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Fuzzy n−ellipsoid Numbers and
Representations of Uncertain Multichannel

Digital Information
Guixiang Wang, Peng Shi, Senior Member, IEEE, Baoping Wang, and Jiaxi Zhang

Abstract—In this paper, we present the definition of
fuzzy n−ellipsoid numbers which are a special kind
n−dimensional fuzzy numbers, not only are more objective
and more rational in expressing uncertain multichannel
digital information than fuzzy n−cell numbers but also
keep the convenience being used in applications and re-
searches of theory, and obtain two representation results.
Then, for the sake of the application of fuzzy n−ellipsoid
numbers, we define some special kind of fuzzy n−ellipsoid
numbers, investigate their properties, set up a specific
iterative algorithm of their membership function value,
and prove the convergence of the iterative algorithm. And
then we establish an algorithmic version of constructing
fuzzy n−ellipsoid numbers to express a object which is
characterized by a group of uncertain multichannel digital
information, and also give practical examples to show the
application and rationality of the proposed techniques.

Index Terms—Fuzzy numbers, fuzzy n−cell numbers,
fuzzy n−ellipsoid numbers, expression of uncertain multi-
channel information, membership function value.

I. INTRODUCTION

THE concept of fuzzy numbers was introduced by
Chang and Zadeh [6] in 1972 with the consideration

of the properties of probability functions. Since then both
the numbers and the problems in relation to them have
been widely studied, see for example, [2], [15], [17],
[19], [25], [27] and the references therein. In addition,
Dubois and Prade studied operations of 1−dimensional
fuzzy numbers in [9], and discussed differential calculus
of fuzzy number valued mappings in [10]; Goetschel
and Voxman also researched elementary calculus for
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1−dimensional fuzzy numbers in [11]; Diamond and
Kloeden very more systematically studied fuzzy number
space in [8]. With the development of theories and
applications of fuzzy numbers, this concept becomes
more and more important, see for example, [7], [16],
[21], [22], [26], [23], [35]. In addition, Butnariu studied
methods of solving optimization problems and linear
equations in the space of fuzzy vectors in [4]; Campin,
Candeal and Indurin using fuzzy numbers to represented
binary relations in [5]; Huang and Wu studied the prob-
lem of approximation of fuzzy number valued functions
by regular fuzzy neural networks in [13]; Adam and
Pawel discussed a class of sequencing problems with
uncertain parameters which is modeled by the usage
of fuzzy intervals in [1]; Hosseini, Qanadli, Barman,
Mazinani, Ellis and Dehmeshki presented an automatic
approach to learn and tune Gaussian interval type-2
membership functions in [12]; Pagola, Lopez-Molina,
Fernandez, Barrenechea and Bustince constructed an
interval type-2 fuzzy set with different fuzzy sets such
that the length of the (membership) interval represents
the uncertainty of the expert with respect to the choice
of the membership function in [20].

It is well known that in a precise or certain environ-
ment, multi-channel digital signals can be represented
by elements of multi-dimensional Euclidean space, i.e.,
crisp multi-dimensional vectors. If however we wish
to study multi channel digital signals in an imprecise
environment, then the signals themselves are imprecise,
and it becomes unwise to use crisp multidimensional
vectors to represent them. We know that n−dimension
fuzzy number is a good mean to express uncertain
multichannel digital information. However, for gener-
al n-dimension fuzzy numbers, due to their structural
complexity, they can not be used conveniently in some
fields of applications and some researches of theory [28],
[33]. In [3], Bandemer and Näther, from n 1-dimension
fuzzy numbers u1, u2, · · · , un, defined a special kind
n−dimensional fuzzy numbers whose membership func-
tion value u(x) at x = (x1, x2, · · · , xn) is defined by
u(x) = mini=1,2···,n ui(xi), and Inuiguchi, Ramı́k and
Tanino called it vector of non-interactive 1-dimension
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fuzzy numbers in [14]. In 2002, we also carefully studied
a special type of n−dimensional fuzzy numbers whose
cut (or level) sets are all hyperrectangles and called
them fuzzy n−cell numbers in [33]. From the both
definitions, it is obvious that vectors of n non-interactive
1-dimension fuzzy numbers are all fuzzy n−cell num-
bers. On the other hand, in [28] we showed that fuzzy
n−cell numbers and n−dimensional fuzzy vectors (the
Cartesian products of n 1−dimensional fuzzy numbers,
them are called vectors of fuzzy quantities by Mareš in
[18]) can be represented each other, and obtained the rep-
resentations of joint membership function and the edge
membership functions of a fuzzy n−cell number by each
other, i.e., the relational expressions of joint membership
function and the edge membership functions (Theorem
3.2 [28]). Under the relational expressions, fuzzy n−cell
numbers can be also regarded as vectors of n non-
interactive 1-dimension fuzzy numbers. In [29], [30],
we studied the problem of using fuzzy n−cell numbers
to represent imprecise or uncertain multi-channel digital
signals, and established constructing methods of such
fuzzy n−ell numbers. It has been demonstrated that the
fuzzy n−cell number is used much more conveniently
than general n−dimensional fuzzy numbers in theoreti-
cal investigations in [28], [33], [34] and in some fields
of application in [29], [30], [31], [32].

But using fuzzy n−cell number to express uncer-
tain multichannel digital information has some defects
or weaknesses. This can be seen from its construc-
ter or the relationship formula u(x1, x2, · · · , xn) =
min{u1(x1), u2(x2), · · · , un(xn)} (see [28]), it means
that the membership degree only depends on the minimal
of the membership degrees of its all components (1-
D fuzzy numbers), i.e., almost, only some one factor
in the all n factors of the repressed object decide the
membership degree. This is obviously not rational. For
example, for fuzzy 2−cell number u = (u1, u2), where
u1, u2 are triangular model fuzzy numbers (see [30])
u1 = (0, 1, 2), u2 = (1, 2, 3), we have u(0.5, x2) =
u(0.5, 1.5) = 0.5 for any x2 ∈ [1.5, 2.5]. Generally
speaking, this is not rational since u(0.5, x2) should be
bigger than u(0.5, 1.5) for any x2 with 1.5 < x2 < 2.5.
In addition, this can be also seen from its application
(see Example 2 and 4).

Therefore, we need to find another special kind
n−dimensional fuzzy numbers which can overcome the
defects and weaknesses, and keep the convenience being
used in applications and researches of theory. In [14],
Inuiguchi, Ramı́k and Tanino proposed oblique fuzzy
vectors as a special model of interactive fuzzy numbers
and show that they are tractable to a certain extent
especially in calculations of fuzzy linear functions. In
[3], Bandemer and Näther introduced a special kind
n−dimensional fuzzy numbers—-bean fuzzy vectors,

which are defined by u(x) = max{1− (x−x0)TB(x−
x0), 0}, where B is a positive definite n × n-matrix,
x0 = (x0

1, x
0
2, · · · , x0

n) ∈ R. In [24], M. Sato and
Y. Sato used the n−dimensional fuzzy numbers whose
membership functions are all symmetrical conical to
cluster fuzzy data. In this paper, from the perspective of
fuzzy subsets of Rn (but not n interactive 1-dimensional
fuzzy numbers), we define a special kind n−dimensional
fuzzy numbers—-fuzzy n−ellipsoid numbers which are
not same with Inuiguchi’s interactive fuzzy numbers, and
whose scope is very more wider than bean fuzzy vectors
and the fuzzy numbers of conical membership functions.
Such special type of n−dimensional fuzzy numbers not
only are more objective and more rational in expressing
uncertain multichannel digital information than fuzzy
n−cell numbers but also keep the convenience being
used in applications and researches of theory. The next,
we investigate the properties of fuzzy n−cell numbers,
and obtain two representation theorems of them. Then,
for the sake of the application of fuzzy n−ellipsoid
numbers, we also define some special kind of fuzzy
n−ellipsoid numbers, investigate their properties, set
up a specific iterative algorithm of their membership
function value, and prove the convergence of the iterative
algorithm. And then we establish an algorithmic version
of constructing fuzzy n−ellipsoid numbers to express a
object which is characterized by a group of uncertain
multichannel digital information, and also give practical
examples to show the application and rationality of the
proposed techniques.

II. BASIC DEFINITIONS AND NOTATIONS

Let n be a natural number. A fuzzy subset (in short, a
fuzzy set) of Rn (the n−dimensional Euclidean space)
is a function u : Rn → [0, 1]. For each such fuzzy set u,
we denote by [u]r = {x ∈ Rn : u(x) ≥ r} for any r ∈
(0, 1], its r−level set. By suppu we denote the support of
u, i.e., the {x ∈ Rn : u(x) > 0}. By [u]0 we denote the
closure of the suppu, i.e., [u]0 = {x ∈ Rn : u(x) > 0}.

If u is a normal and fuzzy convex fuzzy set of Rn,
u(x) is upper semi-continuous, [u]0 is compact, then we
call u a n−dimensional fuzzy number, and denote the
collection of all n−dimensional fuzzy numbers by En.

