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Abstract  

Release of the B-type natriuretic peptide (BNP) is increased in heart failure (HF). 

Physiologically, BNP exerts natriuretic, diuretic, vasodilator and cardioprotective effects. 

A number of clinical investigations carried out with synthetic BNP for the treatment of HF 

have suggested that BNP-based restoration of homeostasis is inadequate. This equivocal 

clinical benefit of a recombinant BNP in HF raises the possibility of attenuated BNP 

response.  

The objective of this thesis is an examination of three aspects of BNP-related 

cardiovascular pathophysiology. The first issue tested was the effect of BNP in isolated 

neutrophils of control subjects via neutrophil superoxide (O2
-) generation. The second 

issue was integrity of BNP effects in acute and chronic HF patients, and the third was 

maintenance of BNP effect in the acute phase of Tako-tsubo cardiomyopathy (TTC), a 

form of “stress-induced” cardiomyopathy and another condition associated with increased 

BNP release. 

The study utilized the technique of electron paramagnetic resonance spectroscopy to 

quantitate the extent of O2
- generation from isolated neutrophils. In control subjects, the 

data showed significant suppression of O2
- generation in PMA- and fMLP-stimulated 

neutrophils. This effect was not affected by either age or gender of the study population. 

The effect of BNP was mimicked by a cell-permeable cGMP analog (8-pCPT-cGMP) and 

partially restored by a protein kinase G (PKG) inhibitor KT5823. Furthermore, BNP 

inhibited the fMLP-induced phosphorylation of the NAD(P)H oxidase subunit p47phox at 

ser345. These findings led to the conclusion that BNP suppression of O2
- generation is 

mediated by the cGMP-PKG signaling pathway. 
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The studies concerning HF patients had two major components: (a) examination of the 

BNP effect in acute HF patients and (b) determination of changes in effect with chronic 

treatment of such patients. 

Studies with acute HF patients showed a significant attenuation of BNP effects on 

suppressing neutrophil O2
- generation compared with control subjects. However, 8-p-CPT-

cGMP effects were retained, which indicates that BNP effects were attenuated at the level 

of natriuretic peptide receptor level. Furthermore, the effect of BNP on inhibition of the 

fMLP-induced phosphorylation of p47phox at ser345 was lost in acute HF patients. 

Comparison of the acute and chronic HF patients revealed a partial restoration of BNP 

effects, especially in younger patients. 

TTC is associated with acute release of BNP into plasma as a result of inflammatory 

change in the heart. It was found that BNP effect was attenuated similarly in TTC patients 

and acute HF patients. The residual effect was not associated with either patients’ 

inflammatory status or catecholamine release.  

In summary, this study identified that (1) In control subjects without diagnosed 

cardiovascular disease, BNP suppressed the release of the inflammatory modulator O2
- 

from isolated neutrophils by attenuating NAD(P)H oxidase assembly; (2) This effect of 

BNP was lost in patients with acute HF, but recovers partially with chronic treatment of 

HF. (3) In TTC patients, attenuation of BNP effect was also present. 

These data suggest that marked elevation of plasma concentration of BNP limits its 

physiological anti-inflammatory effects. 
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Chapter 1: Literature review 

1.1 Introduction   

B-type natriuretic peptide (BNP) belongs to the natriuretic peptide family, which has a 

wide range of biological effects, including natriuresis, diuresis, vasodilation, anti-fibrotic, 

anti-inflammatory, inhibition of renin-angiotensin-aldosterone system (RAAS) and 

inhibition of sympathetic nervous system activity (Kita et al. 1989; Lang et al. 1991; 

Wambach & Koch 1995). BNP is mainly involved in cardiovascular and renal homeostasis. 

The effects of BNP are mediated by the stimulation of particulate guanylyl cyclase (pGC), 

which leads to increased formation of cyclic 3',5'- guanosine monophosphate (cGMP) 

(Daniels & Maisel 2007; Murad 2006; Venugopal 2001; Wedel & Garbers 2001). 

BNP is highly up-regulated in acute and chronic forms of congestive heart failure (HF), 

which remains a major healthcare problem (Anatoliotakis et al. 2013; Nieminen et al. 2006) 

and is associated with a marked increase in morbidity and mortality worldwide (Schrier & 

Abraham 1999). Systolic HF is usually defined on the basis that the heart muscle is unable 

to pump enough blood to meet the body's requirement for oxygen. However, this 

inadequacy is usually apparent only during exertion. Acute HF is a cardiac syndrome 

characterized by decreased cardiac output and acute increases in left ventricular (LV) end-

diastolic pressure which results in increased ventricular stretch. In response to the 

increased ventricular wall stretch, BNP is released acutely.  

