ 0 in
our case, it is straightforward to apply the cutting-plane
method in [10] for solving our problem (38). The cutting-
plane algorithm for StructBoost is presented in Algorithm 2.
A key step in Algorithm 2 is to solve the maximization for
finding an output y′ that corresponds to the most violated
constraint for every xi (inference step):

y′i = argmax
y

∆(yi,y) +w>δΨi(y). (12)

The above maximization problem takes a similar form as
the output prediction problem in (2). They only differ in
the loss term ∆(yi,y). Typically these two problems can be
solved using the same strategy. This inference step usually
dominates the running time for a few applications, e.g., in
the application of image segmentation. In the experiment
section, we empirically show that solving (38) using cutting
planes can be significantly faster than solving (35). Here
improved cutting-plane methods such as [31] can also be
adapted to solve our optimization problem at each column
generation boosting iteration.

In terms of implementation of the cutting-plane algo-
rithm, as mentioned in SSVM [30], a variety of design
decisions can have substantial influence on the practical
efficiency of the algorithm. We have considered some of

7

these design decisions in our implementation. In our case,
we need to call the cutting-plane optimization at each
column generation iteration. Consideration of warm-start
initialization between two consecutive column generations
can substantially speed up the training. We re-use the
working set in the cutting-plane algorithm from previous
column generation iterations. Finding a new weak learner
in (11) is based on the dual solution µ. We need to ensure
that the solution of cutting-plane is able to reach a sufficient
precision, such that the generated weak learner is able
to “make progress”. Thus, we can adapt the stopping
criterion parameter εcp (Line 10 of Algorithm 2) according
to the cutting-plane precision in the last column generation
iteration.

2.3 Discussion

Let us have a close look at the StructBoost algorithm in
Algorithm 1. We can see that the training loop in Algorithm
1 is almost identical to other fully-corrective boosting meth-
ods (e.g., LPBoost [28] and Shen and Li [8]). Line 4 finds the
most violated constraint in the dual form and add a new
weak structured learner to the master problem. The dual
solution µ(i,y) defined in (11) plays the role as the example
weight associated to each training example in conventional
boosting methods such as AdaBoost and LPBoost [28]. Then
Line 5 solves the master problem, which is the reduced
problem of (35). Here we can see that, the cutting-plane
in Algorithm 2 only serves as a solver for solving the
master problem in Line 5 of Algorithm 1. This makes our
StructBoost framework flexible—we are able to replace the
cutting-plane optimization by other optimization methods.
For example, the bundle methods in [32] may further speed
up the computation.

For the convergence properties of the cutting-plane algo-
rithm in Algorithm 2, readers may refer to [10] and [30] for
details.

Our column generation algorithm in Algorithm 1 is a
constraint generation algorithm for the dual problem in
(37). We can adapt the analysis of the standard constraint
generation algorithm for Algorithm 1. In general, for gen-
eral column generation methods, the global convergence
can be established but it remains unclear about the conver-
gence rate if no particular assumptions are made. See the
supplementary document1 for details.

3 EXAMPLES OF STRUCTBOOST

We consider a few applications of the proposed general
structured boosting in this section, namely binary classifica-
tion, ordinal regression, multi-class classification, optimiza-
tion of Pascal overlap score, and CRF parameter learning.
We show the particular setup for each application.

3.1 Binary classification

As the simplest example, the LPBoost of [28] for binary
classification can be recoverd as follows. The label set is

1. Available at http://arxiv.org/abs/1302.3283

Y = {+1,−1}; and Ψ(x, y) = 1
2yΦ(x). The label cost can

be a simple constant; for exmaple, ∆(y, y′) = 1 for y 6= y′

and 0 for y = y′. Here we have introduced a column vector
Φ(x) :

Φ(x) = [ϕ1(x), ..., ϕn(x)]>, (13)

which is the outputs of all weak classifiers ϕ1(·), · · · ,
ϕn(x) on example x. The output of a weak classifier,
e.g., a decision stump or tree, usually is a binary value:
ϕ(·) ∈ {+1,−1}. In kernel methods, this feature mapping
Φ(·) is only known through the so-called kernel trick.
Here we explicitly learn this feature mapping. Note that
if Φ(x) = x, we have the standard linear SVM.

3.2 Ordinal regression and AUC optimization

In ordinal regression, labels of the training data are ranks.
Let us assume that the label y ∈ R indicates an ordinal
scale, and pairs (i, j) in the set S has the relationship of
example i being ranked higher than j, i.e., yi � yj . The
primal can be written as

min
w≥0,ξ≥0

1>w + C
m

∑
(i,j)∈Sξij (14a)

s.t. : w>
[
Φ(xi)− Φ(xj)

]
≥ 1− ξij ,∀(i, j) ∈ S. (14b)

Here Φ(·) is defined in (13). Note that (14) also optimizes
the area under the receiver operating characteristic (ROC)
curve (AUC) criterion. As pointed out in [33], (14) is an
instance of the multiclass classification problem. We dis-
cuss how the multiclass classification problem fits in our
framework shortly.

Here, the number of constraints is quadratic in the
number of training examples. Directly solving (14) can only
solve problems with up to a few thousand training exam-
ples. We can reformulate (14) into an equivalent 1-slack
problem, and apply the proposed StructBoost framework
to solve the optimization more efficiently.

3.3 Multi-class boosting

The MultiBoost algorithm of Shen and Hao [7] can be
implemented by the StructBoost framework as follows. Let
Y = {1, 2, . . . , k} andw = w1�· · ·�wk. Here � stacks two
vectors. As in [7], wy is the model parameter associated
with the y-th class. The multi-class discriminant function
in [7] writes F (x, y;w) = w>yΦ(x). Now let us define the
orthogonal label coding vector:

Γ(y) = [1(y, 1), · · · ,1(y, k)]> ∈ {0, 1}k. (15)

Here 1(y, z) is the indicator function defined as:

1(y, z) =

{
1 if y = z,

0 if y 6= z.
(16)

Then the following joint mapping function

Ψ(x, y) = Φ(x)⊗ Γ(y)

http://arxiv.org/abs/1302.3283

8

Scene

Indoor Outdoor
Landscape

Shopping
Mall Library Museum River Lake Mountain

(a) Taxonomy of the 6-scene dataset

Scene

Indoor Outdoor
Man-made

Shopping
Mall Library Museum House Street Highway

Outdoor
Landscape

Classroom Restaurant Castle Office-building

River Lake Waterfall

Mautain Beach

(b) Taxonomy of the 15-scene dataset

Fig. 1: The hierarchy structures of two selected subsets of the SUN
dataset [34] used in our experiments for hierarchical image classifica-
tion.

recovers the StructBoost formulation (35) for multi-class
boosting. The operator ⊗ calculates the tensor product. The
multi-class learning can be formulated as

min
w≥0,ξ≥0

1>w + C
m 1>ξ (17a)

s.t. : w>yiΦ(xi)−w>yΦ(xi) ≥ 1− ξi,
∀i = 1, . . . ,m; and ∀y ∈ {1, . . . , k}. (17b)

A new weak classifier ϕ(·) is generated by solving the
argmax problem defined in (11), which can be written as:

ϕ?(·) = argmax
ϕ(·),y

∑
i,y

µ(i,y)

[
ϕ(xi)⊗ Γ(yi)− ϕ(xi)⊗ Γ(y))

]
.

(18)

3.4 Hierarchical classification with taxonomies

In many applications such as object categorization and
document classification [35], classes of objects are organized
in taxonomies or hierarchies. For example, the ImageNet
dataset has organized all the classes according to the tree
structures of WordNet [36]. This problem is a classifica-
tion example that the output space has interdependent
structures. An example tree structure (taxonomy) of image
categories is shown in Figure 1.

Now we consider the taxonomy to be a tree, with a
partial order ≺, which indicates if a class is a predecessor
of another class. We override the indicator function, which
indicates if z is a predecessor of y in a label tree:

1(y, z) =

{
1 y ≺ z or y = z,

0 otherwise.
(19)

The label coding vector has the same format as in the
standard multi-class classification case:

Γ(y) = [1(y, 1), · · · ,1(y, k)]> ∈ {0, 1}k. (20)

Thus Γ(y)>Γ(y′) counts the number of common predeces-
sors, while in the case of standard multi-class classification,
Γ(y)>Γ(y′) = 0 for y 6= y′.

9

7

1 2 3

8

4 5 6

Fig. 2: Classification with taxonomies (tree loss), corresponding to the
first example in Figure 1.