It is known that if u ∈ En, then for each r ∈ [0, 1],
[u]r is a compact set in Rn.

If u ∈ En, and for each r ∈ [0, 1], [u]r is a hyper rect-
angle, i.e., [u]r can be represented by

∏n
i=1[ui(r), ui(r)],

where ui(r), ui(r) ∈ R with ui(r) ≤ ui(r) ∈ R when
r ∈ [0, 1], i = 1, 2, . . . , n, then we call u a fuzzy
n−cell number. And we denote the collection of all
fuzzy n−cell numbers by L(En).

Let ui ∈ E (= E1), i = 1, 2, . . . , n. We call the or-
dered 1-dimensional fuzzy number class u1, u2, . . . , un

(i.e., the Cartesian product of one-dimensional fuzzy
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numbers u1, u2, . . . , un) a n−dimensional fuzzy vector,
denote it as (u1, u2, . . . , un), and call the collection of
all n− dimensional fuzzy vectors (i.e., the Cartesian

product

n︷ ︸︸ ︷
E × E × · · · × E ) n−dimensional fuzzy vector

space, and denote it as (E)n.
By Theorem 3.1 in [28], we know that fuzzy n−cell

numbers and n−dimensional fuzzy vectors can represent
each other, and the representation is unique, so L(En)
and (E)n may be regarded as identity.

For any a ∈ Rn, define an n−dimensional fuzzy

number â by â(x) =

{
1 if x = a
0 if x ̸= a

for any x ∈ Rn.

The addition, multiplication and scalar product on
space K(Rn) (the collection of non-empty compact
subsets of Rn) are defined by A+B = {a+b | a ∈ A, b ∈
B}, AB = {ab | a ∈ A, b ∈ B} and λA = {λa | a ∈ A}
for any A,B ∈ K(Rn), λ ∈ R.

The addition, multiplication and scalar product on En

are defined by

(u+ v)(x) = sup
y+z=x

min(u(y), v(z))

(uv)(x) = sup
yz=x

min(u(y), v(z))

(λu)(x) =

{
u(λ−1x) if λ ̸= 0

0̂(x) if λ = 0

for u, v ∈ En and λ ∈ R.
It is well known ([8]) that for u, v ∈ En and k ∈ R,

[u+v]r = [u]r+[v]r, [uv]r = [u]r[v]r and [ku]r = k[u]r

for any r ∈ [0, 1].

III. FUZZY n−ELLIPSOID NUMBERS

Let ai, bi ∈ R with ai ≤ bi, i = 1, 2, · · · , n. We
denote a1 b1

a2 b2

.

.

.

.

.

.
an bn


= {(x1, · · · , xn) ∈ Rn|

∑n
i=1

(xi−
bi+ai

2 )2

(
bi−ai

2 )2
≤ 1}

(1)

i.e., the closed n−ellipsoid with the center
(a1+b1

2 , a2+b2
2 , · · · , an+bn

2 ) and the coordinates of
the vertexes on coordinate axis x1, x2, · · ·, xn are in
turn a1, b1, a2, b2, · · ·, an, bn.

Remark 1: In the Equation (1), we stipulate that
ai = bi for some i = 1, 2, · · · , n can be al-
lowed, and if ai1 = bi1 , ai2 = bi2 , · · ·, aik =

bik (k ≤ n), then
∑n

i=1
(xi−

bi+ai
2 )2

(
bi−ai

2 )2
≤ 1 indicates∑

ai ̸=bi,1≤i≤n
(xi−

bi+ai
2 )2

(
bi−ai

2 )2
≤ 1 and xi1 = ai1 = bi1 ,

xi2 = ai2 = bi2 , · · ·, xik = aik = bik . For example, as

a1 = b1 and a3 = b3, the inequality
∑4

i=1
(xi−

bi+ai
2 )2

(
bi−ai

2 )2
≤

1 indicates (x2−
b2+a2

2 )2

(
b2−a2

2 )2
+

(x4−
b4+a4

2 )2

(
b4−a4

2 )2
≤ 1 and x1 =

a1 = b1 and x3 = a3 = b3.
Definition 1: If u ∈ En, and for each r ∈ [0, 1], [u]r

is a closed n−ellipsoid, i.e., exist ui(r), ui(r) ∈ R with
ui(r) ≤ ui(r), ∀r ∈ [0, 1], i = 1, 2, . . . , n such that

[u]r =


u1(r) u1(r)
u2(r) u2(r)

...
...

un(r) un(r)

 (2)

then we call u a fuzzy n−ellipsoid number. And we
denote the collection of all fuzzy n−ellipsoid numbers
by E(En).

Fig. 1. Fuzzy 2−ellipsoid number u (a = 0, b = 4, c = 0, d = 3)

Fig. 2. Fuzzy 2−ellipsoid number v ( a = 0, b = 4, c = 0, d = 3)

Example 1. (see Figs. 1 and 2). The fuzzy subset of
R2, u : R2 → [0, 1] defined by

u(x, y) =

{
1 − (

(x− b+a
2

)2

(
b−a
2

)2
+

(y− d+c
2

)2

(
d−c
2

)2
)
1
2 , (x, y) ∈

(
a b
c d

)
0, otherwise

i.e., the value u(x, y) is decided by the side face of

the elliptic cone in Fig.1 as (x, y) ∈
(

a b
c d

)
=

{(x, y) ∈ R2| (x−
b+a
2 )2

( b−a
2 )2

+
(y− d+c

2 )2

( d−c
2 )2

≤ 1}, and by 0 as

(x, y)∈̄
(

a b
c d

)
, is a fuzzy 2−ellipsoid number (see

Theorem 3).
The fuzzy subset of R2, v : R2 → [0, 1] defined by

v(x, y) =

{
1 −

(x− b+a
2

)2

(
b−a
2

)2
−

(y− d+c
2

)2

(
d−c
2

)2
, (x, y) ∈

(
a b
c d

)
0, otherwise
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i.e., the value v(x, y) is decided by the values decided
by the side face of the elliptic paraboloid in Fig.2 as

(x, y) ∈
(

a b
c d

)
and by 0 as (x, y)∈̄

(
a b
c d

)
, is

also a fuzzy 2−ellipsoid number (see Theorem 4).
Example 2. In the Example 3.2 of [33], in an uncer-

tain or imprecise environment, we recommended using
a fuzzy 2−cell number to express the working state
(efficiency) of one person. For example, if one person’s
producing speed and quali1cation rate at t time are,
respectively, about 100 and 0.95(= 95%) (i.e., two
estimated quantities that are in near 100 and 0.95,
respectively), then the fuzzy 2−cell number u(t) (see
Fig 3) defined as

u(t)(x, y)

=

{
20y − 18, 0.9 ≤ y ≤ 0.95, 200y − 90 ≤ x ≤ 290 − 200y
−0.1x + 11, 100 ≤ x ≤ 110, 1.45 − 0.005x ≤ y ≤ 0.45 + 0.005x
−20y + 20, 0.95 ≤ y ≤ 1, 290 − 200y ≤ x ≤ 200y − 90
0.1x − 9, 90 ≤ x ≤ 100, 0.45 + 0.005x ≤ y ≤ 1.45 − 0.005x
0, otherwise

can be used to express the working state of the person.

Fig. 3. Fuzzy 2−cell number u

Fig. 4. Fuzzy 2−ellipsoid number v

However, if we defined a fuzzy 2−ellipsoid number v
(see Fig 4) or w (see Fig 5) respectively as

v(t)(x, y)

=

{
1 − (

(x−100)2

(10)2
+

(y−0.95)2

(0.05)2
)
1
2 ,

(x−100)2

(10)2
+

(y−0.95)2

(0.05)2
≤ 1

0, otherwise

or
w(t)(x, y)

=

{
1 − (x−100)2

(10)2
+

(y−0.95)2

(0.05)2
,

(x−100)2

(10)2
+

(y−0.95)2

(0.05)2
≤ 1

0, otherwise

then using fuzzy 2−ellipsoid number v(t) or w(t) to
express the working state (efficiency) of the person is

Fig. 5. Fuzzy 2−ellipsoid number w

more rational than using fuzzy 2−cell number u(t).
For example, let (x(t), y(t)) = (95, 0.925) (producing
speed x(t) = 95 and quali1cation rate y(t) = 0.925
at t time) and (x̀(t), ỳ(t)) = (100, 0.925) (producing
speed x̀(t) = 100 and quali1cation rate ỳ(t) = 0.925
at t time). Then the degree of (x̀(t), ỳ(t)) belonging
to “the person’s working state” should be bigger than
(x(t), y(t)). But if the fuzzy 2−cell number u(t) is
used to express the person’s working state (efficiency),
then we have u(t)(x̀, ỳ) = u(t)(100, 0.925) = 0.5 =
u(t)(95, 0.925) = u(t)(x, y) which can not tell us the
fact that the degree of (x̀(t), ỳ(t)) belonging to “the per-
son’s working state” should be bigger than (x(t), y(t)).
However, if the fuzzy 2−ellipsoid number v(t) or w(t)
is used to express the person’s working state (efficiency),
then it is able to tell us the fact since v(t)(x̀, ỳ) =
v(t)(100, 0.925) = 0.5 > 0.293 = v(t)(95, 0.925) =
v(t)(x, y) and w(t)(x̀, ỳ) = w(t)(100, 0.925) = 0.75 >
0.5 = w(t)(95, 0.925) = w(t)(x, y). This demonstrate
that using fuzzy n−ellipsoid numbers to express uncer-
tain multichannel digital information are more objective
and more rational than using fuzzy n−cell numbers.