Although early clinical trials have shown that systemic intravenous infusion of Nesiritide, 

a recombinant form of human BNP, improves acute decompensated HF haemodynamicly 

(Abraham et al. 1998; Chandra et al. 2008; Colucci et al. 2000; Hobbs, RE et al. 1996; 

Mills et al. 1999), the ASCEND-HF (Acute Study of Clinical Effectiveness of Nesiritide in  
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Decompensated  Heart  Failure) trial demonstrated that Nesiritide, relative to placebo, was 

not associated with a reduction in the rate of death and re-hospitalization after 30 days 

therapy in patients with acute decompensated HF. Moreover, Nesiritide therapy had no 

impact on dyspnea when utilized together with standard HF therapies (O'Connor et al. 

2011). 

In this chapter, the epidemiology and pathophysiology of congestive HF and the 

controversy regarding effects of BNP on congestive HF are reviewed.  

1.2 Systolic HF 

1.2.1 Terminology of HF 

Systolic HF implies dysfunction of the heart in the sense that the heart is unable to pump 

enough blood and oxygen to support normal human activities (Figueroa & Peters 2006). 

From a clinical point of view, this includes the development of dyspnea, fluid overload, 

weakness and exercise intolerance.  

1.2.2 Etiology of HF 

Any structural or functional disorders of the heart including ischemic heart disease, 

valvular disease and disorders of heart muscle function can lead to systolic HF. Coronary 

artery disease (CAD) is the most common cause of HF. It has been claimed in many 

studies that the presence of CAD in patients with HF predicts a poor outcome (Smith et al. 

2001). It is possible that this difference reflects the presence of extensive loss of functional 

myocardium through infarction.  
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1.2.3 Epidemiology of HF 

With an increasing aging population worldwide, both the incidence and prevalence of HF 

is increasing. In the United States more than 75% of patients with HF are older than 65 

years; while age-related changes in the cardiovascular system may predispose to the 

development of HF. Such changes include systolic hypertension and aortic stenosis. 

 In Australia, based on 2007-08 National Health Statistics self-reports, HF is estimated to 

affect about 277,800 Australians (1.4% of the population). More than half of the patients 

with the HF were females, with a prevalence of 1.7% (1.0% for males). The prevalence of 

HF is age dependent with an estimated prevalence of 2.6% in people aged 55–64 years to 

8.2% in those aged 75 years and over (AIHW 2010). 

1.2.4 Mortality and morbidity of HF 

Evidence from a number of studies showed that the mortality rate is substantial in HF: 30-

40% of HF patients die within a year and 60-70% die within 5 years of diagnose (Cowie et 

al. 2000; Ho, Anderson, et al. 1993; Ho, Pinsky, et al. 1993). Indeed the mortality rate for 

congestive HF is higher than most cancers (Stewart et al. 2001). In 2009, HF accounted for 

17,900 deaths in Australia (AIHW 2012).  

1.2.5 Pathophysiology of HF 

Congestive HF is a cardiovascular syndrome characterized by complicated changes in 

cardio-renal, hemodynamic, and neurohormonal activations. Whether the injury to the 

myocardium resulted from CAD, hypertension, dilated cardiomyopathy, valvular disease 

or other causes, it leads to dysfunction of the left ventricle. Congestive HF is also 

accompanied by accentuated neurohormonal responses including both vasoconstrictor and 
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vasodilator hormone release (Table 1-1). Vasoconstrictor effect can also be induced by 

activation of the sympathetic nervous system, resulting in an increase in circulating 

catecholamines, which in turn potentially increased cardiac output; activation of the RAAS 

leads to retention of fluids and inflammatory activation; and increased circulating 

endothelin-1 (ET-1), a neurohormone that contributes to vasoconstriction, fibrosis and 

remodeling of the heart (Ruffolo & Feuerstein 1998). The vasodilators include natriuretic 

peptides (NPs), nitric oxide (NO), prostaglandins (PGs), kallidin and calcitonin gene-

related peptide (CGRP) (Tziakas, Chalikias & Xatseras 2003). In congestive HF, the acute 

response of the neurohormone activation is compensatory. However, the long-term 

activation of these neurohormones leads to overexpression of biologically active molecules 

which in turn produce damage in the heart (hypertrophy, LV remodeling, apoptosis) and 

the circulation leading to worsening of cardiac function and progression of HF (Figure 1-1).  

 

Table 1-1: Vasoconstrictor and vasodilator hormones that are activated in congestive 

HF. 

Vasoconstrictor hormones  Vasodilator hormones 

Norepinephrine  Natriuretic peptides 

Epinephrine  Prostaglandins 

Renin-angiotensin-aldosterone  Kallidin 

Arginine vasopressin  Calcitonin gene-related peptide 

Endothelin Nitric oxide 

Adapted from: (Tziakas, Chalikias & Xatseras 2003) 
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Figure 1-1: Pathogenesis of congestive HF. 