Figure 2 shows an example of the label coding vector
for a given label hierarchy. In this case, for example, for
class 3, Γ(3) = [0, 0, 1, 0, 0, 0, 1, 0, 1]>. The joint mapping
function is Ψ(x, y) = Φ(x) ⊗ Γ(y). The tree loss function
∆(y, y′) is the height of the first common ancestor of
the arguments y, y′ in the tree. By re-defining Γ(y) and
∆(y, y′), classification with taxonomies can be immediately
implemented using the standard multi-class classification
shown in the last subsection.

Here we also consider an alternative approach. In [37],
the authors show that one can train a multi-class boosting
classifier by projecting data to a label-specific space and
then learn a single model parameter w. The main advan-
tage might be that the optimization ofw is simplified. Simi-
lar to [37] we define label-augmented data as x′y = x⊗Γ(y).
The max-margin classification can be written as

min
w≥0,ξ≥0

1>w + C
m1>ξ

s.t. : w>
[
Φ(x′i,yi)− Φ(x′i,y)

]
≥ ∆(yi, y)− ξi,

∀i = 1, · · · ,m; and ∀y.

Compared with the first approach, now the model w ∈ Rn,
which is independent of the number of classes.

3.5 Optimization of the Pascal image overlap criterion

Object detection/localization has used the image area over-
lap as the loss function [1]–[3], e.g, in the Pascal object
detection challenge:

∆(y,y′) = 1− area(y ∩ y′)
area(y ∪ y′)

, (21)

with y,y′ being the bounding box coordinates. y ∩ y′ and
y∪y′ are the box intersection and union. Let xy denote an
image patch defined by a bounding box y on the image x.
To apply StructBoost, we define Ψ(x,y) = Φ(xy). Φ(·) is
defined in (13). Weak learners such as classifiers or regres-
sors ϕ(·) are trained on the image features extracted from
image patches. For example, we can extract histograms of
oriented gradients (HOG) from the image patch xy and
train a decision stump with the extracted HOG features by
solving the argmax in (11).

Note that in this case, solving (12), which is to find the
most violated constraint in the training step as well as the
inference for prediction (2), is in general difficult. In [3], a
branch-and-bound search has been employed to find the

9

global optimum. Following the simple sampling strategy
in [1], we simplify this problem by evaluating a certain
number of sampled image patches to find the most violated
constraint. It is also the case for prediction.

3.6 CRF parameter learning

CRF has found successful applications in many vision
problems such as pixel labelling, stereo matching and im-
age segmentation. Previous work often uses tedious cross-
validation for setting the CRF parameters. This approach is
only feasible for a small number of parameters. Recently,
SSVM has been introduced to learn the parameters [16]. We
demonstrate here how to employ the proposed StructBoost
for CRF parameter learning in the image segmentation task.
We demonstrate the effectiveness of our approach on the
Graz-02 image segmentation dataset.

To speed up computation, super-pixels rather than pixels
have been widely adopted in image segmentation. We
define x as an image and y as the segmentation labels of
all super-pixels in the image. We consider the energy E of
an image x and segmentation labels y over the nodes N

and edges S, which takes the following form:

E(x,y;w) =
∑
p∈N

w(1)>Φ(1) (U(yp,x))

+
∑

(p,q)∈S

w(2)>Φ(2) (V(yp, yq,x)) . (22)

Recall that 1(·, ·) is the indicator function defined in (16). p
and q are the super-pixel indices; yp, yq are the labels of the
super-pixel p, q. U is a set of unary potential functions: U =
[U1, U2, . . .]

>. V is a set of pairwise potential functions:
V = [V1, V2, . . .]

>. When we learn the CRF parameters,
the learning algorithm sees only U and V. In other words
U and V play the role as the input features. Details on how
to construct U and V are described in the experiment part.
w(1) and w(2) are the CRF potential weighting parameters
that we aim to learn. Φ(1)(·) and Φ(2)(·) are two sets of
weak learners (e.g., decision stumps) for the unary part and
pairwise part respectively: Φ(1)(·) = [ϕ

(1)
1 (·), ϕ(1)

2 (·), . . .]>,
Φ(2)(·) = [ϕ

(2)
1 (·), ϕ(2)

2 (·), . . .]>.
To predict the segmentation labels y? of an unknown

image x is to solve the energy minimization problem:

y? = argmin
y

E(x,y;w), (23)

which can be solved efficiently by using graph cuts [16],
[38].

Consider a segmentation problem with two classes (back-
ground versus foreground). It is desirable to keep the sub-
modular property of the energy function in (22). Otherwise
graph cuts cannot be directly applied to achieve globally
optimal labelling. Let us examine the pairwise energy term:

θ(p,q)(y
p, yq) = w(2)>Φ(2) (V(yp, yq,x)) ,

and a super-pixel label y ∈ {0, 1}. It is well known that, if
the following is satisfied for any pair (p, q) ∈ S, the energy

function in (22) is submodular:

θ(p,q)(0, 0) + θ(p,q)(1, 1) ≤ θ(p,q)(0, 1) + θ(p,q)(1, 0). (24)

We want to keep the above property.
First, for a weak learner ϕ(2)(·), we enforce it to output 0

when two labels are identical. This can always be achieved
by multiplying (1 − 1(yp, yq)) to a conventional weak
learner. Now we have θ(p,q)(0, 0) = θ(p,q)(1, 1) = 0.

Given that the nonnegative-ness of w is enforced in our
model, now a sufficient condition is that the output of
a weak learner ϕ(2)(·) is always nonnegative, which can
always be achieved. We can always use a weak learner
ϕ(2)(·) which takes a nonnegative output, e.g., a discrete
decision stump or tree with outputs in {0, 1}.

By applying weak learners on U and V, our method
introduces nonlinearity for the parameter learning, which
is different from most linear CRF learning methods such
as [16]. Until recently, Berteli et al. presented an image
segmentation approach that uses nonlinear kernels for the
unary energy term in the CRF model [14]. In our model,
nonlinearity is introduced by applying weak learners on
the potential functions’ outputs. This is the same as the
fact that an SVM introduces nonlinearity via the so-called
kernel trick and boosting learns a nonlinear model with
nonlinear weak learners. Nowozin et al. [39] introduced
decision tree fields (DTF) to overcome the problem of
overly-simplified modeling of pairwise potentials in most
CRF models. In DTF, local interactions between multiple
variables are determined by means of decision trees. In our
StructBoost, if we use decision trees as the weak learners
on the pairwise potentials, then StructBoost and DTF share
similar characteristics in that both use decision trees for
the same purpose. However, the starting points of these
two methods as well as the training procedures are entirely
different.

To apply StructBoost, the CRF parameter learning prob-
lem in a large-margin framework can then be written as:

min
w≥0,ξ≥0

1>w + C
m1>ξ (25a)

s.t. : E(xi,y;w)− E(xi,yi;w) ≥ ∆(yi,y)− ξi,
∀i = 1, . . . ,m; and ∀y ∈ Y. (25b)

Here i indexes images. Intuitively, the optimization in
(25) is to encourage the energy of the ground truth la-
bel E(xi,yi) to be lower than any other incorrect labels
E(xi,y) by at least a margin ∆(yi,y), ∀y. We simply
define ∆(yi,y) using the Hamming loss, which is the sum
of the differences between the ground truth label yi and
the label y over all super-pixels in an image:

∆(yi,y) =
∑
p

(1− 1(ypi , y
p)). (26)

We show the problem (25) is a special case of the general
formulation of StructBoost (35) by defining

w = −w(1) �w(2),

10

and,

Ψ(x,y) =
∑
p∈N

Φ(1) (U(yp,x))�
∑

(p,q)∈S

Φ(2) (V(yp, yq,x)) .

Recall that � stacks two vectors. With this definition, we
have the relation:

w>Ψ(x,y) = −E(x,y;w).

The minus sign here is to inverse the order of subtraction
in (35b). At each column generation iteration (Algorithm
1), two new weak learners ϕ(1)(·) and ϕ(2)(·) are added to
the unary weak learner set and the pairwise weak learner
set, respectively by solving the argmax problem defined in
(11), which can be written as:

ϕ(1)?(·) = argmax
ϕ(·)

∑
i,y

µ(i,y)

∑
p∈N

[
ϕ(1) (U(yp,xi))

− ϕ(1) (U(ypi ,xi)
]
; (27)

ϕ(2)?(·) = argmax
ϕ(·)

∑
i,y

µ(i,y)

∑
(p,q)∈S

[
ϕ(2) (V(yp, yq,xi))

− ϕ(2) (V(ypi , y
q
i ,xi))

]
. (28)

The maximization problem to find the most violated con-
straint in (12) is to solve the inference:

y′i = argmin
y

E(xi,y)−∆(yi,y), (29)

which is similar to the label prediction inference in (23), and
the only difference is that the labeling loss term: ∆(yi,y)
is involved in (29). Recall that we use the Hamming loss
∆(yi,y) as defined in (26), the term ∆(yi,y) can be
absorbed into the unary term of the energy function defined
in (22) (such as in [16]). The inference in (29) can be written
as:

y′i = argmin
y

∑
p∈N

[
w(1)>Φ(1) (U(yp,xi))− (1− 1(ypi , y

p))

]
+

∑
(p,q)∈S

w(2)>Φ(2) (V(yp, yq,xi)) . (30)

The above minimization (30) can also be solved efficiently
by using graph cuts.