Remark 2: In real situations, usually characteristics
(or factors) may have different importance. Although this
can not be considered in constructing fuzzy cell numbers
to represent imprecise or uncertain multi-channel digital
signals, it must be considered as we set up aggregation
operators in fuzzy cell number space to fuse these
digital signals. the more important the characteristic (or
factor) is, the bigger the corresponding weight in the
aggregation operators should be.

For the sake of the following discussion, we firstly
give the following two representation theorems.

Theorem 1: (Representation theorem). If u ∈ E(En),
then
(1) [u]r is a non-empty n−dimension closed ellipsoid,

i.e., [u]r =

 u1(r) u1(r)

u2(r) u2(r)

.

.

.

.

.

.
un(r) un(r)

 for each r ∈ [0, 1];

(2) [u]r2 ⊂ [u]r1 for 0 ≤ r1 ≤ r2 ≤ 1;
(3)

∩∞
m=1[u]

rm = [u]r for positive non-decreasing
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sequence {rm} with limm→∞ rm = r.
Conversely, if Ar, r ∈ [0, 1] satisfies

(a) Ar is a non-empty n−dimension closed ellipsoid for
each r ∈ [0, 1];
(b) Ar2 ⊂ Ar1 for 0 ≤ r1 ≤ r2 ≤ 1;
(c)

∩∞
m=1 Arm = Ar for positive non-decreasing se-

quence {rm} with limm→∞ rm = r,
then there exists a unique fuzzy n−ellipsoid number
u such that [u]r = Ar for each r ∈ (0, 1] and
[u]0 =

∪
0<r≤1 Ar ⊂ A0.

Proof: Let u ∈ E(En). By the definition of
fuzzy n−ellipsoid numbers, we have u ∈ En. So by
Proposition 6.1.6 in [8] (Page 38-39), we know that the
Conclusions (2) and (3) hold. And the Conclusion (1)
can be directly also shown by the definition of fuzzy
n−ellipsoid numbers.

Conversely, if Ar, r ∈ [0, 1] satisfies the Conditions
(a),(b) and (c), then by Inverse proposition of Proposition
6.1.6 in [8] (Page 39), we know that there exists a unique
u ∈ En such that [u]r = Ar for each r ∈ (0, 1] and
[u]0 =

∪
0<r≤1 Ar ⊂ A0. Noting again the Condition

(a), we have u ∈ E(En). The proof of the theorem is
completed.

Theorem 2: If u ∈ E(En), then for i = 1, 2, · · · , n,
ui(r), ui(r) are real-valued functions on [0, 1], and
satisfy
(1) ui(r) are non-decreasing and left continuous;
(2) ui(r) are non-increasing and left continuous;
(3) ui(r) ≤ ui(r) (it is equivalent to ui(1) ≤ ui(1));
(4) ui(r), ui(r) are right continuous at r = 0.

Conversely if ai(r), bi(r), i = 1, 2, · · · , n are real-
valued functions on [0, 1] which satisfy the conditions
(a) ai(r) are non-decreasing and left continuous;
(b) bi(r) are non-increasing and left continuous;
(c) ai(1) ≤ bi(1) (it is equivalent to ai(r) ≤ bi(r));
(d) ai(r), bi(r) are right continuous at r = 0,
then there exists a unique u ∈ E(En) such that

[u]r =

 a1(r) b1(r)
a2(r) b2(r)

.

.

.

.

.

.
an(r) bn(r)

 for any r ∈ [0, 1].

Proof: The proof is placed in appendix A.

Since for any closed n−ellipsoid

 a1 b1
a2 b2

.

.

.

.

.

.
an bn

 and

λ ∈ R, λ

 a1 b1
a2 b2

.

.

.

.

.

.
an bn

 =

 λa1 λb1
λa2 λb2

.

.

.

.

.

.
λan λbn

 as λ ≥ 0;

λ

 a1 b1
a2 b2

.

.

.

.

.

.
an bn

 =

 λb1 λa1
λb2 λa2

.

.

.

.

.

.
λbn λan

 as λ < 0, and it is still

a closed n−ellipsoid, by Theorem 1 and [λu]r = λ[u]r

(λ ∈ R, u ∈ En, r ∈ [0, 1]), we can obtain the following
result about scalar products of fuzzy n−ellipsoid num-
bers.

Proposition 1: Let λ ∈ R and u ∈ E(En). Then
λu ∈ E(En), and for any r ∈ [0, 1],


(ku)1(r) (ku)1(r)

(ku)2(r) (ku)2(r)

.

.

.

.

.

.

(ku)n(r) (ku)n(r)

 =



(
ku1(r) ku1(r)

.

.

.

.

.

.
kun(r) ku2(r)

)
, k ≥ 0(

ku1(r) ku1(r)

.

.

.

.

.

.
kun(r) kun(r)

)
, k < 0

However, due to that the addition (“+”) and multipli-
cation (“·”) of two closed n−ellipsoids are not necessar-
ily closed n−ellipsoids, by Theorem 1 and [u + v]r =
[u]r + [v]r, [uv]r = [u]r[v]r (u, v ∈ En, r ∈ [0, 1]), we
know that although u + v ∈ En and uv ∈ En hold,
u + v ∈ E(En) and uv ∈ E(En) do not necessarily
hold for u, v ∈ E(En).

It is obvious that if u, v ∈ E(En), then

Ar =

 u1(r) + v1(r) u1(r) + v1(r)

u2(r) + v2(r) u2(r) + v2(r)

.

.

.

.

.

.
un(r) + vn(r) un(r) + vn(r)

, r ∈ [0, 1] satisfy

the Conditions (a),(b) and (c) of Theorem 1, so Ar, r ∈
[0, 1] determine a unique fuzzy n−ellipsoid number w.
We define the addition “⊕” of u and v by u ⊕ v = w,
which is an approximation of addition “+”. Then, we
have the following result.

Proposition 2: let u, v ∈ E(En). Then u ⊕ v ∈
E(En), and for any r ∈ [0, 1],

u1 ⊕ v1(r) u1 ⊕ v1(r)

u2 ⊕ v2(r) u2 ⊕ v2(r)

.

.

.

.

.

.
un ⊕ vn(r) un ⊕ vn(r)

=
u1(r) + v1(r) u1(r) + v1(r)

u2(r) + v2(r) u2(r) + v2(r)

.

.

.

.

.

.
un(r) + vn(r) un(r) + vn(r)


In addition, we can also prove the following result.
Proposition 3: let u, v ∈ E(En). If u + v ∈ E(En),

then u+ v = u⊕ v.
About multiplications of fuzzy n−ellipsoid numbers,

we can make a similar discussion.

IV. MEMBERSHIP FUNCTION VALUE OF CONE FUZZY
n−ELLIPSOID NUMBER

For the sake of the application of fuzzy n−ellipsoid
numbers, we study two special kind of fuzzy n−ellipsoid
numbers in the following.

Theorem 3: Let ai, bi ∈ R with ai ≤ bi, i =
1, 2, · · · , n. If fuzzy subset u of Rn is defined as

u(x1, x2, · · · , xn)

=

{
1 − (
∑n

i=1

(xi−
bi+ai

2
)2

(
bi−ai

2
)2

)
1
2 , (x1, · · · , xn) ∈ D

0, otherwise

(3)

where D =

 a1 b1
a2 b2

.

.

.

.

.

.
an bn

, then u ∈ E(En).

Proof: For each i = 1, 2, · · · , n, ai ≤ bi implies
ai +

bi−ai

2 r ≤ bi − bi−ai

2 r for any r ∈ [0, 1]. Let r ∈
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(0, 1). Then we have

[u]r = {x ∈ Rn|u(x) ≥ r}

= {x ∈ Rn|1− (
∑n

i=1

(xi−
bi+ai

2
)2

(
bi−ai

2
)2

)
1
2 ≥ r}

= {x ∈ Rn|
∑n

i=1

(xi−
bi+ai

2
)2

(
bi−ai

2
)2

) ≤ (1− r)2}

= {x ∈ Rn|
∑n

i=1

(xi−
(bi−

bi−ai
2

r)+(ai+
bi−ai

2
r)

2
)2

[
(bi−

bi−ai
2

r)−(ai+
bi−ai

2
r)

2
]2

≤ 1}

=


a1 +

b1−a1
2

r b1 − b1−a1
2

r
a2 +

b2−a2
2

r b2 − b2−a2
2

r
...