Adapted from: (Braunwald 2013). 

 

1.2.5.1 Neurohormonal responses in congestive HF  

1.2.5.1.1 The vasoconstrictors  
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Although the clinical syndrome of congestive HF represents both systolic and diastolic 

dysfunction of the heart, the current understanding of the pathophysiology and the clinical 

evidence reflects a complex interaction between cardiac function and peripheral vascular 

function. For instance, alterations in the peripheral vasculature tone mediated by the effects 

of the neurohormonal vasoconstrictor systems can have substantial effects on overall 

cardiac performance in patients with congestive HF (Francis, GS et al. 1984). 

The most important reported indicators of increased activity of the neurohormonal 

vasoconstrictor systems in congestive HF include increased plasma levels norepinephrine, 

epinephrine, ET-1, arginine vasopressin (AVP) and plasma renin activity, (Anker et al. 

1997; Francis, GS et al. 1984; Nakamura, T et al. 2006).  

The activity of the sympathetic nervous system is increased in HF (Chidsey, Harrison & 

Braunwald 1962; Cohn et al. 1984; Francis, GS et al. 1982; Levine et al. 1982). 

Augmented sympathetic activity in HF is an adaptive response initially but has harmful 

sequelae (Gaffney & Braunwald 1963). On one hand it increases cardiac output and 

redistributes blood flow. On the other hand renal vasoconstriction results in salt and water 

retention, which might be helpful by improve perfusion of vital organs. However, the 

chronically increased sympathetic activity down-regulates the β-adrenergic receptors in the 

failing heart leading to reduced responsiveness to inotropic and chronotropic stimuli 

(Bristow et al. 1982); sustained sympathetic stimulation, activates the RAAS and other 

neurohomones, which leads to progressive salt and water retention, vasoconstriction and 

oedema. ultimately increased pre- and after- load accelerates progression of HF (Yates, 

Beamish & Dhalla 1981). 

The RAAS is directly involved in the homeostatic control of arterial pressure, tissue 

perfusion, fluid volume and vascular response to injury and inflammation (Atlas 2007). 
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The inappropriate activation of RAAS causes hypertension, sodium and water  retention, 

inflammatory, thrombotic, and atherogenic effects that may lead to end-organ damage 

eventually (Brewster & Perazella 2004). The effects of the RAAS on target tissues are 

largely mediated by angiotensin II (AngII), which is generated in the presence of 

angiotensin converting enzyme (ACE), both in the circulation and in the tissues. In 

cardiovascular system, AngII effects are mediated by two receptors (AT1 and AT2 

receptors) (Horiuchi, Akishita & Dzau 1999; Mehta, PK & Griendling 2007).  

The RAAS is also critical to the regulation of nicotinamide adenine dinucleotide phosphate 

(NAD(P)H) oxidase function. It has been reported that AngII increases the activity of 

NAD(P)H oxidase and production of superoxide (O2
-) (Griendling et al. 1994). 

Furthermore, in AngII-dependent hypertension, the activity of components of NAD(P)H 

oxidase, especially NOX1, is increased. Activation of these pathways can be blocked by 

inhibiting renin and ACE or by blocking AngII receptors (Schramm et al. 2012). The 

pivotal role of ACE in the pathogenesis of cardiovascular diseases and the beneficial 

clinical effects of their inhibitors has been studied and demonstrated in many 

investigations, for review see (Ennezat et al. 2011).  

AVP, also called antidiuretic homorne, is another vasoconstrictor and water-retaining 

hormone (Finley, Konstam & Udelson 2008). Several studies have shown a significant 

increase in plasma vasopressin levels in patients with HF and/or LV dysfunction (Francis, 

GS et al. 1990; Goldsmith et al. 1983; Lee et al. 2003; Szatalowicz et al. 1981). Within 

physiological levels, the vasoconstrictor effect of AVP is not associated with detectable 

pressor effects (Goldsmith 1987). Nevertheless, in patients with HF, exogenous AVP 

supplementation increases systemic vascular resistance and pulmonary capillary wedge 
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pressure, and decreases stroke volume and cardiac output dose-dependently (Goldsmith et 

al. 1986). 

Endothelins, one of the potent vasoconstrictors that are released in HF, increase peripheral 

vasoconstriction by interacting with specific endothelin receptors, which are also found in 

the heart, kidney, adrenal gland and brain (Ferrara et al. 2002). Excessive endothelin 

release increases the after-load stress in HF and also has mitogenic effects, including 

myocyte hypertrophy and proliferation of the interstitial cardiac matrix. It has been 

reported that elevated ET-1 is an independent predictor of mortality in HF (Cleland, Dargie 

& Ford 1987). 