4 EXPERIMENTS

To evaluate our method, we run various experiments on
applications including AUC maximization (ordinal regres-
sion), multi-class image classification, hierarchical image
classification, visual tracking and image segmentation. We
mainly compare with the most relevant method: Structured
SVM (SSVM) and some other conventional methods (e.g.,
SVM, AdaBoost). If not otherwise specified, the cutting-
plane stopping criteria (εcp) in our method is set to 0.01.

TABLE 1: AUC maximization. We compare the performance of m-slack
and 1-slack formulations. “−” means that the method is not able to
converge within a memory and time limit. We can see that 1-slack can
achieve similar AUC results on training and testing data as m-slack
while 1-slack is significantly faster than m-slack.

dataset method time (sec) AUC training AUC test

wine m-slack 13±1 1.000±0.000 0.994±0.005
1-slack 3±1 1.000±0.000 0.994±0.006

glass m-slack 20±1 0.967±0.011 0.849±0.028
1-slack 6±1 0.955±0.030 0.844±0.039

svmguide2 m-slack 332±6 0.988±0.003 0.905±0.036
1-slack 106±8 0.988±0.003 0.905±0.036

svmguide4 m-slack 564±79 1.000±0.000 0.982±0.005
1-slack 106±13 1.000±0.000 0.982±0.005

vowel m-slack 4051±116 0.999±0.001 0.968±0.013
1-slack 952±139 0.999±0.001 0.967±0.013

dna m-slack − − −
1-slack 1598±643 0.998±0.000 0.992±0.003

segment m-slack − − −
1-slack 475±42 1.000±0.000 0.999±0.001

satimage m-slack − − −
1-slack 37769±6331 0.999±0.000 0.997±0.002

4.1 AUC optimization

In this experiment, we compare efficiency of the 1-slack
(solving (38)) and m-slack (solving (35) or its dual) for-
mulations of our method StructBoost. The details for AUC
optimization are described in Section 3.2. We run the
experiments on a few UCI multi-class datasets. To create
imbalanced data, we use one class of the multi-class UCI
datasets as positive data and the rest as negative data. The
boosting (column generation) iteration is set to 200; the
cutting-plane stopping criterion (εcp) is set to 0.001. De-
cision stumps are used as weak learners (Φ(·) in (14)). For
each data set, we randomly sample 50% for training, 25%
for validation and the rest for testing. The regularization
parameter C is chosen from 6 candidates ranging from 10
to 103. Experiments are repeated 5 times on each dataset
and the mean and standard deviation are reported. Table 1
reports the results. We can see that the 1-slack formulation
of StructBoost achieves similar AUC performance as the
m-slack formulation, while being much faster than m-
slack. The values of objective function and optimization
time are shown in Figure 3 by varying column generation
iterations. Again, it shows that 1-slack achieves similar
objective values as m-slack with less running time.

Note that RankBoost may also be applied to this problem
[40]. RankBoost has been designed for solving ranking
problems.

4.2 Multi-class classification

Multi-class classification is a special case of structured
learning. Details are described in Section 3.3. We carry out
experiments on some UCI multi-class datasets and MNIST.
We compare with Structured SVM (SSVM), conventional
multi-class boosting methods (namely AdaBoost.ECC and
AdaBoost.MH), and the one-vs-all SVM method. For each
dataset, we randomly select 50% data for training, 25% data
for validation and the rest for testing. The maximum num-
ber of boosting iterations is set to 200; the regularization
parameter C is chosen from 6 candidates whose values

11

20 40 60 80 100 120 140 160 180 200

4

5

6

7

8

9

10

11

SVMGUIDE4

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

m−slack (4.065±0.221)
1−slack (4.067±0.221)

20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600
SVMGUIDE4

iterations

O
pt

im
iz

at
io

n
tim

e
(s

ec
on

ds
)

m−slack (564.4±78.5 secs)
1−slack (105.7±13.2 secs)

20 40 60 80 100 120 140 160 180 200

8

10

12

14

16

18

20

22

24

VOWEL

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

m−slack (7.562±0.501)
1−slack (7.567±0.500)

20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500
VOWEL

iterations

O
pt

im
iz

at
io

n
tim

e
(s

ec
on

ds
)

m−slack (4051.2±116.0 secs)
1−slack (951.8±138.7 secs)

Fig. 3: AUC optimization on two UCI datasets. The objective values and optimization time are shown in the figure by varying boosting (or
column generation) iterations. It shows that 1-slack achieves similar objective values as m-slack but needs less running time.

TABLE 2: Multi-class classification test errors (%) on several UCI and MNIST datasets. StructBoost-stump and StructBoost-per denote our
StructBoost using decision stumps and perceptrons as weak learners, respectively. StructBoost outperforms SSVM in most cases and achieves
competitive performance compared with other multi-class classifiers.

glass svmguide2 svmguide4 vowel dna segment satimage usps pendigits mnist
StructBoost-stump 35.8 ± 6.2 21.0 ± 3.9 20.1 ± 2.9 17.5 ± 2.2 6.2 ± 0.7 2.9 ± 0.7 12.1 ± 0.7 6.9 ± 0.6 3.9 ± 0.4 12.5 ± 0.4

StructBoost-per 37.3 ± 6.2 22.7 ± 4.8 53.4 ± 6.1 6.8 ± 1.8 6.6 ± 0.6 3.8 ± 0.7 11.4 ± 1.1 4.1 ± 0.6 1.8 ± 0.3 6.5 ± 0.6
Ada.ECC 32.7 ± 4.9 23.3 ± 4.0 19.1 ± 2.3 20.6 ± 1.5 7.6 ± 1.2 2.9 ± 0.8 12.8 ± 0.7 8.4 ± 0.7 8.4 ± 0.7 15.8 ± 0.3
Ada.MH 32.3 ± 5.0 21.9 ± 4.5 19.3 ± 3.0 18.8 ± 2.1 7.1 ± 0.6 3.7 ± 0.7 12.7 ± 0.9 7.4 ± 0.5 7.4 ± 0.5 13.4 ± 0.4

SSVM 38.8 ± 8.7 21.9 ± 5.9 45.7 ± 3.9 25.6 ± 2.5 6.9 ± 0.9 5.3 ± 1.0 14.9 ± 0.1 5.8 ± 0.3 5.2 ± 0.3 9.6 ± 0.2
1-vs-all SVM 40.8 ± 7.0 17.7 ± 3.5 47.0 ± 3.2 54.4 ± 2.2 6.3 ± 0.5 7.7 ± 0.8 17.5 ± 0.4 5.4 ± 0.5 8.1 ± 0.5 9.2 ± 0.2

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
VOWEL

iterations

T
es

t e
rr

or

1−vs−all SVM(0.544±0.022)
SSVM(0.256±0.025)
Ada.MH(0.188±0.021)
Ada.ECC(0.206±0.015)
StBoost−per(0.068±0.018)
StBoost−stump(0.175±0.022)

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SEGMENT

iterations

T
es

t e
rr

or

1−vs−all SVM(0.077±0.008)
SSVM(0.053±0.010)
Ada.MH(0.037±0.007)
Ada.ECC(0.029±0.008)
StBoost−per(0.038±0.007)
StBoost−stump(0.029±0.007)

20 40 60 80 100 120 140 160 180 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SATIMAGE

iterations

T
es

t e
rr

or

1−vs−all SVM(0.175±0.004)
SSVM(0.149±0.001)
Ada.MH(0.127±0.009)
Ada.ECC(0.128±0.007)
StBoost−per(0.114±0.011)
StBoost−stump(0.121±0.007)

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
USPS

iterations

T
es

t e
rr

or

1−vs−all SVM(0.054±0.005)
SSVM(0.058±0.003)
Ada.MH(0.074±0.005)
Ada.ECC(0.084±0.007)
StBoost−per(0.041±0.006)
StBoost−stump(0.069±0.006)

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
PENDIGITS

iterations

T
es

t e
rr

or

1−vs−all SVM(0.081±0.005)
SSVM(0.052±0.003)
Ada.MH(0.074±0.005)
Ada.ECC(0.084±0.007)
StBoost−per(0.018±0.003)
StBoost−stump(0.039±0.004)

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
MNIST

iterations

T
es

t e
rr

or

1−vs−all SVM(0.092±0.002)
SSVM(0.096±0.002)
Ada.MH(0.134±0.004)
Ada.ECC(0.158±0.003)
StBoost−per(0.065±0.006)
StBoost−stump(0.125±0.004)

Fig. 4: Test performance versus the number of boosting iterations of multi-class classification. StBoost-stump and StBoost-per denote our
StructBoost using decision stumps and perceptrons as weak learners, respectively. The results of SSVM and SVM are shown as straight lines in
the plots. The values shown in the legend are the error rates of the final iteration for each method. Our methods perform better than SSVM in
most cases.

range from 10 to 1000. The experiments are repeated 5 times
for each dataset.