...
an + bn−an

2
r bn − bn−an

2
r


so ui(r) = ai + bi−ai

2 r and ui(r) = bi −
bi−ai

2 r (i = 1, 2, · · · , n) hold as r ∈ (0, 1).
On the other hand, from the definitions of [u]0

and [u]1, we can obtain [u]0 =

 a1 b1
a2 b2

.

.

.

.

.

.
an bn

 and

[u]1 = {( b1+a1

2 , b2+a2

2 , · · · , bn+an

2 )}, i.e., ui(r) = ai +
bi−ai

2 r and ui(r) = bi − bi−ai

2 r (i = 1, 2, · · · , n) also
hold as r = 0 or r = 1. It is obvious that ai + bi−ai

2 r
and bi − bi−ai

2 r (i = 1, 2, · · · , n) satisfy the conditions
(a)-(d) of theorem 2, so u ∈ E(En). The proof of the
theorem is completed.

Theorem 4: Let ai, bi ∈ R with ai ≤ bi, i =
1, 2, · · · , n. If fuzzy subset u of Rn is defined as

u(x1, x2, · · · , xn)

=

{
1 −
∑n

i=1

(xi−
bi+ai

2
)2

(
bi−ai

2
)2

, (x1, x2, · · · , xn) ∈ D

0, otherwise

(4)

where D =

 a1 b1
a2 b2

.

.

.

.

.

.
an bn

, then u ∈ E(En).

Proof: For each i = 1, 2, · · · , n, ai ≤ bi implies
ai+bi−(bi−ai)

√
1−r

2 ≤ ai+bi+(bi−ai)
√
1−r

2 for any r ∈
[0, 1]. Let r ∈ (0, 1). Then we have

[u]r

= {x ∈ Rn|u(x) ≥ r}
= {x ∈ Rn|1−

∑n
i=1

(xi−
bi+ai

2 )2

(
bi−ai

2 )2
≥ r}

= {x ∈ Rn|
∑n

i=1
(xi−

bi+ai
2 )2

[
bi−ai

2 (
√
1−r)]2

) ≤ 1}
= {x ∈ Rn|∑n

i=1
(xi−

ai+bi−(bi−ai)
√

1−r

2
+

ai+bi+(bi−ai)
√

1−r

2
2 )2

(
ai+bi−(bi−ai)

√
1−r

2
−

ai+bi+(bi−ai)
√

1−r

2
2 )2

≤1}

=


a1+b1−(b1−a1)

√
1−r

2
a1+b1+(b1−a1)

√
1−r

2
a2+b2−(b2−a2)

√
1−r

2
a2+b2+(b2−a2)

√
1−r

2
...

...
an+bn−(bn−an)

√
1−r

2
an+bn+(bn−an)

√
1−r

2



so ui(r)=
ai+bi−(bi−ai)

√
1−r

2 , ui(r)=
ai+bi+(bi−ai)

√
1−r

2 ,
i = 1, 2, · · · , n hold as r ∈ (0, 1). From the defini-

tions of [u]0 and [u]1, we see [u]0=

 a1 b1
a2 b2

.

.

.

.

.

.
an bn

 and

[u]1={( b1+a1

2 ,· · ·,bn+an

2 )}, i.e., ui(r)=
ai+bi−(bi−ai)

√
1−r

2 and
ui(r) =

ai+bi+(bi−ai)
√
1−r

2 (i = 1, 2, · · · , n) also hold
as r = 0 or r = 1. It is obvious that ai+bi−(bi−ai)

√
1−r

2

and ai+bi+(bi−ai)
√
1−r

2 (i = 1, 2, · · · , n) satisfy the
conditions (a)-(d) of theorem 2, so u ∈ E(En). The
proof of the theorem is completed.

Definition 2: If u ∈ E(En) is defined as Theorem
3, then we call u a symmetric cone fuzzy n−ellipsoid

number, and denote it as u =

 a1 b1
a2 b2

.

.

.

.

.

.
an bn


SCF

.

Definition 3: If u ∈ E(En) is defined as Theorem 4,
then we call u a symmetric paraboloid fuzzy n−ellipsoid

number, and denote it as u =

 a1 b1
a2 b2

.

.

.

.

.

.
an bn


SCP

.

Remark 3: In [3], Bandemer and Näther defined the
concept of (n−)bean fuzzy vectors by u(x) = max{1−
(x− x0)TB(x− x0), 0}, where B is a positive definite
n× n-matrix, x0 = (x0

1, x
0
2, · · · , x0

n) ∈ R. Although the
expressions of the membership functions of bean fuzzy
vectors and symmetric paraboloid fuzzy n−ellipsoid
numbers are different, in fact, they are same n-dimension
fuzzy numbers. For a such fuzzy number u, using
Expression (4) in this paper, we can more conveniently
obtain its cut-sets type (Theorem 1) and real functions
type (Theorem 2) representations, and can more con-
veniently construct such fuzzy numbers to represent
uncertain multichannel digital information. In addition,
the parameters ai, bi ∈ R in Expression (4) are more
intuitive geometric meaning. Likewise, the symmetrical
conical fuzzy numbers used by M. Sato and Y. Sato in
[24] and symmetric cone fuzzy n−ellipsoid number here
are also similar relationships.

In general, it is difficult even impossible to find
out the expression of membership function of a fuzzy
n−ellipsoid number (defined as Definition 3.1 ). For
example, it is very difficult to work out the expression of
membership function of the fuzzy 2−ellipsoid number
u (by Theorem 1 or 2, we know u decided by [u]r,
r∈[0, 1], is indeed a fuzzy 2−ellipsoid number) defined
by [u]r =

(
(1 + r)2 5 − r

r 2 − r3

)
.

In the following, we study the method of solv-
ing membership function value for some special kind
of fuzzy n−ellipsoid numbers (include the fuzzy
n−ellipsoid numbers such as the fuzzy 2−ellipsoid
number u decided by [u]r, r ∈ [0, 1], above). Firstly,
we give the following definitions.
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Definition 4: Let u∈E(En), ui(0)=ai, ui(0)=bi, i =
1, 2,· · ·,n. If {(x1, · · · , xn) ∈ Rn|u(x1, · · · , xn) = 1} is a
single point set (denoted as {(c1, c2, · · · , cn)}, of course,
we have ai ≤ ci ≤ bi, i = 1, 2, · · · , n and ui(r) =
ai + (ci − ai)r, ui(r) = bi − (bi − ci)r, i = 1, 2, · · · , n,
then we call u a cone fuzzy n−ellipsoid number, and

denote it as u =

 a1 c1 b1
a2 c2 b2

.

.

.

.

.

.

.

.

.
an cn bn


CF

.

Definition 5: Let u∈E(En), ui(0)=ai, ui(0)=bi, i =
1, 2,· · ·,n. If {(x1, · · · , xn) ∈ Rn|u(x1, · · · , xn) = 1} is
a single point set (denoted as {(c1, c2, · · · , cn)}), and
ui(r) = ci − (ci − ai)

√
1− r, ui(r) = ci +

(bi − ci)
√
1− r, i = 1, 2, · · · , n, then we call u a

paraboloid fuzzy n−ellipsoid number, and denote it as

u=

 a1 c1 b1
a2 c2 b2

.

.

.

.

.

.

.

.

.
an cn bn


PF

.

Definition 6: Let u ∈ E(En). If {(x1, x2, · · · , xn) ∈
Rn|u(x1, x2, · · · , xn) = 1} is a single point set, and
for each i = 1, 2, · · · , n, ui(r) is strictly increasing
and continuous on [0, 1], ui(r) is strictly decreasing and
continuous on [0, 1], then we call u a quasi cone fuzzy
n−ellipsoid number.

Theorem 5: (1) Each symmetric cone fuzzy
n−ellipsoid number is a cone fuzzy n−ellipsoid
number;
(2) Each symmetric paraboloid fuzzy n−ellipsoid
number is a paraboloid fuzzy n−ellipsoid number;
(3) For each cone fuzzy n−ellipsoid number u, if
ui(0) ̸= ui(1)(= ui(1)) ̸= ui(0), i = 1, 2, · · · , n, then
u is a quasi cone fuzzy n−ellipsoid number;
(4) For each paraboloid fuzzy n−ellipsoid number u, if
ui(0) ̸= ui(1)(= ui(1)) ̸= ui(0), i = 1, 2, · · · , n, then
u is a quasi cone fuzzy n−ellipsoid number.

Proof: Let u be a symmetric cone fuzzy n−ellipsoid
number. Then there exist ai, bi ∈ R with ai ≤ bi,

i = 1, 2, · · · , n, such that u =

 a1 b1
a2 b2

.

.

.

.

.