1.2.5.1.2 Vasodilators  

1.2.5.1.2.1 Natriuretic peptides  

The NPs are a family of structurally similar but genetically distinct peptides. They have 

diverse effects in cardio-renal and endocrine homeostasis. The key observations that 

predicted the existence of NPs in biological system were reported almost sixty years ago 

when the heart was found to function as an endocrine organ. It was found that the atrial 

cells contained highly developed Golgi networks, which are similar to those observed in 

secretory cells (Kisch 1956); and later after that it was reported that atrial myocytes 

contain spherical, electron opaque granules (Jamieson & Palade 1964). Furthermore, 

Henry and colleagues (Henry, Gauer & Reeves 1956) conducted physiological experiments, 

which revealed that balloon distension of the atria associated with increased urination in 

dogs. 

The first natriuretic peptide, discovered by de Bold and colleagues in 1981, was named 

atrial natriuretic peptide (ANP), which is secreted mainly from atrial myocytes (de Bold et 
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al. 1981). Shortly after this landmark discovery, a number of groups reported the 

purification and sequencing of atrial peptides of varying sizes that possessed natriuretic, 

diuretic, and/or smooth muscle relaxing activity (Currie et al. 1984; Flynn, de Bold & de 

Bold 1983; Kangawa, Fukuda, Kubota, et al. 1984; Kangawa, Fukuda, Minamino, et al. 

1984; Kangawa & Matsuo 1984; Matsuo & Kangawa 1984; Misono et al. 1984). The 

second member of the family was purified and sequenced from porcine brain, and was 

therefore originally called brain natriuretic peptide (Sudoh et al. 1988). However, 

subsequent studies found that it is actually more concentrated in cardiac ventricles of 

patients with HF (Mukoyama et al. 1991; Mukoyama et al. 1990). Therefore, it is now 

often described as B-type natriuretic peptide (BNP). C-type natriuretic peptide (CNP), the 

third member of the NPs family, was purified in 1990s from porcine brain extracts based 

on its ability to relax smooth muscle (Kalra et al. 2001; Sudoh et al. 1990; Ueda et al. 

1991). Soon after that, it was reported that CNP is distributed much wider in peripheral 

blood vessels (Heublein et al. 1992; Stingo et al. 1992) and exerts powerful vasorelaxation 

effects (Wei, Aarhus, et al. 1993). 

All these three NPs contain a central loop with a conserved sequence 

CFGXXXDRIXXXXGLGC where X is different amino acids within each of the three 

peptides (Cowie & Mendez 2002), and this 17-amino-acid disulfide-linked ring is the 

major component for biological activity (Figure 1-2). ANP, BNP, and CNP are expressed 

in the tissues as prepro-hormones. The signal sequences are cleaved by different enzymes 

to form pro-ANP, pro-BNP, and pro-CNP, and then the peptides are processed 

proteolytically to form active peptides. Corin is the responsible enzyme for pro-ANP 

cleavage to form ANP (Yan et al. 2000). The enzymes responsible for BNP cleavage are 

furin and corin (Sawada et al. 1997; Yan et al. 2000). And also furin can cleavage the pro-
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CNP to form a 53-amino-acid peptide (Wu, C et al. 2003). Another product of pro-CNP 

cleavage is a 22-amino-acid form and the enzyme responsible for this process has not been 

identified yet (Figure 1-2). The effects of NPs are mediated through natriuretic peptide 

receptors mainly on endothelial cells, vascular smooth muscle cells and other cells in large 

vessels, kidneys, adrenal glands and the brain. Interaction of NPs with their receptors plays 

a pivotal role in physiology and pathophysiology of hypertension and cardiovascular 

disorders.  

Three receptors have been identified for NPs: natriuretic peptide receptor-A, B, C (NPR-A, 

NPR-B, and NPR-C). The alternative names of these receptors are pGCs (pGC-A, pGC-B) 

and the clearance receptor, or NPR1, NPR2, and NPR3, respectively. NPR-A catalyzes the 

synthesis of cGMP by binding of ANP or BNP (Figure 1-3). It contains an extracellular 

ligand-binding domain, a single membrane-spanning region, intracellular kinase homology 

domain, dimerization, and carboxyl-terminal guanylyl cyclase catalytic domains (Potter & 

Hunter 2001). NPR-B is homologous to NPR-A, but is activated by CNP. Most known 

physiological effects of NPs are mediated by these two receptors. The well-known 

physiological functions associated with the activation of NPR-A are diuresis, natriuresis, 

vasorelaxation, antagonism of the RAAS, and endothelial extravasation (Potter, Abbey-

Hosch & Dickey 2006). All three NPs also bind NPR-C with similar affinities, and NPR-C 

is a disulfide-linked homodimer that is homologous to the extracellular domains of NPR-A 

and NPR-B, but consisted with only 37 intracellular amino acids. Overall, studies indicate 

that the primary role of NPR-C is to clear NPs from the extracellular environment via a 

receptor-mediated internalization and degradation process (Nussenzveig, Lewicki & 

Maack 1990). In addition to undergoing receptor-mediated degradation, NPs are also 
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metabolized by extracellular proteases, such as neutral endopeptidase, neprilysin (NEP) 

and insulin-degrading enzyme (IDE) (Potter 2011). 