To demonstrate the flexibility of our method, we use
decision stumps and linear perceptron functions as weak
learners (Φ(·) in (17)). The perceptron weak learner can be
written as:

ϕ(x) = sign(v>x+ b). (31)

We use a smooth sigmoid function to replace the step func-
tion so that gradient descent optimization can be applied.
We solve the argmax problem in (18) by using the Quasi-
Newton LBFGS [41] solver. We found that decision stumps
often provide a good initialization for LBFGS learning of

the perceptron. Compared with decision stumps, using
the perceptron weak learner usually needs fewer boosting
iterations to converge. Table 2 reports the error rates. Figure
4 shows test performance versus the number of boosting
(column generation) iterations. The results demonstrate that
our method outperforms SSVM, and achieves competitive
performance compared with other conventional multi-class
methods.

StructBoost performs better than SSVM on most datasets.
This might be due to the introduction of non-linearity in
StructBoost. Results also show that using the perceptron
weak learner often achieves better performance than using

12

TABLE 3: Hierarchical classification. Results of the tree loss and the 1/0 loss (classification error rate) on subsets of the SUN dataset. StructBoost-
tree uses the hierarchy class formulation with the tree loss, and StructBoost-flat uses the standard multi-class formulation. StructBoost-tree that
minimizes the tree loss performs best.

datasets StructBoost-tree StructBoost-flat Ada.ECC-SVM Ada.ECC Ada.MH

6 scenes 1/0 loss 0.322 ± 0.018 0.343 ± 0.028 0.350 ± 0.013 0.327 ± 0.002 0.315 ± 0.015
tree loss 0.337 ± 0.014 0.380 ± 0.027 0.377 ± 0.018 0.352 ± 0.023 0.346 ± 0.018

15 scenes 1/0 loss 0.394 ± 0.005 0.396 ± 0.013 0.414 ± 0.012 0.444 ± 0.012 0.418 ± 0.010
tree loss 0.504 ± 0.007 0.536 ± 0.009 0.565 ± 0.019 0.584 ± 0.017 0.551 ± 0.013

decision stumps on those large datasets.

4.3 Hierarchical multi-class classification

The details of hierarchical multi-class are described in
Section 3.4. We have constructed two hierarchical image
datasets from the SUN dataset [34] which contains 6 classes
and 15 classes of scenes. The hierarchical tree structures
of these two datasets are shown in the Figure 1. For each
scene class, we use the first 200 images from the original
SUN dataset. There are 1200 images in the first dataset
and 3000 images in the second dataset. We have used the
HOG features as described in [34]. For each dataset, 50%
examples are randomly selected for training and the rest for
testing. We run 5 times for each dataset. The regularization
parameter is chosen from 6 candidates ranging from 1 to
103.

We use linear SVM as weak classifiers in our method. The
linear SVM weak classifier has the same form as (31). At
each boosting iteration, we solve the argmax problem by
training a linear SVM model. The regularization parameter
C in SVM is set to a large value (108/#examples). To
alleviate the overfitting problem of using linear SVM as
weak learners, we set 10% of the smallest non-zero dual
solutions µ(i,y) to zero.

We compare StructBoost using the hierarchical multi-
class formulation (StructBoost-tree) and the standard multi-
class formulation (StructBoost-flat). We run some other
multi-class methods for further comparison: Ada.ECC,
Ada.MH with decision stumps. We also run Ada.ECC using
linear SVM as weak classifiers (labelled as Ada.ECC-SVM).

When using SVM as weak learners, the number of boost-
ing iterations is set to 200, and for decision stump, it is
set to 500. Table 3 shows the tree loss and the 1/0 loss
(classification error rate). We observe that StructBoost-tree
has the lowest tree loss among all compared methods, and
it also improves its counterpart, StructBoost-flat, in terms
of both classification error rates and the tree loss. Our
StructBoost-tree makes use of the class hierarchy informa-
tion and directly optimizes the tree loss. That might be the
reason why StructBoost-tree achieves best performance.

4.4 Visual tracking

A visual tracking method, termed Struck [1], was intro-
duced based on SSVM. The core idea is to train a tracker
by optimizing the Pascal image overlap score using SSVM.
Here we apply StructBoost to visual tracking, following the
similar setting as in Struck [1]. More details can be found
in Section 3.5.

Our experiment follows the on-line tracking setting. Here
we use the first 3 labeled frames for initialization and
training of our StructBoost tracker. Then the tracker is
updated by re-training the model during the course of
tracking. Specifically, in the i-th frame (represented by xi),
we first perform a prediction step (solving (2)) to output the
detection box (yi), then collect training data for tracker up-
date. For solving the prediction inference in (2), we simply
sample about 2000 bounding boxes around the prediction
box of the last frame (represented by yi−1), and search for
the most confident bounding box over all sampled boxes
as the prediction. After the prediction, we collect training
data by sampling about 200 bounding boxes around the
current prediction yi. We use the training data in recent 60
frames to re-train the tracker for every 2 frames. Solving
(12) for finding the most violated constraint is similar to
the prediction inference.

For StructBoost, decision stumps are used as the weak
classifiers; the number of boosting iterations is set to 300;
the regularization parameter C is selected from 100.5 to 102.
We use the down-scaled gray-scale raw pixels and HOG
[42] as image features.

For comparison, we also run a simple binary AdaBoost
tracker using the same setting as our StructBoost tracker.
The number of weak classifiers for AdaBoost is set to 500.
When training the AdaBoost tracker, we collect positive
boxes that significantly overlap (overlap score above 0.8)
with the prediction box of the current frame, and negative
boxes with small overlap scores (lower or equal to 0.3).

We also compare with a few state-of-the-art tracking
methods, including Struck [1] (with a buffer size of 50),
multi-instance tracking (MIL) [43], fragment tracking (Frag)
[44], online AdaBoost tracking (OAB) [45], and visual track-
ing decomposition (VTD) [46]. Two different settings are
used for OAB: one positive example per frame (OAB1) and
five positive examples per frame (OAB5) for training. The
test video sequences: ”coke, tiger1, tiger2, david, girl and
sylv” were used in [1]; “shaking, singer” are from [46] and
the rest are from [47].

Table 4 reports the Pascal overlap scores of compared
methods. Our StructBoost tracker performs best on most
sequences. Compared with the simple binary AdaBoost
tracker, StructBoost that optimizes the pascal overlap cri-
terion perform significantly better. Note that here Struck
uses Haar features. When Struck uses a Gaussian kernel
defined on raw pixels, the performance is slightly different
[1], and ours still outperforms Struck in most cases. This
might be due to the fact that StructBoost selects relevant
features (300 features selected here), while SSVM of Struck

13

[1] uses all the image patch information which may contain
noises.

The center location errors (in pixels) of compared meth-
ods are shown in Table 5. We can see that optimizing the
overlap score also helps to minimize the center location
errors. Our method also achieves the best performance.

Figure 5 plots the Pascal overlap scores and central
location errors frame by frame on several video sequences.
Some tracking examples are shown in Figure 6.

4.5 CRF parameter learning for image segmentation

We evaluate our method on CRF parameter learning for
image segmentation, following the work of [16]. The work
of [16] applies SSVM to learn weighting parameters for
different potentials (including multiple unary and pairwise
potentials). The goal of applying StructBoost here is to learn
a non-linear weighting for different potentials. Details are
described in Section 3.6.