.
an bn


SCF

. From

the proof of Theorem 3, we know ui(r) = ai +
bi−ai

2 r
and ui(r) = bi − bi−ai

2 r, i = 1, 2, · · · , n. Taking
ci = bi+ai

2 , then we have ui(r) = ai + (ci − ai)r
and ui(r) = bi − (bi − ci)r, i = 1, 2, · · · , n. By
Definition 4, we see u is a cone fuzzy n−ellipsoid
number. Thus, we have completed the proof of (1).
Similarly, taking ci = bi+ai

2 , and paying attention to
ui(r) = ai+bi−(bi−ai)

√
1−r

2 = ci − (ci − ai)
√
1− r

and ui(r) =
ai+bi+(bi−ai)

√
1−r

2 = ci + (bi − ci)
√
1− r,

i = 1, 2, · · · , n, we can also complete the proof of (2).

Let u =

 a1 c1 b1
a2 c2 b2

.

.

.

.

.

.

.

.

.
an cn bn


CF

be a cone fuzzy

n−ellipsoid number. It is obvious that ui(0) = ai,

ui(1) = ui(1) = ci and ui(0) = bi, i = 1, 2, · · · , n.
From ui(0) ̸= ui(1)(= ui(1)) ̸= ui(0) (i =
1, 2, · · · , n), we can easily see that {(x1, x2, · · · , xn) ∈
Rn|u(x1, x2, · · · , xn) = 1} = {(c1, c2, · · · , cn)} is a
single point set, ui(r) = ai + (ci − ai)r is strictly
increasing on [0, 1], and ui(r) = bi−(bi−ci)r is strictly
decreasing on [0, 1] for i = 1, 2, · · · , n, so u is a quasi
cone fuzzy n−ellipsoid number. In the same way, we can
also prove (2). The proof of the theorem is completed.

For any A ⊂ Rn, we denote AKer = {x ∈
Rn | x is a interior point of A}.

Lemma 1: Let ai, bi, ài, b̀i ∈ R with ai < ài <
b̀i < bi, i = 1, 2, · · · , n. Then for any x0 =
(x0

1, x
0
2, · · · , x0

n) ∈ Rn,

(1)
∑n

i=1
(x0

i−
bi+ai

2 )2

(
bi−ai

2 )2
= 1 =⇒

∑n
i=1

(x0
i−

b̀i+ài
2 )2

(
b̀i−ài

2 )2
> 1;

(2)
∑n

i=1
(x0

i−
b̀i+ài

2 )2

(
b̀i−ài

2 )2
= 1 =⇒

∑n
i=1

(x0
i−

bi+ai
2 )2

(
bi−ai

2 )2
< 1.

Proof: We firstly show (1) by reduction to ab-

surdity. Assume
∑n

i=1
(x0

i−
b̀i+ài

2 )2

(
b̀i−ài

2 )2
> 1 is not valid, then

∑n
i=1

(x0
i−

b̀i+ài
2 )2

(
b̀i−ài

2 )2
≤1, so x0 ∈

 à1 b̀1
à2 b̀2

.

.

.

.

.

.
àn b̀n

 ⊂

a1 b1
a2 b2

.

.

.

.

.

.
an bn

Ker

.

It implies
∑n

i=1
(x0

i−
bi+ai

2 )2

(
bi−ai

2 )2
< 1 which is in contradic-

tion to
∑n

i=1
(x0

i−
bi+ai

2 )2

(
bi−ai

2 )2
= 1, so (1) holds. Similarly,

we can completed the proof of (2).
Theorem 6: Let u be a quasi cone fuzzy n−ellipsoid

number. Then for any fixed x0 = (x0
1, x

0
2, · · · , x0

n) ∈
[u]0, there exists a unique r0 ∈ [0, 1] such that

n∑
i=1

(x0
i −

ui(r0)+ui(r0)

2
)2

(
ui(r0)−ui(r0)

2
)2

= 1 (5)

Proof: The proof is placed in appendix A.
Theorem 7: Let u be a quasi cone fuzzy n−ellipsoid

number. If x0 = (x0
1, x

0
2, · · · , x0

n) ∈ [u]0, r0 ∈ [0, 1]
satisfy Equation (5), then

(1)
∑n

i=1
(x0

i−
ui(r)+ui(r)

2 )2

(
ui(r)−ui(r)

2 )2
< 1 for any r ∈ [0, r0);

(2)
∑n

i=1
(x0

i−
ui(r)+ui(r)

2 )2

(
ui(r)−ui(r)

2 )2
> 1 for any r ∈ (r0, 1];

(3) u(x0) = u(x0
1, x

0
2, · · · , x0

n) = r0.
Proof: By Lemma 1 and from the the strictly

monotonicity of ui(r) and ui(r), we can easily show
that (1) and (2) are valid. In the following, we prove (3)
by reduction to absurdity.

Assume conclusion (3) is not valid, i.e., u(x0) =
u(x0

1, x
0
2, · · · , x0

n) ̸= r0. On the other hand, from E-

quation (5), we know x0 ∈

 u1(r0) u1(r0)

u2(r0) u2(r0)

.

.

.

.

.

.
un(r0) un(r0)

 = [u]r0 ,
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i.e., u(x0) ≥ r0. Thus, we have u(x0) > r0,
so there exist r̀0 ∈ [0, 1] such that u(x0) >
r̀0 > r0. From u(x0) > r̀0, we see x0 ∈

[u]r̀0 , it implies
∑n

i=1
(x0

i−
ui(r̀0)+ui(r̀0)

2 )2

(
ui(r̀0)−ui(r̀0)

2 )2
≤ 1. Howev-

er, from r̀0 > r0 and by conclusion (2), we have∑n
i=1

(x0
i−

ui(r̀0)+ui(r̀0)

2 )2

(
ui(r̀0)−ui(r̀0)

2 )2
> 1, which is in contradiction

to
∑n

i=1
(x0

i−
ui(r̀0)+ui(r̀0)

2 )2

(
ui(r̀0)−ui(r̀0)

2 )2
≤ 1, so conclusion (3) holds.

Thus, the proof of the theorem is completed.
Remark 4: By Theorem 6 and 7 and the proof of

Theorem 6, for a quasi cone fuzzy n−ellipsoid number
u and a point x0 = (x0

1, x
0
2, · · · , x0

n) in Rn, we can
propose the following method to solve the membership
function value u(x0):

Fixing q ∈ (0, 1), denote ξ1 = 0, η1 = 1 and r1 =
(1 − q)ξ1 + qη1 = q. Then denote ξ2 = ξ1, η2 = r1

as
∑n

i=1
(x0

i−
ui(r1)+ui(r1)

2 )2

(
ui(r1)−ui(r1)

2 )2
> 1, while, denote ξ2 = r1,

η2 = η1 as
∑n

i=1
(x0

i−
ui(r1)+ui(r1)

2 )2

(
ui(r1)−ui(r1)

2 )2
≤ 1, and denote

r2 = (1− q)ξ2+ qη2. And then denote ξ3 = ξ2, η3 = r2

as
∑n

i=1
(x0

i−
ui(r2)+ui(r2)

2 )2

(
ui(r2)−ui(r2)

2 )2
> 1, while, denote ξ3 = r2,

η3 = η2 as
∑n

i=1
(x0

i−
ui(r2)+ui(r2)

2 )2

(
ui(r2)−ui(r2)

2 )2
≤ 1, and denote

r3 = (1 − q)ξ3 + qη3. ...... So always go on, we can
obtain a convergent sequence {rm}∞m=1, and denote r0 =
limm→∞ rm, then u(xo) = r0.

For a quasi cone fuzzy n−ellipsoid number u and
x0=(x1,· · ·,xn)∈Rn , in order to obtain the membership
function value u(x0) as soon as possible, we can take
q = 0.618 in accordance by the golden section method.

Specific iterative algorithm: Let u be a quasi cone
fuzzy n−ellipsoid number, x0 = (x0

1, x
0
2, · · · , x0

n) ∈ Rn,
and δ ∈ (0, 1) be a given real number.
1. If x0∈̄[u]0, then u(x0) = 0, and the algorithm end.
2. If x0 ∈ [u]0, then take ξ1 = 0, η1 = 1.
2.1. Take r1 = 0.382ξ1 + 0.618η1 = 0.618.
2.1.1. If η1−ξ1≤δ, then u(x0) = r1, the algorithm end;
2.1.2. If η1 − ξ1 > δ, then

2.1.2.1. if
∑n

i=1
(x0

i−
ui(r1)+ui(r1)

2 )2

(
ui(r1)−ui(r1)

2 )2
= 1, then u(x0) =

r1, and the algorithm end;

2.1.2.2. if
∑n

i=1
(x0

i−
ui(r1)+ui(r1)

2 )2

(
ui(r1)−ui(r1)

2 )2
> 1, then take ξ2 =

ξ1, η2 = r1;

2.1.2.3. if
∑n

i=1
(x0

i−
ui(r1)+ui(r1)

2 )2

(
ui(r1)−ui(r1)

2 )2
< 1, then take ξ2 =

r1, η2 = η1.
2.2. Take r2 = 0.382ξ2 + 0.618η2.
2.2.1. If η2−ξ2≤δ, then u(x0) = r2, the algorithm end;
2.2.2. If η2 − ξ2 > δ, then

2.2.2.1. if
∑n

i=1
(x0

i−
ui(r2)+ui(r2)

2 )2

(
ui(r2)−ui(r2)

2 )2
= 1, then u(x0) =

r2, and the algorithm end;

2.2.2.2. if
∑n

i=1
(x0

i−
ui(r2)+ui(r2)

2 )2

(
ui(r2)−ui(r2)

2 )2
> 1, then take ξ3 =

ξ2, η3 = r2;

2.2.2.3. if
∑n

i=1
(x0

i−
ui(r2)+ui(r2)

2 )2

(
ui(r2)−ui(r2)

2 )2
< 1, then take ξ3 =

r2, η3 = η2.
2.3. Take r3 = 0.382ξ3 + 0.618η4.
...... and so on until the end.