 

 

Figure 1-2: Natriuretic peptide expression, processing, and structure.  

Adapted from: (Potter, Abbey-Hosch & Dickey 2006). 



12 

 

 

Figure 1-3: NPs bind multiple cell surface proteins.  

Adapted from: (Potter 2011). 

 

1.2.5.1.2.2 Nitric oxide 

Nitric oxide (NO) is known to play an important role in regulation of cardiac function as 

well as other physiological effects. Although it is partially produced by reduction of nitrite 

anion (NO2
-) (Hematian, Siegler & Karlin 2012), it is largely synthesized enzymatically by 

converting L-arginine to L-citruline and NO in the presence of NO synthase (NOS) 

(Moncada, Palmer & Higgs 1989; Palmer, Ashton & Moncada 1988; Palmer et al. 1988).  

The enzymes responsible for the production of NO are the ‘endothelial’, ‘neuronal’ and 

‘inducible’ isoforms of NOS (eNOS, nNOS and iNOS, respectively) (Balligand et al. 1995; 

Balligand et al. 1994; Simmons et al. 1994; Singh, K et al. 1994; Xu et al. 1999). Several 

other factors are also essential for the generation of NO from arginine by NOS, such as 
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tetrahydrobiopterin (BH4) and heme at the N-terminal catalytic oxygenase domain, 

together with flavins and NAD(P)H at the C-terminal reductase domain. 

The major functions of NO include vascular smooth muscle relaxation and inhibition of 

platelet aggregation (Moncada, Radomski & Palmer 1988). To exert its beneficial effects 

on the cardiovascular system, NO acts primarily via the activation of soluble guanylate 

cyclase (sGC) which results in the production of cGMP and hence to vasodilatation, anti-

inflammatory and anti-apoptotic effects as well as limitation of functional and structural 

remodeling of the myocardium (Cotton, Kearney & Shah 2002). It should be noted that 

NO may induce protein nitrosylation, potentially altering protein function and thus 

exerting sGC-independent effects. Also, if generated in excessive amounts, NO can be 

cytotoxic (Drapier, Wietzerbin & Hibbs 1988; Hibbs et al. 1988). 

1.2.5.1.2.3 Prostaglandins  

The vasodilator PGs: prostaglandin E2 (PGE2), prostacyclin (PGI2), prostaglandin D2 

(PGD2), and prostaglandin F2α (PGF2α) are mainly synthesized in the heart (including 

cardiomyocytes, the interstitium and coronary arterials) (Dzau et al. 1984; Mehta, J & 

Mehta 1985; Satoh, Ohyama & Hayashi 1981) and kidney (renal arterioles, glomeruli and 

some parts of the renal tubules) (Folkert & Schlondorff 1979; Hassid, Konieczkowski & 

Dunn 1979). Interestingly, vasodilator prostanoid synthesis is stimulated by NO in a sGC-

independent manner (Goodwin, Landino & Marnett 1999). Activation of RAAS and 

sympathetic nervous system can also lead to increased production of PGs (Dzau et al. 1984; 

Satoh, Ohyama & Hayashi 1981). PGs are known to affect coronary perfusion and 

myocardial function. Furthermore, by directly inhibiting the sodium transport in the distal 

tubules, PGs promote sodium excretion and protect glomerular function during conditions 
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such as in HF which are associated with renal vasoconstriction (Dzau 1988; Schrier & 

Abraham 1999). 

1.2.5.1.2.4 Calcitonin gene-related peptide 

Calcitonin gene-related peptide (CGRP) is released primarily from sensory nerves and up-

regulated in HF, and is released partially in response to NO (Bellamy et al. 2006). Two 

forms of CGRP have been identified, (αCGRP is encoded by the calcitonin gene while 

βCGRP is formed by another gene) and performed as vasodilators (Brain, MacIntyre & 

Williams 1986). However, αCGRP is more abundant and its vasodilator effect has been 

studied in many different tissues including cardiovascular system (Brain & Williams 1985). 