We extend the super-pixels based segmentation method
[38] with CRF parameter learning. The Graz-02 dataset2

is used here which contains 3 categories (bike, car and
person). Following the setting as other methods [38], the
first 300 labeled images in each category are used in
the experiment. Images with the odd indices are used
for training and the rest for testing. We generate super-
pixels using the same setting as [38]. For each super-pixel,
we generate 5 types of features: visual word histogram
[38], color histograms, GIST [48], LBP3 and HOG [42]. For
constructing the visual word histogram, we follow [38]
using a neighborhood size of 2; the code book size is set
to 200. For GIST, LBP and HOG, we extract features from
patches centered at the super-pixel with 4 increasing sizes:
4 × 4, 8 × 8, 12 × 12 and 16 × 16. The cell size for LBP
and HOG is set to a quarter of the patch size. For GIST,
we generate 512 dimensional features for each patch by
using 4 scales and the number of orientations is set to 8. In
total, we generate 14 groups of features (including features
extracted on patches of different sizes). Using these super-
pixel features, we construct 14 different unary potentials
(U = [U1, . . . , U14]>) from AdaBoost classifiers, which are
trained on the foreground and background super-pixels.
The number of boosting iterations for AdaBoost is set to
1000. Specifically, we define F ′(xp) as the discriminant
function of AdaBoost on the features of the p-th super-pixel.
Then the unary potential function can be written as:

U(x, yp) = −ypF ′(xp). (32)

We also construct 2 pairwise potentials (V = [V1, V2]>): V1
is constructed using color difference, and V2 using shared
boundary length [38] which is able to discourage small
isolated segments. Recall that 1(·, ·) is an indicator function
defined in (16). ‖xp − xq‖2 calculates the `2 norm of the
color difference between two super-pixels in the LUV color-
space; `(xp,xq) is the shared boundary length between two

2. http://www.emt.tugraz.at/∼pinz/
3. http://www.vlfeat.org/

TABLE 6: Image segmentation results on the Graz-02 dataset. The
results show the the pixel accuracy, intersection-union score (including
the foreground and background) and precision = recall value (as
in [38]). Our method StructBoost for nonlinear parameter learning
performs better than SSVM and other methods.

bike car people
intersection/union (foreground, background) (%)

AdaBoost 69.2 (57.6, 80.7) 72.2 (51.7, 92.7) 68.9 (51.2, 86.5)
SVM 65.2 (53.0, 77.4) 68.6 (45.0, 92.3) 62.9 (41.0, 84.8)

SSVM 74.5 (64.4, 84.6) 80.2 (64.9, 95.4) 74.3 (58.8, 89.7)
StructBoost 76.5 (66.3, 86.7) 80.8 (66.1, 95.6) 75.7 (61.0, 90.4)

pixel accuracy (foreground, background) (%)
AdaBoost 84.4 (83.8, 85.1) 82.9 (69.8, 96.0) 81.0 (70.0, 92.1)

SVM 81.9 (81.8, 82.1) 77.0 (57.2, 96.9) 73.5 (53.8, 93.2)
SSVM 87.9 (87.9, 88.0) 86.9 (75.8, 98.1) 83.5 (71.8, 95.2)

StructBoost 87.4 (83.3, 91.5) 87.6 (77.0, 98.1) 84.6 (73.6, 95.6)
precision = recall (%)

M. & S. [49] 61.8 53.8 44.1
F. et al. [38] 72.2 72.2 66.3

AdaBoost 72.7 67.8 67.0
SVM 68.3 63.4 61.2

SSVM 77.3 78.3 74.4
StructBoost 78.9 79.3 75.9

super-pixels. Then V1, V2 can be written as:

V1(yp, yq,x) = exp(−‖xp − xq‖2)
[
1− 1(yp, yq)

]
, (33)

V2(yp, yq,x) =`(xp,xq)
[
1− 1(yp, yq)

]
. (34)

We apply StructBoost here to learn non-linear weights for
combining these potentials. We use decision stumps as
weak learners (Φ(·) in (22)) here. The number of boosting
iterations for StructBoost is set to 50.

For comparison, we run SSVM to learn CRF weighting
parameters on exactly the same potentials as our method.
The regularization parameter C in SSVM and our Struct-
Boost is chosen from 6 candidates with the value ranging
from 0.1 to 103. We also run two simple binary super-pixel
classifiers (linear SVM and AdaBoost) trained on visual
word histogram features of foreground and background
super-pixels. The regularization parameter C in SVM is
chosen from 102 to 107. The number of boosting iterations
for AdaBoost is set to 1000.

We use the intersection-union score, pixel accuracy (in-
cluding the foreground and background) and precision =
recall value (as in [38]) for evaluation. Results are shown in
Table 6. Some segmentation examples are shown in Figure
7. As shown in the results, both StructBoost and SSVM,
which learn to combine different potential functions, are
able to significantly outperform the simple binary models
(AdaBoost and SVM). StructBoost outperforms SSVM since
it learns a non-linear combination of potentials. Note that
SSVM learns a linear weighting for different potentials. By
employing nonlinear parameter learning, our method gains
further performance improvement over SSVM.

5 CONCLUSION

we have presented a structured boosting method, which
combines a set of weak structured learners for nonlinear
structured output leaning, as an alternative to SSVM [4]
and CRF [11]. Analogous to SSVM, where the discriminant
function is learned over a joint feature space of inputs

http://www.emt.tugraz.at/~pinz/

14

TABLE 4: Average bounding box overlap scores on benchmark videos. Struck50 [1] is structured SVM tracking with a buffer size of 50. Our
StructBoost performs the best in most cases. Struck performs the second best, which confirms the usefulness of structured output learning.

StructBoost AdaBoost Struck50 Frag MIL OAB1 OAB5 VTD
coke 0.79 ± 0.17 0.47 ± 0.19 0.55 ± 0.18 0.07 ± 0.21 0.36 ± 0.23 0.10 ± 0.20 0.04 ± 0.16 0.10 ± 0.23

tiger1 0.75 ± 0.17 0.64 ± 0.16 0.68 ± 0.21 0.21 ± 0.30 0.64 ± 0.18 0.44 ± 0.23 0.23 ± 0.24 0.11 ± 0.24
tiger2 0.74 ± 0.18 0.46 ± 0.18 0.59 ± 0.19 0.16 ± 0.24 0.63 ± 0.14 0.35 ± 0.23 0.18 ± 0.19 0.19 ± 0.22
david 0.86 ± 0.07 0.34 ± 0.23 0.82 ± 0.11 0.18 ± 0.24 0.59 ± 0.13 0.28 ± 0.23 0.21 ± 0.22 0.29 ± 0.27

girl 0.74 ± 0.12 0.41 ± 0.26 0.80 ± 0.10 0.65 ± 0.19 0.56 ± 0.21 0.43 ± 0.18 0.28 ± 0.26 0.63 ± 0.12
sylv 0.66 ± 0.16 0.52 ± 0.18 0.69 ± 0.14 0.61 ± 0.23 0.66 ± 0.18 0.47 ± 0.38 0.05 ± 0.12 0.58 ± 0.30
bird 0.79 ± 0.11 0.67 ± 0.14 0.60 ± 0.26 0.34 ± 0.32 0.58 ± 0.32 0.57 ± 0.29 0.59 ± 0.30 0.11 ± 0.26

walk 0.74 ± 0.19 0.56 ± 0.14 0.59 ± 0.39 0.09 ± 0.25 0.51 ± 0.34 0.54 ± 0.36 0.49 ± 0.34 0.08 ± 0.23
shaking 0.72 ± 0.13 0.49 ± 0.22 0.08 ± 0.19 0.33 ± 0.28 0.61 ± 0.26 0.57 ± 0.28 0.51 ± 0.21 0.69 ± 0.14

singer 0.69 ± 0.10 0.74 ± 0.10 0.34 ± 0.37 0.14 ± 0.30 0.20 ± 0.34 0.20 ± 0.33 0.07 ± 0.18 0.50 ± 0.20
iceball 0.58 ± 0.17 0.05 ± 0.16 0.51 ± 0.33 0.51 ± 0.31 0.35 ± 0.29 0.08 ± 0.23 0.38 ± 0.30 0.57 ± 0.29

TABLE 5: Average center errors on benchmark videos. Struck50 [1] is structured SVM tracking with a buffer size of 50. We observe similar
results as in Table 4: Our StructBoost outperforms others on most sequences, and Struck is the second best.