V. REPRESENTATION OF UNCERTAIN INFORMATION
AND APPLICATION

In this section, we establish a method constructing
fuzzy n−ellipsoid numbers representing uncertain or
imprecise multi-channel digital signals

Consider an object (denoted by O) having n charac-
teristics (denoted by O1, O2, · · · , On). And suppose the
following data set about the object are from m sources
(such as sensors or samples) in an imprecise or uncertain
environment:

O :

O1 O2 · · · On

o11 o21 · · · on1

o12 o22 · · · on2

...
...

...
o1m o2m · · · onm

(6)

The problem to be solved is how to construct a suitable
fuzzy n−ellipsoid number to represent the object which
possess some imprecise or uncertain attributes.

First: For each i = 1, 2, · · · , n, we work out the means
µi of the ith character values Oi:

µi =
1

m

m∑
j=1

oij (7)

Second: For each i = 1, 2, · · · , n, we work out the left
separation degrees Lσi and right separation degrees Rσi

of the ith character values Oi, respectively:

Lσi =
1

NLi

∑
oij<µi

(µi − oij)

Rσi =
1

NRi

∑
oij>µi

(oij − µi)
(8)

where NLi and NRi are the number of the character
values oij (i = 1, 2, · · · , n) which satisfy oij < µi and
the number of the character values oij (i = 1, 2, · · · , n)
which satisfy oij > µi, respectively.

Third: For each i = 1, 2, · · · , n, making a domain
[αi, βi] (with µi ∈ (αi, βi)) of the ith character value
Oi according to the practical case, we construct a cone
fuzzy n−ellipsoid number u as

u =


(max)1 µ1 (min)1
(max)2 µ2 (min)2

...
...

...
(max)n µn (min)n


CF

(9)
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or a paraboloid fuzzy n−ellipsoid number

v =


(max)1 µ1 (min)1
(max)2 µ2 (min)2

...
...

...
(max)n µn (min)n


PF

(10)

where (max)i = max{µi − λLσi, αi}, (min)i =
min{µi + λRσi, βi} (i = 1, 2, · · · , n), i.e., u and v
are respectively the quasi cone fuzzy n−ellipsoid num-
bers decided by n pair functions ui(r) = max{µi −
λLσi, αi} + (µi − max{µi − λLσi, αi})r, ui(r) =
min{µi + λRσi, βi} − (min{µi + λRσi, βi} − µi)r,
i = 1, 2, · · · , n, and by n pair functions ui(r) =
µi − (µi −max{µi − λLσi, αi})

√
1− r, ui(r) = µi +

(min{µi+λRσi, βi}−µi)
√
1− r, where λ is a param-

eter, that may be chosen in interval [2, 4] according to
practical case. Then we can use the fuzzy n−ellipsoid
number u or v to express the object O.

Example 3. In remote sensing classification for land-
cover, we use “Korean pine accounts for the main part”
to denote forest that mainly contains Korean pines.
Because in different “Korean pine accounts for the main
part” areas, there are many different factors, such as the
difference of the density of Korean pines, of the species
and quantity of other plants, of the physiognomy, etc.,
the values of reflections of the electromagnetic spectrum
are also different. Therefore, “Korean pine accounts for
the main part” should not be a certain crisp value but
a fuzzy set without certain bound. In [30], we used
ever fuzzy cell number to express “Korean pine accounts
for the main part”. In order to make the express more
objective and rational, in the following, we construct a
fuzzy ellipsoid number to express “Korean pine accounts
for the main part”.

Suppose that we use 4 wave bands: MSS-4, MSS-5,
MSS-6, MSS-7. We take 10 samples, and acquire the
following data for some zone of “Korean pine accounts
for the main part”:

MSS-4 MSS-5 MSS-6 MSS-7
Sample 1: 15.01 13.30 40.50 19.37
Sample 2: 15.60 12.56 38.81 16.35
Sample 3: 15.82 12.79 37.70 18.16
Sample 4: 14.90 11.70 35.50 14.75
Sample 5: 16.10 13.80 42.10 20.75
Sample 6: 13.80 11.94 32.10 15.54
Sample 7: 15.90 10.98 30.87 14.29
Sample 8: 16.82 13.67 37.64 18.62
Sample 9: 15.50 12.58 36.10 18.02
Sample 10: 15.38 12.48 34.08 17.45

According to Formulas (7) and (8), we can work out:

MSS-4 MSS-5 MSS-6 MSS-7
µ1 = 15.46 µ2 = 12.58 µ3 = 36.54 µ4 = 17.33
Lσ1 = 0.69 Lσ2 = 0.67 Lσ3 = 2.81 Lσ4 = 2.10
Rσ1 = 0.49 Rσ2 = 0.81 Rσ3 = 2.81 Rσ4 = 1.40

Taking [αi, βi) = [0,+∞), i = 1, 2, 3, 4 (since
electromagnetic spectrum values should be in [0,+∞))
and λ = 4, we can obtain by calculation max{µ1 −

λLσ1, α1} = 12.70, min{µ1 + λRσ1, β1} = 17.42,
max{µ2 − λLσ2, α2} = 9.90, min{µ2 + λRσ2, β2} =
18.82, max{µ3 − λLσ3, α3} = 25.30, min{µ3 +
λRσ3, β3} = 47.78, max{µ4 − λLσ4, α4} = 8.93
and min{µ4 + λRσ4, β4} = 22.93. By Formulas (9)

or (10), we construct u =

(
12.70 15.46 17.42
9.90 12.58 18.82
25.30 36.54 47.78
8.93 17.33 22.93

)
CF

or

v =

(
12.70 15.46 17.42
9.90 12.58 18.82
25.30 36.54 47.78
8.93 17.33 22.93

)
PF

, i.e., u and v are respec-

tively the quasi cone fuzzy n−ellipsoid numbers decided
by 4 pair functions

u1(r) = 12.70 + (15.46 − 12.70)r, u1(r) = 17.42 − (17.42 − 15.46)r

u2(r) = 9.90 + (12.58 − 9.90)r, u2(r) = 18.82 − (18.82 − 12.58)r

u3(r) = 25.30 + (36.54 − 25.30)r, u3(r) = 47.78 − (47.78 − 36.54)r

u4(r) = 8.93 + (17.33 − 8.93)r, u4(r) = 22.93 − (22.93 − 17.33)r

and by 4 pair functions

v1(r) = 15.46 − (15.46 − 12.70)

√
1 − r

v1(r) = 15.46 + (17.42 − 15.46)

√
1 − r

v2(r) = 12.58 − (12.58 − 9.90)

√
1 − r

v2(r) = 12.58 + (18.82 − 12.58)

√
1 − r

v3(r) = 36.54 − (36.54 − 25.30)

√
1 − r

v3(r) = 36.54 + (47.78 − 36.54)

√
1 − r

v4(r) = 17.33 − (17.33 − 8.93)

√
1 − r

v1(r) = 17.33 + (22.93 − 17.33)

√
1 − r

Then we can use the fuzzy n−ellipsoid number u or v
to represent “Korean pine accounts for the main part”.