CGRP is localized in the heart, blood vessels and the nervous system. Short-term infusion 

of CGRP in patients with congestive HF is associated with beneficial effects such as 

decreased system and pulmonary vascular resistance and increased cardiac output (Anand 

et al. 1991). Another study also suggested similar cardiovascular beneficial effects of 

CGRP in patients with congestive HF (Gennari et al. 1990). Furthermore, a recent study 

demonstrated that α-CGRP plays a significant role in protecting against the development of 

transverse aortic constriction-induced HF by decreasing inflammation, cell death, and 

fibrosis (Li, JP et al. 2013). 

1.3 Congestive HF: focus on oxidative stress  

Substantial clinical and experimental evidence suggests the involvement of oxidative stress 

in the pathophysiology of congestive HF (Belch et al. 1991; Giordano 2005; Hill & Singal 

1996; Rochette et al. 2011; Sagols & Priymenko 2011). Oxidative stress describes a 

condition of imbalanced antioxidant defenses and increased production of reactive oxygen 

species (ROS). ROS are highly reactive, including free radicals such as O2
-, hydroxyl 
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radical (OH•) and NO and non-radical oxygen derivatives such as hydrogen peroxide 

(H2O2) and peroxynitrite (ONOO-). ROS release plays a pivotal role in vascular injury and 

reflects the interplay of a number of different cytokines which are increasingly expressed 

after injury, shear stress and mechanical disruption (Nerem 1993; Nerem et al. 1998; 

Nerem et al. 1993).  

Under physiological conditions, ROS generation plays an essential role in intracellular 

signaling pathways. However, when ROS are produced at markedly increased rates, this 

can cause cellular dysfunction, protein and lipid peroxidation, and DNA damage and then 

result in irreversible cell damage (Figure 1-4) (Seddon, Looi & Shah 2007). ROS release 

plays an important role in different physiological and pathological processes. For example, 

ROS can impair the contractile function of the heart, activate a number of hypertrophy 

signaling kinases and transcription factors, and mediate cardiomyocyte apoptosis (Chang 

& Wu 2006; De Vito et al. 2010). Furthermore, ROS can stimulate cardiac fibroblast 

proliferation and activate the matrix metalloproteinases, resulting in the extracellular 

matrix remodeling (Lijnen, van Pelt & Fagard 2011).  

 

Figure 1-4:  Main pathophysiological effects of oxidative stress in HF. 
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Adapted from: (Seddon, Looi & Shah 2007). 

 

1.3.1 Redox stress inductor 

Apart from the cardiomyocytes, which compose the majority of the cardiac cell mass, a 

variety of other cells also exist within the heart, including endothelial cells, smooth muscle 

cells, fibroblasts and neutrophils. All of them are potential sources of extensive ROS 

generation within the heart. Such ROS release may be derived from many sources (Figure 

1-5), including the mitochondrial respiratory chain (Rojkind et al. 2002), cytochrome P450 

monoxygenase (Rojkind et al. 2002), lipoxygenases, xanthine oxidase (XO) (Ekelund et al. 

1999), uncoupled endothelial NOS (Xia, Y et al. 1998), and NAD(P)H oxidases (Seshiah 

et al. 2002). Some of these intracellular sources of ROS have been involved in the 

pathogenesis of HF either directly or indirectly. 

Mitochondria represent the major energy supplier within the myocardium. However, 

mitochondria have also been implicated as a major source of extensive ROS generation. 

Mitochondrial respiration generates ROS via single electron transportation to oxygen 

molecules. Small amounts of ROS can be converted to H2O2 by manganese superoxide 

dismutase (Mn-SOD) which is a principal scavenger enzyme in the mitochondrial matrix. 

Thus, oxidative stress in this case can be due to increased ROS generation in the 

mitochondria, decreased dismutation of the oxygen free radical by endogenous 

mechanisms (Sam et al. 2005), or decreased detoxification of H2O2. It has been reported 

that mitochondrial dysfunction in the failing heart is associated with decreased enzyme 

activity of complex sites of the electron transportation chain (Ide et al. 1999), which results 

in increased O2
- generation. Furthermore, heart specific Mn-SOD deletion results in 
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progressive HF due to significant degeneration of cardiac muscle (Li, YB et al. 1995). 

Thus, increased mitochondrial ROS production represents an important transition from 

physiological role towards a key role in pathogenesis of HF.  

 

 

Figure 1-5: Sources of ROS in vascular cells.  

NO nitric oxide, H2O2 hydrogen peroxide, O2
- superoxide, HClO hypochlorous acid 

(HOCl), ONOO- peroxynitrite. Adapted from: (Papaharalambus & Griendling 2007). 