StructBoost AdaBoost Struck50 Frag MIL OAB1 OAB5 VTD
coke 3.7 ± 4.5 9.3 ± 4.2 8.3 ± 5.6 69.5 ± 32.0 17.8 ± 9.6 34.7 ± 15.5 68.1 ± 30.3 46.8 ± 21.8

tiger1 5.4 ± 4.9 7.8 ± 4.4 7.8 ± 9.9 39.6 ± 25.7 8.4 ± 5.9 17.8 ± 16.4 38.9 ± 31.1 68.8 ± 36.4
tiger2 5.2 ± 5.6 12.7 ± 6.3 8.7 ± 6.1 38.5 ± 24.9 7.5 ± 3.6 20.5 ± 14.9 38.3 ± 26.9 38.0 ± 29.6
david 5.2 ± 2.8 43.0 ± 28.2 7.7 ± 5.7 73.8 ± 36.7 19.6 ± 8.2 51.0 ± 30.9 64.4 ± 33.5 66.1 ± 56.3

girl 14.3 ± 7.8 47.1 ± 29.5 10.1 ± 5.5 23.0 ± 22.5 31.6 ± 28.2 43.3 ± 17.8 67.8 ± 32.5 18.4 ± 11.4
sylv 9.1 ± 5.8 14.7 ± 7.8 8.4 ± 5.3 12.2 ± 11.8 9.4 ± 6.5 32.9 ± 36.5 76.4 ± 35.4 21.6 ± 35.7
bird 6.7 ± 3.8 12.7 ± 9.5 17.9 ± 13.9 50.0 ± 43.3 49.0 ± 85.3 47.9 ± 87.7 48.5 ± 86.3 143.9 ± 79.3

walk 8.4 ± 10.3 13.5 ± 5.4 33.9 ± 49.5 102.8 ± 46.3 35.0 ± 47.5 35.7 ± 49.2 38.0 ± 48.7 100.9 ± 47.1
shaking 9.5 ± 5.4 21.6 ± 12.0 123.9 ± 54.5 47.2 ± 40.6 37.8 ± 75.6 26.9 ± 49.3 29.1 ± 48.7 10.5 ± 6.8

singer 5.8 ± 2.2 4.8 ± 2.1 29.5 ± 23.8 172.8 ± 95.2 188.3 ± 120.8 189.9 ± 115.2 158.5 ± 68.6 10.1 ± 7.6
iceball 8.0 ± 4.1 107.9 ± 66.4 15.6 ± 22.1 39.8 ± 72.9 61.6 ± 85.6 97.7 ± 53.5 58.7 ± 84.0 13.5 ± 26.0

Vtd Oab5 Oab1 Mil Frag Struck Adaboost StructBoost

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame index

B
ou

nd
in

g
bo

x
ov

er
la

p

(a) coke

50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame index

B
ou

nd
in

g
bo

x
ov

er
la

p

(b) tiger1

50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame index

B
ou

nd
in

g
bo

x
ov

er
la

p

(c) tiger2

50 100 150 200 250
0

20

40

60

80

100

120

140

Frame index

C
en

te
r

lo
ca

tio
n

er
ro

r

(d) coke

50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

Frame index

C
en

te
r

lo
ca

tio
n

er
ro

r

(e) tiger1

50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

Frame index

C
en

te
r

lo
ca

tio
n

er
ro

r

(f) tiger2

Fig. 5: Bounding box overlap (first row) and center location error (second row) in frames of several video sequences. Our StructBoost often
achieves higher scores of box overlap and lower center location errors compared with other trackers.

and outputs, the discriminant function of the proposed
StructBoost is a linear combination of weak structured
learners defined over a joint space of input-output pairs.

To efficiently solve the resulting optimization problems,
we have introduced a cutting-plane method, which was
originally proposed for fast training of linear SVM. Our ex-
tensive experiments demonstrate that indeed the proposed
algorithm is computationally tractable.

StructBoost is flexible in the sense that it can be used to
optimize a wide variety of loss functions. We have exem-
plified the application of StructBoost by applying to multi-
class classification, hierarchical multi-class classification by
optimizing the tree loss, visual tracking that optimizes the
Pascal overlap criterion, and learning CRF parameters for
image segmentation. We show that StructBoost at least is
comparable or sometimes exceeds conventional approaches

15

Vtd Oab5 Oab1 Mil Frag Struck Adaboost StructBoost

Fig. 6: Some tracking examples of several video sequences: “coke”, “david”, and “walk” (best viewed on screen). The output bounding boxes
of our StructBoost better overlap against the ground truth than the compared methods.

(a) Testing (b) Truth (c) AdaBoost (d) SSVM (e) StructBoost (f) Testing (g) Truth (h) AdaBoost (i) SSVM (j) StructBoost

Fig. 7: Some segmentation results on the Graz-02 dataset (bicycle, car and person). Compared with AdaBoost, structured output learning methods
(StructBoost and SSVM) present sharper segmentation boundaries, and better spatial regularization. Compared with SSVM, our StructBoost with
non-linear parameter learning performs better, demonstrating more accurate foreground object boundaries and cleaner backgrounds.

for a wide range of applications. We also observe that
StructBoost has improved performance over linear SSVM,
demonstrating the usefulness of our nonlinear structured
learning method. Future work will focus on more applica-
tions of this general StructBoost framework.

REFERENCES

[1] S. Hare, A. Saffari, and P. Torr, “Struck: Structured output tracking
with kernels,” in Proc. IEEE Int. Conf. Comp. Vis., 2011.

[2] S. Nowozin and C. H. Lampert, “Structured learning and pre-
diction in computer vision,” Foundations & Trends in Computer
Graphics & Vision, 2011.

[3] M. B. Blaschko and C. H. Lampert, “Learning to localize objects
with structured output regression,” in Proc. Eur. Conf. Comp. Vis.,
2008, pp. 2–15.

[4] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support
vector machine learning for interdependent and structured output
spaces,” in Proc. Int. Conf. Mach. Learn., 2004, pp. 104–111.

[5] J. Weston and C. Watkins, “Multi-class support vector machines,”
in Proc. Euro. Symp. Artificial Neural Networks, 1999.

[6] K. Crammer and Y. Singer, “On the algorithmic implementation
of multiclass kernel-based vector mchines,” J. Mach. Learn. Res.,
vol. 2, pp. 265–292, 2001.

[7] C. Shen and Z. Hao, “A direct formulation for totally-corrective
multi-class boosting,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
2011.

[8] C. Shen and H. Li, “On the dual formulation of boosting algo-

16

rithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12, pp.
2216–2231, 2010.

[9] I. Steinwart, “Sparseness of support vector machines,” J. Mach.
Learn. Res., 2003.

[10] T. Joachims, “Training linear SVMs in linear time,” in Proc. ACM
SIGKDD Int. Conf. Knowledge discovery & data mining, 2006, pp.
217–226.

[11] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” in Proc. Int. Conf. Mach. Learn., 2001, pp. 282–289.

[12] C. Sutton and A. McCallum, “An introduction to conditional
random fields,” Foundations and Trends in Machine Learning, 2012.
[Online]. Available: http://arxiv.org/abs/1011.4088

[13] N. Plath, M. Toussaint, and S. Nakajima, “Multi-class image
segmentation using conditional random fields and global clas-
sification,” in Proc. Int. Conf. Mach. Learn., 2009.

[14] L. Bertelli, T. Yu, D. Vu, and B. Gokturk, “Kernelized structural
SVM learning for supervised object segmentation,” in Proc. IEEE
Conf. Comp. Vis. Patt. Recogn. IEEE, 2011, pp. 2153–2160.

[15] C. Desai, D. Ramanan, and C. C. Fowlkes, “Discriminative models
for multi-class object layout,” Int. J. Comp. Vis., vol. 95, no. 1, pp.
1–12, 2011.

[16] M. Szummer, P. Kohli, and D. Hoiem, “Learning CRFs using
graph cuts,” in Proc. Eur. Conf. Comp. Vis., 2008, pp. 582–595.

[17] T. G. Dietterich, A. Ashenfelter, and Y. Bulatov, “Training
conditional random fields via gradient tree boosting,” in
Proc. Int. Conf. Mach. Learn., 2004. [Online]. Available: http:
//doi.acm.org/10.1145/1015330.1015428

[18] S. Nowozin, P. V. Gehler, and C. H. Lampert, “On parameter learn-
ing in CRF-based approaches to object class image segmentation,”
in Proc. Eur. Conf. Comp. Vis., 2010, pp. 98–111.

[19] D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert, “Contextual
classification with functional max-margin markov networks,” in
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2009, pp. 975–982.

[20] B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov
networks,” in Proc. Adv. Neural Inf. Process. Syst., 2003.