Example 4. Only two breeds of wheat are planted in
some farming region. One belongs to “High-fertilizer
High-yielding Wheat” (denoted by C1). The other one
belongs to “Mid-fertilizer High-yielding Wheat” (de-
noted by C2). They mainly have four state characters:
Ear Emergence (denoted by x1), Plant Height (denoted
by x2), Number of Grain per Ear (denoted by x3),
Weight per hundred-grains (denoted by x4). Suppose
that the following two class data come from C1 and C2,
respectively (from Example 4.2 in [30]):

C1

x1 x2 x3 x4

Sample 1 : 8.8 67.8 40.7 4.2
Sample 2 : 7.6 81.1 51.6 3.5
Sample 3 : 9.9 77.5 46.5 3.8
Sample 4 : 6.2 78.6 46.8 3.6
Sample 5 : 8.4 68.8 47.2 4.4
Sample 6 : 8.5 75.6 45.3 4.5
Sample 7 : 7.9 64.2 44.2 3.8
Sample 8 : 8.4 77.6 48.8 3.2
Sample 9 : 9.1 79.5 42.1 3.2
Sample 10 : 8.4 77.8 49.8 4.6
Sample 11 : 8.6 68.9 50.9 3.4
Sample 12 : 8.2 78.3 41.1 4.0
Sample 13 : 6.5 76.8 47.1 4.1
Sample 14 : 8.6 77.7 45.8 3.6
Sample 15 : 8.5 76.9 46.9 3.7
Sample 16 : 8.5 70.3 47.9 3.3
Sample 17 : 8.4 68.5 46.2 4.3
Sample 18 : 8.5 78.2 43.2 4.4
Sample 19 : 8.6 68.4 47.6 4.6
Sample 20 : 8.2 77.2 43.1 3.9
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C2

x1 x2 x3 x4

Sample 1 : 7.0 83.8 48.3 3.9
Sample 2 : 6.9 81.3 37.1 3.7
Sample 3 : 5.1 88.9 43.7 3.5
Sample 4 : 8.9 72.2 34.8 3.4
Sample 5 : 6.8 82.5 50.2 3.6
Sample 6 : 7.2 76.8 41.3 3.2
Sample 7 : 8.7 73.3 39.3 4.1
Sample 8 : 5.9 70.3 45.8 4.0
Sample 9 : 8.4 75.1 46.4 3.3
Sample 10 : 7.5 84.8 42.8 3.8
Sample 11 : 6.4 88.1 44.7 3.6
Sample 12 : 6.1 80.7 40.1 3.7
Sample 13 : 6.8 89.5 51.1 3.6
Sample 14 : 6.0 87.5 47.8 3.6
Sample 15 : 7.4 86.9 49.1 3.6
Sample 16 : 7.6 79.4 36.6 3.7
Sample 17 : 6.8 77.9 38.3 3.8
Sample 18 : 6.9 73.1 36.2 3.4
Sample 19 : 6.7 85.8 35.8 3.7
Sample 20 : 6.9 74.6 49.6 3.5

By Formula (7) and (8), for C1 we can work out

µ11 = 8.29 µ12 = 74.49 µ13 = 46.14 µ14 = 3.91
Lσ11 = 0.86 Lσ12 = 6.36 Lσ13 = 2.95 Lσ14 = 0.36
Rσ11 = 0.37 Rσ12 = 3.41 Rσ13 = 1.89 Rσ14 = 0.43

and for C2 we can work out

µ21 = 7.00 µ22 = 80.63 µ23 = 42.95 µ24 = 3.64
Lσ21 = 0.56 Lσ22 = 5.89 Lσ23 = 4.72 Lσ24 = 0.16
Rσ21 = 0.96 Rσ22 = 4.81 Rσ23 = 4.72 Rσ24 = 0.18

By Formula (9) ([αij , βij) = [0,+∞), i = 1, 2, j =
1, 2, 3, 4 and λ = 4) we can construct fuzzy 4−ellipsoid

number u1 and u2 as u1 =

(
4.85 8.29 9.77
49.05 74.49 88.13
34.34 46.14 53.70
2.47 3.91 5.63

)
CF

and u2=

(
4.76 7.00 10.84
57.07 80.63 99.87
24.07 42.95 61.83
3.00 3.64 4.36

)
CF

. Then “High-fertilizer

High-yielding Wheat” and “Mid-fertilizer High-yielding
Wheat” can be respectively represented by u1 and u2.

Suppose that a sample of wheat (denoted by O)
has the following four state character values: x1 =
7.69, x2 = 76.9, x3 = 44.1, x4 = 3.7, i.e., O =
(7.69, 76.9, 44.1, 3.7). Then by the specific iterative al-
gorithm set up in Section 4, we can write a computer pro-
gram and work out u1(O) = u1(7.69, 76.9, 44.1, 3.7) =
0.6717 and u2(O) = u2(7.69, 76.9, 44.1, 3.7) = 0.7584
(where the control parameter δ of absolute errors is
0.0001), so we can know u2(O) > u1(O). Therefore,
by the maximal membership principle, we can consider
that O belongs to C2, i.e., O comes from “Mid-fertilizer
High-yielding Wheat”. This identifying result is more
objective and rational than using fuzzy n−cell numbers
(see the Example 4.2 in [30]).

Remark 5: As with “Korean pine accounts for the
main part”(see Example 3), “High-fertilizer High-
yielding Wheat” and “Mid-fertilizer High-yielding
Wheat” should not also be certain crisp values but
fuzzy sets without certain bound, so we should use
fuzzy numbers to represent them. In Example 3 and

Example 4, from Lσ ̸= Rσ, we see the given uncertain
multichannel digital information have no symmetry, so
using Bandemer’s bean fuzzy vectors (i.e., symmetric
paraboloid fuzzy n−ellipsoid numbers here, see Remark
3) or Sato’s conical fuzzy numbers (i.e., symmetric cone
fuzzy n−ellipsoid numbers here, see Remark 3) to repre-
sent these uncertain multichannel digital information will
become unwise. It indicates that the fields of application
of quasi cone fuzzy n−ellipsoid number proposed in this
paper are more extensive.

Remark 6: Example 3 and Example 4 show how the
fuzzy ellipsoid numbers to express a group of uncertain
multichannel digital information are constructed, and
Example 4 also tell us that using fuzzy ellipsoid numbers
to express uncertain multichannel digital information are
more objective and more rational than using fuzzy cell
numbers. However, the two examples do not tell more
us how to use fuzzy ellipsoid numbers to deal with
uncertain multichannel digital information in practical
applications except the identification introduced in the
last part of Example 4. In fact, after the fuzzy ellip-
soid numbers expressing uncertain multichannel digital
information are constructed, we can respectively achieve
the identification, classification and ranking of uncertain
multichannel digital information through the establish-
ment of specific aggregation operators in the fuzzy
ellipsoid number space like [29], [30], [32], [31] in the
fuzzy cell number space. We can also use fuzzy ellipsoid
numbers to cluster uncertain multichannel digital infor-
mation like M. Sato and Y. Sato use the n−dimensional
fuzzy numbers whose membership functions are all
symmetrical conical to cluster fuzzy data in [24]. Since
ellipsoid numbers have more advantages than fuzzy cell
numbers (see Example 2 and 4 and the third paragraph
of Introduction) and Sato’s conical type fuzzy numbers
which have the limitation of symmetry in expressing un-
certain multichannel digital information, we have reason
to believe that using fuzzy ellipsoid numbers to deal with
uncertain multichannel digital information can obtain
more objective and more rational results than using fuzzy
cell numbers or Sato’s conical type fuzzy numbers (see
Remark 5).

VI. CONCLUSION

In this paper, the defects or weaknesses were pointed
out for using fuzzy cell numbers to express uncertain
multichannel digital information (see the paragraph 3 of
Section 1 and Example 2), and the concept of fuzzy ellip-
soid numbers was proposed, that are also a special kind
dimensional fuzzy numbers. Fuzzy ellipsoid numbers not
only overcome the defects or weaknesses of fuzzy cell
numbers but also keep the convenience being used in
applications and researches of theory to some extent.
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Using fuzzy ellipsoid numbers to express uncertain mul-
tichannel digital information is more objective and more
rational than using fuzzy cell numbers. In theory, two
representation theorems of fuzzy ellipsoid numbers were
obtained, it can provide convenience for applications
and researches of theory. Then, some special kind of
fuzzy ellipsoid numbers were defined, their properties
and relationships were investigated, a specific iterative
algorithm of their membership function value was set
up in accordance by the golden section method, and
the convergence of the iterative algorithm was proved
(see Theorem 7 and the proof of Theorem 6). And
then we established an algorithmic version of construct-
ing fuzzy ellipsoid numbers to express a object which
is characterized by a group of uncertain multichannel
digital information, and also given practical examples
to show the application and rationality of the proposed
techniques. Of course, fuzzy ellipsoid numbers may also
have some defects. For example, the general addition
and multiplication of fuzzy ellipsoid numbers does not
preserve the closeness of the operation (since the addi-
tion and multiplication of ellipsoids does not preserve the
closeness of the operation), this may cause some difficul-
ties in researches of theory. Another example, generally,
it is also difficult to obtain the mathematical formulas
(analytical expressions) of fuzzy ellipsoid numbers, this
may also bring some inconvenience in the studying of
theory and application.

APPENDIX A
PROOFS OF THEOREM 2 AND THEOREM 6

A. The proof of Theorem 2:

Let u∈E(En). By the definition of fuzzy n−ellipsoid
numbers, it is obvious that for each i = 1, 2, · · · , n, ui(r)
and ui(r) are real-valued functions on [0, 1]. First we
show the Conclusions (1)-(4) hold. By (2) of Theorem
1, we have that [u]r2 ⊂ [u]r1 . It implies ui(r1) ≤ ui(r2)
and ui(r2) ≤ ui(r1) for 0 ≤ r1 ≤ r2 ≤ 1, so ui(r)
is non-decreasing, and ui(r) is non-increasing for each
i = 1, 2, · · · , n. Let r0 ∈ (0, 1], and {rm} be a positive
non-decreasing sequence with limm→∞ rm = r0. By
Theorem 1, we have u1(r0) u1(r0)

u2(r0) u2(r0)

.