 

Xanthine oxidase (XO), a molybdenum-containing enzyme that produces O2
– in the 

catalysis of the terminal steps in purine metabolism, has been implicated as a pathogenic 
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factor in HF. XO is expressed in endothelial cells (Rouquette et al. 1998), but also 

circulating in the plasma in substantial concentrations (White et al. 1996) and myocardium 

(Abadeh, Case & Harrison 1993). XO catalyses the single electron reduction of molecular 

oxygen in the presence of xanthine, hypoxanthine and NADH, results in O2
– formation. It 

has been shown that XO-mediated ROS production plays an important role in both 

experimental and clinical HF (Cappola et al. 2001; Ekelund et al. 1999). Under 

physiological conditions, activity of XO in myocardium is low, but it has been reported 

that both the expression and activity of XO is increased in canine rapid pacing-induced HF 

(Ekelund et al. 1999; Ukai et al. 2001) as well as in human end-stage HF (Cappola et al. 

2001). Furthermore, application of the XO inhibitor, allopurinol, resulted in improvement 

of LV contractile function, which has been reported to be associated with a significant 

decrease in myocardial oxygen consumption and improvement in myocardial efficiency 

and contractility (Cappola et al. 2001; Ekelund et al. 1999; Ukai et al. 2001). On this basis, 

allopurinol has been recently developed as a prophylactic anti-anginal agent (Noman et al. 

2010). 

Uncoupled eNOS can lead to excess ROS production through the oxidation of the NOS 

essential cofactor BH4 (Landmesser et al. 2003). Physiologically, eNOS is tightly 

regulated and generates NO with the involvement of NAD(P)H, L-arginine, molecular 

oxygen, flavin adenine dinucleotide, and flavin mononucleotide. Under conditions of 

reduced BH4 or L-arginine, eNOS becomes structurally unstable and generates O2
– 

(Landmesser et al. 2003; Vasquez-Vivar et al. 1998; Wever et al. 1997; Xia, Y et al. 1998). 

Increased oxidative stress can lead to BH4 oxidation (and hence inactivation) and can 

result in the uncoupling of eNOS (Landmesser et al. 2003). Furthermore, O2
– release can 

result in ONOO- formation and resultant protein nitration.  
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ROS can be generated also via NAD(P)H oxidase in cadiovascular cells, as well as in 

activated leukocytes. The NAD(P)H oxidase contains a catalytic unit called NOX and the 

regulatory subunits p47phox (is heavily phosphorylated during enzyme activation), 

p67phox, p40phox, p22phox and the small GTPases Rac1and Rac2. NOX together with 

p22phox, form a heterodimeric cytochrome which is the site of electron transfer from 

NAD(P)H to molecular oxygen (O2), resulting in the formation of O2
–. Five different NOX 

isoforms have been identified (NOX1-5): each of them are encoded by different genes 

(Lambeth 2004).  

In the cardiovascular system, the main isoforms present are NOX1, NOX2, NOX4, and 

NOX5 (Figure 1-6). NOX1 and NOX2 (also known as gp91phox in phagocytes) require 

the assembly of cytosolic regulatory subunits with the cytochrome to activate O2
– 

production, while NOX4 activation does not require the cytosolic subunits. NOX1 is most 

abundantly expressed in vascular smooth muscle cells (Lassegue et al. 2001) and to a 

lesser extent in endothelial cells (Sorescu et al. 2004). NOX2 is largely expressed in 

cardiac myocytes, endothelial cells (Gorlach et al. 2000), aortic fibroblasts (Chamseddine 

& Miller 2003) and phagocytes. NOX4 is the most widely expressed isoform in endothelial 

cells, cardiac myocytes, and fibroblasts (Tsutsui, Kinugawa & Matsushima 2011). NOX2 

and NOX4 are probably the most important isoforms in the context of the diseased 

myocardium. Recent studies have indicated that NOX4 plays an important role in 

mediating cardiac dysfunction via its role in increased ROS production and cardiac 

remodeling following pressure overload and aging (Ago, Kuroda, et al. 2010; Ago, 

Matsushima, et al. 2010; Kuroda et al. 2010). It has been shown that NAD(P)H oxidase 

activity is significantly increased by several stimuli that are important to the 

pathophysiology of HF, including mechanical stretch, Ang II, ET-1, and tumor necrosis 
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factor-α (TNF-α) (Griendling et al. 1997; Heymes et al. 2003). Doerries et al. (2007) 

demonstrated that p47phox-/- mice exhibited less LV remodeling and resultant LV 

dysfunction post myocardial infarction (MI).  

 

 

Figure 1-6: Representation of NAD(P)H oxidase family.  