[21] L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean, “Boosting
algorithms as gradient descent,” in Proc. Adv. Neural Inf. Process.
Syst., 1999, pp. 512–518.

[22] N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt, “Boosting
structured prediction for imitation learning,” in Proc. Adv. Neural
Inf. Process. Syst., 2007.

[23] N. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search: Func-
tional gradient techniques for imitation learning,” Autonomous
Robots, vol. 27, no. 1, pp. 25–53, 2009.

[24] C. Shen, H. Li, and A. van den Hengel, “Fully corrective boosting
with arbitrary loss and regularization,” Neural Networks, vol. 48,
pp. 44–58, 2013. [Online]. Available: http://hdl.handle.net/2440/
78929

[25] C. Parker, A. Fern, and P. Tadepalli, “Gradient boosting for
sequence alignment,” in Proc. National Conf. Artificial Intelligence,
2006, pp. 452–457.

[26] C. Parker, “Structured gradient boosting,” 2007, PhD thesis,
Oregon State University. [Online]. Available: http://hdl.handle.
net/1957/6490

[27] Q. Wang, D. Lin, and D. Schuurmans, “Simple training of depen-
dency parsers via structured boosting,” in Proc. Int. Joint Conf.
Artificial Intell., 2007, pp. 1756–1762.

[28] A. Demiriz, K. P. Bennett, and J. Shawe-Taylor, “Linear program-
ming boosting via column generation,” Mach. Learn., vol. 46, no.
1-3, pp. 225–254, 2002.

[29] C. Shen, H. Li, and A. van den Hengel, “Fully corrective boosting
with arbitrary loss and regularization,” Neural Networks, 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.neunet.2013.07.
006

[30] T. Joachims, T. Finley, and C.-N. J. Yu, “Cutting-plane training of
structural svms,” Mach. Learn., 2009.

[31] V. Franc and S. Sonnenburg, “Optimized cutting plane algorithm
for support vector machines,” in Proc. Int. Conf. Mach. Learn.,
New York, NY, USA, 2008, pp. 320–327. [Online]. Available:
http://doi.acm.org/10.1145/1390156.1390197

[32] C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le, “Bundle
methods for regularized risk minimization,” J. Mach. Learn. Res.,
vol. 11, pp. 311–365, 2010.

[33] T. Joachims, “A support vector method for multivariate perfor-
mance measures,” in Proc. Int. Conf. Machine Learning, 2005, pp.
377–384.

[34] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, “SUN
database: Large-scale scene recognition from abbey to zoo,” in
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2010.

[35] L. Cai and T. Hofmann, “Hierarchical document categorization
with support vector machines,” in Proc. ACM Int. Conf. Information
& knowledge management, 2004, pp. 78–87.

[36] C. Fellbaum, WordNet: An Electronic Lexical Database. Bradford
Books, 1998.

[37] S. Paisitkriangkrai, C. Shen, Q. Shi, and A. van den
Hengel, “RandomBoost: Simplified multi-class boosting through
randomization,” IEEE Trans. Neural Networks and Learning Systems,
2013. [Online]. Available: http://arxiv.org/abs/1302.0963

[38] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and
object localization with superpixel neighborhoods,” in Proc. Int.
Conf. Comp. Vis., 2009.

[39] S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and P. Kohli,
“Decision tree fields,” in Proc. Int. Conf. Comp. Vis., 2011.

[40] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient
boosting algorithm for combining preferences,” J. Mach. Learn.
Res., vol. 4, pp. 933–969, 2003.

[41] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, “Algorithm 778: L-
BFGS-B: Fortran subroutines for large-scale bound-constrained
optimization,” ACM T. Math. Softw., 1997.

[42] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based mod-
els,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–
1645, September 2010.

[43] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with
online multiple instance learning,” in Proc. IEEE Conf. Comp. Vis.
Patt. Recogn., 2009.

[44] A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based
tracking using the integral histogram,” in Proc. IEEE Conf. Comp.
Vis. Patt. Recogn., 2006, pp. 798–805.

[45] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via
on-line boosting,” in Proc. British Mach. Vis. Conf., 2006, pp. 47–56.

[46] J. Kwon and K. M. Lee, “Visual tracking decomposition,” in Proc.
IEEE Conf. Comp. Vis. Patt. Recogn., 2010, pp. 1269–1276.

[47] S. Wang, H. Lu, F. Yang, and M.-H. Yang, “Superpixel tracking,”
in Proc. Int. Conf. Comp. Vis., 2011, pp. 1323–1330.

[48] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” Int. J. Comput.
Vision, 2001.

[49] M. Marszatek and C. Schmid, “Accurate object localization with
shape masks,” in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2007.

http://arxiv.org/abs/1011.4088
http://doi.acm.org/10.1145/1015330.1015428
http://doi.acm.org/10.1145/1015330.1015428
http://hdl.handle.net/2440/78929
http://hdl.handle.net/2440/78929
http://hdl.handle.net/1957/6490
http://hdl.handle.net/1957/6490
http://dx.doi.org/10.1016/j.neunet.2013.07.006
http://dx.doi.org/10.1016/j.neunet.2013.07.006
http://doi.acm.org/10.1145/1390156.1390197
http://arxiv.org/abs/1302.0963

17

6 SUPPLEMENTARY—STRUCTBOOST: BOOSTING METHODS FOR PREDICTING STRUCTURED
OUTPUT VARIABLES

6.1 Dual formulation of m-slack

The formulation of StructBoost can be written as (m-slack primal):

min
w≥0,ξ≥0

1>w + C
m 1>ξ (35a)

s.t. : w>δΨi(y) ≥ ∆(yi,y)− ξi,
∀i = 1, . . . ,m; and ∀y ∈ Y. (35b)

The Lagrangian of the m-slack primal problem can be written as:

L = 1>w +
C

m
1>ξ −

∑
i,y

µ(i,y) ·
[
w>δΨi(y)−∆(yi,y) + ξi

]
− ν>w − β>ξ, (36)

where µ,ν,β are Lagrange multipliers: µ ≥ 0,ν ≥ 0,β ≥ 0. We denote by µ(i,y) the Lagrange dual multiplier associated
with the margin constraints (35b) for label y and training pair (xi,yi). At optimum, the first derivative of the Lagrangian
w.r.t. the primal variables must vanish,

∂L

∂ξi
= 0 =⇒ C

m
−
∑
y

µ(i,y) − βi = 0

=⇒ 0 ≤
∑
y

µ(i,y) ≤
C

m
;

and,
∂L

∂w
= 0 =⇒ 1−

∑
i,y

µ(i,y)δΨi(y)− ν = 0

=⇒
∑
i,y

µ(i,y)δΨi(y) ≤ 1.

By putting them back into the Lagrangian (36) and we can obtain the dual problem of the m-slack formulation in (35):

max
µ≥0

∑
i,y

µ(i,y)∆(yi,y) (37a)

s.t. :
∑
i,y µ(i,y)δΨi(y) ≤ 1, (37b)

0 ≤
∑
y µ(i,y) ≤ C

m ,∀i = 1, . . . ,m. (37c)

6.2 Dual formulation of 1-slack

The 1-slack formulation of StructBoost can be written as:

min
w≥0,ξ≥0

1>w + Cξ (38a)

s.t. : 1
mw
>
[m∑
i=1

ci · δΨi(y)

]
≥ 1

m

m∑
i=1

ci∆(yi,y)− ξ,

∀c ∈ {0, 1}m;∀y ∈ Y, i = 1, · · · ,m. (38b)

The Lagrangian of the 1-slack primal problem can be written as:

L =1>w + Cξ −
∑
c,y

λ(c,y) ·
{

1

m
w>
[m∑
i=1

ci · δΨi(y)

]
−

1

m

m∑
i=1

ci∆(yi,y) + ξ

}
− ν>w − βξ, (39)

where λ,ν, β are Lagrange multipliers: λ ≥ 0,ν ≥ 0, β ≥ 0. We denote by λ(c,y) the Lagrange multiplier associated
with the inequality constraints for c ∈ {0, 1}m and label y. At optimum, the first derivative of the Lagrangian w.r.t. the
primal variables must be zeros,

∂L

∂ξ
= 0 =⇒ C −

∑
c,y

λ(c,y) − β = 0

=⇒ 0 ≤
∑
c,y

λ(c,y) ≤ C;

18

and,

∂L

∂w
= 0 =⇒ 1− 1

m

∑
c,y

λ(c,y) ·
[m∑
i=1

ci · δΨi(y)

]
= ν.