.

.

.

.

.
un(r0) un(r0)


= [u]r0

=
∩∞

m=1
[u]rm

= limm→∞

 u1(rm) u1(rm)

u2(rm) u2(rm)

.

.

.

.

.

.
un(rm) un(rm)



=

 limm→∞ u1(rm) limm→∞ u1(rm)

limm→∞ u2(rm) limm→∞ u2(rm)

.

.

.

.

.

.
limm→∞ un(rm) limm→∞ un(rm)



so, ui(r0)=limm→∞ui(rm), ui(r0)=limm→∞ui(rm)
for all i = 1, 2, · · · , n. Therefore, conclusions (1) and
(2) have been shown. Conclusion (3) can be directly
obtained by the definition of fuzzy n−ellipsoid numbers.
Let {rm} be a positive non-increasing sequence with
limm→∞ rm = 0. From u1(0) u1(0)

u2(0) u2(0)

.

.

.

.

.

.
un(0) un(0)


= [u]0

= {x ∈ Rn|u(x) > 0}

=

∪∞
m=1

[u]rm

= limm→∞

 u1(rm) u1(rm)

u2(rm) u2(rm)

.

.

.

.

.

.
un(rm) un(rm)


=

 limm→∞ u1(rm) limm→∞ u1(rm)

limm→∞ u2(rm) limm→∞ u2(rm)

.

.

.

.

.

.
limm→∞ un(rm) limm→∞ un(rm)


so ui(0) = limm→∞ ui(rm), ui(0) = limm→∞ui(rm)
for all i = 1, 2, · · · , n. Therefore, conclusion (4) has
been also shown.

Conversely, let ai(r) and bi(r) (i = 1, 2, · · · , n) be
real-valued functions on [0, 1] and satisfy the conditions

(a)-(d). Let Ar =

 a1(r) b1(r)
a2(r) b2(r)

.

.

.

.

.

.
an(r) bn(r)

 for any r ∈ [0, 1].

From the conditions (a)-(c), it can be easily seen that
Ar, r = 1, 2, · · · , n, satisfy the conditions (a) and (b)
of Theorem 1. Let r ∈ (0, 1], and {rm} be a positive
non-decreasing sequence with limm→∞ rm = r. From
the left continuity of ai(r) and bi(r), the non-decrease
of ai(r) and the non-increase of bi(r) (i = 1, 2, · · · , n),
we have

∩∞
m=1

Arm = limm→∞

 a1(rm) b1(rm)
a2(rm) b2(rm)

.

.

.

.

.

.
an(rm) bn(rm)


=

 limm→∞ a1(rm) limm→∞ b1(rm)
limm→∞ a2(rm) limm→∞ b2(rm)

.

.

.

.

.

.
limm→∞ an(rm) limm→∞ bn(rm)


=

 a1(r) b1(r)
a2(r) b2(r)

.

.

.

.

.

.
an(r) bn(r)


= Ar

so Ar, r = 1, 2, · · · , n, satisfy also the condition (c) of
Theorem 1. By Theorem 1, it can be shown that there
exists a unique u ∈ E(En) such that [u]r = Ar for
r ∈ (0, 1]. From the right continuity of ai(r) and bi(r)
at r = 0, we can also obtained [u]0 = A0, so, [u]r = Ar

hold for all r ∈ [0, 1]. The proof is completed.

B. The proof of Theorem 6:

Let u be a quasi cone fuzzy n−ellipsoid number,
x0=(x0

1, · · · , x0
n)∈[u]0 and q ∈ (0, 1). Denote ξ1 = 0,
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η1=1 and r1=(1−q)ξ1+qη1=q, we have ξ1<r1<η1,∑n
i=1

(x0
i−

ui(ξ1)+ui(ξ1)

2 )2

(
ui(ξ1)−ui(ξ1)

2 )2
≤1,

∑n
i=1

(x0
i−

ui(η1)+ui(η1)

2 )2

(
ui(η1)−ui(η1)

2 )2
≥1 since

x0 ∈ [u]0 and x0 ∈ Rn = {x ∈ Rn | x∈̄[u]1}. Then

denote ξ2 = ξ1, η2 = r1 as
∑n

i=1
(x0

i−
ui(r1)+ui(r1)

2 )2

(
ui(r1)−ui(r1)

2 )2
>1,

and ξ2=r1, η2=η1 as
∑n

i=1
(x0

i−
ui(r1)+ui(r1)

2 )2

(
ui(r1)−ui(r1)

2 )2
≤ 1.

And denote r2 = (1− q)ξ2 + qη2, then we have

still ξ2 < r2 < η2,
∑n

i=1
(x0

i−
ui(ξ2)+ui(ξ2)

2 )2

(
ui(ξ2)−ui(ξ2)

2 )2
≤1

and
∑n

i=1
(x0

i−
ui(η2)+ui(η2)

2 )2

(
ui(η2)−ui(η2)

2 )2
≥1. And then denote

ξ3 = ξ2, η3 = r2 as
∑n

i=1
(x0

i−
ui(r2)+ui(r2)

2 )2

(
ui(r2)−ui(r2)

2 )2
>1, while,

denote ξ3=r2, η3=η2 as
∑n

i=1
(x0

i−
ui(r2)+ui(r2)

2 )2

(
ui(r2)−ui(r2)

2 )2
≤1.

Denote r3=(1−q)ξ3+qη3, we have also ξ3<r3<η3,∑n
i=1

(x0
i−

ui(ξ3)+ui(ξ3)

2 )2

(
ui(ξ3)−ui(ξ3)

2 )2
≤1,

∑n
i=1

(x0
i−

ui(η3)+ui(η3)

2 )2

(
ui(η3)−ui(η3)

2 )2
≥1.

...... So always go on, we can obtain
ξm, ηm, rm ∈ [0, 1] with ξm < rm < ηm such that∑n

i=1
(x0

i−
ui(ξm)+ui(ξm)

2 )2

(
ui(ξm)−ui(ξm)

2 )2
≤1,

∑n
i=1

(x0
i−

ui(ηm)+ui(ηm)

2 )2

(
ui(ηm)−ui(ηm)

2 )2
≥1

for any m = 1, 2, · · ·.
By the definitions of ξm, ηm, rm, it is obvi-

ous that [ξm+1, ηm+1] ⊂ [ξm, ηm] (m = 1, 2, · · ·)
and limm→∞(ηm − ξm) = 0. By Closed Inter-
val Theorem, we know that there exist r0 with
limm→∞ ξm = limm→∞ ηm = r0 (By Squeeze The-
orem, limm→∞ rm = r0) and r0 ∈ [ξm, ηi] ⊂ [0, 1] for
all m = 1, 2, · · ·. By the continuity of ui(r) and ui(r)

(i = 1, 2, · · · , n), we have
∑n

i=1
(x0

i−
ui(r0)+ui(r0)

2 )2

(
ui(r0)−ui(r0)

2 )2
=

limm→∞
∑n

i=1
(x0

i−
ui(ξm)+ui(ξm)

2 )2

(
ui(ξm)−ui(ξm)

2 )2
≤1,

∑n
i=1

(x0
i−

ui(r0)+ui(r0)

2 )2

(
ui(r0)−ui(r0)

2 )2
=

limm→∞
∑n

i=1
(x0

i−
ui(ηm)+ui(ηm)

2 )2

(
ui(ηm)−ui(ηm)

2 )2
≥1, so

∑n
i=1

(x0
i−

ui(r0)+ui(r0)

2 )2

(
ui(r0)−ui(r0)

2 )2

=1. The existence of r0 have been shown. In the
following, we show the uniqueness of r0.

It is obvious that the uniqueness is valid as r0 = 1.
As r0 ∈ [0, 1), we assume the uniqueness is not
valid, then there exist r̀0 ∈ [0, 1] with r̀0 ̸= r0 such

that
∑n

i=1
(x0

i−
ui(r̀0)+ui(r̀0)

2 )2

(
ui(r̀0)−ui(r̀0)

2 )2
=1. Without loss of general-

ity, let r̀0 < r0. Then by the strictly monotonici-
ty of ui(r) and ui(r), we can see that ui(r̀0) <
ui(r0) < ui(r0) < ui(r̀0). Therefore, By Lemma

1 and from
∑n

i=1
(x0

i−
ui(r̀0)+ui(r̀0)

2 )2

(
ui(r̀0)−ui(r̀0)

2 )2
= 1, we know

∑n
i=1

(x0
i−

ui(r0)+ui(r0)

2 )2

(
ui(r0)−ui(r0)

2 )2
> 1, this is in contradiction to

∑n
i=1

(x0
i−

ui(r0)+ui(r0)

2 )2

(
ui(r0)−ui(r0)

2 )2
=1. Thus we have completed the

proof of the uniqueness of r0 by reduction to absurdity.
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