=⇒ 1

m

∑
c,y

λ(c,y) ·
[m∑
i=1

ci · δΨi(y)

]
≤ 1. (40)

The dual problem of (38) can be written as:

max
λ≥0

∑
c,y

λ(c,y)

m∑
i=1

ci∆(yi,y) (41a)

s.t. :
1

m

∑
c,y

λ(c,y)

[m∑
i=1

ci · δΨi(y)

]
≤ 1, (41b)

0 ≤
∑
c,y λ(c,y) ≤ C. (41c)

6.3 Convergence analysis of StructBoost

The following result shows the convergence property of Algorithm 1.

Proposition 6.1. Algorithm 1 makes progress at each column generation iteration; i.e., the objective value decreases at each iteration.

Proof: Let us assume that the current solution is a finite subset of weak learners and their corresponding coefficients
are w. When we add a weak learner that is not in the current subset and resolve the problem and the corresponding
ŵ is zero, then the objective value and the solution keep unchanged. In this case, we can draw a conclusion that the
current selected weak learner and the solution w are optimal.

Now let us assume that the optimality condition is violated. We want to show that we can find a weak learner ψ̂(·, ·) that
is not in the current set of weak learners, such that its corresponding coefficient ŵ > 0 holds. Assume that ψ̂(·, ·) is found
by solving the weak learner generation subproblem and the convergence condition 1

m

∑
c,y 6=yi

λ(c,y)
[∑m

i=1 ci ·δψ̂i(y)
]
≤ 1

does not hold. In other words, we have 1
m

∑
c,y 6=yi

λ(c,y)
[∑m

i=1 ci · δψ̂i(y)
]
> 1.

Now if this ψ̂(·, ·) is added into the master problem and the primal solution is not changed; i.e., ŵ = 0, then we know
that in (40), ν = 1− 1

m

∑
c,y 6=yi

λ(c,y)
[∑m

i=1 ci ·δψ̂i(y)
]
< 0. This contradicts the fact that the Lagrange multiplier ν must

be nonnegative.
Therefore, after this weak learner is added into the master problem, its corresponding coefficient ŵ must be a non-zero

positive value. It means that one more free variable is added into the master problem and re-solving the it must reduce
the objective value. That means, a strict decrease in the objective is assured. Hence Algorithm 1 makes progress at each
iteration.

At the t-th column generation iteration, the objective of the primal in (35) can be written as:

f(w(t)) =
t∑

j=1

w
(t)
j +

C

m

m∑
i=1

max
y

{
∆(yi,y)−

t∑
j=1

w
(t)
j

[
ψj(xi,yi)− ψj(xi,y)

]}
. (42)

Notice that the constraints: ξ ≥ 0 can be removed in the optimization (35) because it is implicitly enforced by the first
set of constraints.

Following the analysis of the boosting algorithm in [?], we have the following proposition which describes the progress
of reducing the objective at each boosting (column generation) iteration.

Proposition 6.2. The decrease of objective value between boosting iterations (t− 1) and t is lower bounded as:

f
(
w(t−1)

)
− f

(
w(t)

)
≥ max

α≥0

{
− α+

αC

m

m∑
i=1

[
ψt (xi,yi)− ψt

(
xi,y

(t)∗
i (α)

)]}
, (43)

in which,

y
(t)∗
i (α) = argmax

y

{
∆(yi,y) +

t−1∑
j=1

w
(t−1)
j ψj(xi,y) + αψt(xi,y)

}
. (44)

Proof: We define the maximization solution in (42) as:

y
(t)∗
i = argmax

y

{
∆(yi,y) +

t∑
j=1

w
(t)
j ψj(xi,y)

}
. (45)

19

The objective of the t-th interation in (42) can be written as:

f
(
w(t),y(t)∗

)
=

t∑
j=1

w
(t)
j +

C

m

m∑
i=1

{
∆
(
yi,y

(t)∗
i

)
−

t∑
j=1

w
(t)
j

[
ψj (xi,yi)− ψj

(
xi,y

(t)∗
i

)]}
. (46)

Clearly, y(t)∗ is a sub-optimal maximazation solution for the (t − 1)-th iteration. The decrease of the objective value
between iterations (t− 1) and t can be lower bounded as:

f
(
w(t−1)

)
− f

(
w(t)

)
= f

(
w(t−1),y(t−1)∗

)
− f

(
w(t),y(t)∗

)
≥ f

(
w(t−1),y(t)∗

)
− f

(
w(t),y(t)∗

)
. (47)

Here we construct a sub-optimal solution (denoted as w(t)′) for the t-th iteration, which takes the following form:

w(t)′ =

[
w(t−1)

α

]
, (48)

in which α ≥ 0. With this sub-optimial solution, the maximization solution is:

y
(t)∗
i (α) = argmax

y

{
∆(yi,y) +

t−1∑
j=1

w
(t−1)
j ψj(xi,y) + αψt(xi,y)

}
. (49)

Then the objective decrease between iterations (t− 1) and t can be further lower bounded as:

f
(
w(t−1),y(t−1)∗

)
− f

(
w(t),y(t)∗

)
≥ f

(
w(t−1),y(t)∗

)
− f

(
w(t),y(t)∗

)
≥ f

(
w(t−1),y(t)∗(α)

)
− f

(
w(t)′ ,y(t)∗(α)

)
.

Substituting it into the objective function, the left part: f
(
w(t−1),y(t)∗(α)

)
can be written as:

f
(
w(t−1),y(t)∗(α)

)
=

t∑
j=1

w
(t−1)
j +

C

m

m∑
i=1

{
∆
(
yi,y

(t)∗
i (α)

)
−

t∑
j=1

w
(t−1)
j

[
ψj (xi,yi)− ψj

(
xi,y

(t)∗
i (α)

)]}
.

With the definition in (48), the right part: f
(
w(t)′ ,y(t)∗(α)

)
is written as:

f
(
w(t)′ ,y(t)∗(α)

)
=

t∑
j=1

w
(t)′

j +
C

m

m∑
i=1

{
∆
(
yi,y

(t)∗
i (α)

)
−

t∑
j=1

w
(t)′

j

[
ψj (xi,yi)− ψj

(
xi,y

(t)∗
i (α)

)]}

=
t−1∑
j=1

w
(t−1)
j + α+

C

m

m∑
i=1

{
∆
(
yi,y

(t)∗
i (α)

)

−
t−1∑
j=1

w
(t−1)
j

[
ψj (xi,yi)− ψj

(
xi,y

(t)∗
i (α)

)]
− α

[
ψt (xi,yi)− ψt

(
xi,y

(t)∗
i (α)

)]}

=f
(
w(t−1),y(t)∗(α)

)
+ α− αC

m

m∑
i=1

{[
ψt (xi,yi)− ψt

(
xi,y

(t)∗
i (α)

)]}
.

From the above, the lower bound in (50) can be wrriten as:

f
(
w(t−1),y(t)∗(α)

)
− f

(
w(t)′ ,y(t)∗(α)

)
≥ −α+

αC

m

m∑
i=1

[
ψt (xi,yi)− ψt

(
xi,y

(t)∗
i (α)

)]
. (50)

Finally, the objective decrease is lower bounded as:

f
(
w(t−1)

)
− f

(
w(t)

)
≥ max

α≥0

{
− α+

αC

m

m∑
i=1

[
ψt (xi,yi)− ψt

(
xi,y

(t)∗
i (α)

)]}
, (51)

in which,

y
(t)∗
i (α) = argmax

y

{
∆(yi,y) +

t−1∑
j=1

w
(t−1)
j ψj(xi,y) + αψt(xi,y)

}
. (52)

This concludes the proof.

	1 Introduction
	1.1 Main contributions
	1.2 Related work
	1.3 Notation

	2 Structured boosting
	2.1 1 -slack formulation for fast optimization
	2.2 Cutting-plane optimization for the 1-slack primal
	2.3 Discussion

	3 Examples of StructBoost
	3.1 Binary classification
	3.2 Ordinal regression and AUC optimization
	3.3 Multi-class boosting
	3.4 Hierarchical classification with taxonomies
	3.5 Optimization of the Pascal image overlap criterion
	3.6 CRF parameter learning

	4 Experiments
	4.1 AUC optimization
	4.2 Multi-class classification
	4.3 Hierarchical multi-class classification
	4.4 Visual tracking
	4.5 CRF parameter learning for image segmentation

	5 Conclusion
	References
	6 Supplementary—StructBoost: Boosting methods for predicting structured output variables
	6.1 Dual formulation of m-slack
	6.2 Dual formulation of 1 -slack
	6.3 Convergence analysis of StructBoost