NOX1 and NOX2 require p22phox and the indicated cytosolic regulatory subunits for 

activation. NOX4 requires only p22phox. NOX5, on the other hand, is regulated by 

calcium binding through its N-terminal EF motifs. Adapted from: (Cifuentes-Pagano, 

Csanyi & Pagano 2012). 
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1.3.2 Focus on role of neutrophils  

Neutrophil recruitment and activation is considered one of the defense mechanisms of 

innate immunity. In response to inflammatory mediators such as bacterial 

lipopolysaccharides (LPS), cytokines, and complement factors, neutrophils adhere to the 

vessel wall before migrating to the affected tissues. Neutrophil infiltration of the infarcted 

heart tissue after MI was described more than a century ago (Baumgarten 1898). A number 

of factors contribute to potential ischemic-reperfusion injury, including free radicals 

produced by infiltrating neutrophils, release of matrix-degrading enzymes and reduced 

activity of antioxidant enzymes. In addition, neutrophils are also involved in adverse 

cardiac remodeling and neointimal formation post MI. It has been reported that neutrophil 

depletion has beneficial effects during experimental infarction and reperfusion in animal 

models (Litt et al. 1989; Lucchesi 1990) and in clinical trials as well (Hayashi et al. 2000; 

Sawa et al. 1994). Furthermore, leukocytes have been suggested to be important in the 

pathogenesis of HF based on the finding that plasma levels of myeloperoxidase (MPO) 

were directly correlated with the severity of HF and were independent predictors of 

outcomes in these patients (Tang et al. 2007). 

1.3.2.1 Neutrophil respiratory burst 

The neutrophil respiratory burst, as well as neutrophil degranulation is fundamentally a 

defensive response to tissue damage in response to mechanical, chemical and infectious 

stimuli (Babior 1978; Klebanoff, S. J. 1980; Metschnikoff 1891). This process is tightly 

regulated in normal circumstances, resulting in leukocyte migration to the damaged area. 

Recruitment and activation of neutrophils will result in the production of large quantities of 

bactericidal molecules including ROS, which is beneficial for the tissue in the process of 

host defense. However, in the cardiovascular system the release of ROS can be 
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disadvantageous. The neutrophil respiratory burst can be triggered by a number of different 

inflammatory stimuli to produce O2
-, which is important in redox signaling and plays an 

important role in development of pathophysiological conditions such as hypertension, 

ischemia-reperfusion injury, inflammation and atherosclerosis (Griendling, Sorescu & 

Ushio-Fukai 2000); O2
- inactivates NO and counteracts its vasodilatory and anti-

inflammatory effects. Also, the interaction between O2
- and NO generates ONOO-, which 

induces cellular injury.  

The enzyme primarily responsible for the O2
- formation in neutrophils is NAD(P)H oxidase 

(NOX2) (McPhail, Clayton & Snyderman 1984). Neutrophil NADPH oxidase can be 

activated by a number of factors including soluble proinflammatory cytokines, such as N-

formyl peptides, C5a, platelet activating factor (PAF) and particulate stimuli. Priming of 

neutrophils occurs by adherence to biological surfaces, and circulating inflammatory 

mediators such as TNF-α and interleukin 6 (IL-6) largely increase their response in vitro. 

During the respiratory burst, the NAD(P)H oxidase acts as an electron donor to reduce 

oxygen to O2
- (Babior 1999), which then dismutates to H2O2 and can be further processed 

to generate other ROS. Furthermore, the activation of the NAD(P)H oxidase in response to 

agonists leads to phosphorylation and subsequent translocation of several cytosolic 

NAD(P)H oxidase components to the membrane bound cytochrome (DeLeo & Quinn 

1996), which are dependent on the production of phosphatidic acid by phospholipase D, 

p47phox phosphorylation (protein kinase C (PKC) dependent assembly of NAD(P)H 

oxidase), and guanine nucleotide exchange of Rac-GDP to form Rac-GTP (Babior, 

Lambeth & Nauseef 2002). The priming and activating agents of ROS production by 

neutrophils are summarized in Table 1-2. 
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Table 1-2: Priming and activating agents of ROS production by neutrophils.  

 Agents Priming Activation 

Cytokines TNF-α +++ +? 

GM-CSF +++ - 

IL-1β ++ - 

IL-8 ++ +? 

IL-15 + - 

IL-18 ++ - 

TLR agonists LPS +++ -? 

LAMs ++ - 

Lipopeptide ++ - 

Flagellin ++ - 

R848 ++ - 

Zymosan ++ +? 

Chemoattractants fMLP ++ ++ 

Complement C5a + ++ 

LTB4 ++ + 

PAF ++ + 

Chemical agents PMA + +++ 

A23187 ++ + 

Cyto B ++ - 

Others Peroxynitrite ++ - 

Proteases ++ - 

Adhesion ++ - 

Fibronectin + - 

Substance P ++ - 

 

A23187 calcium ionophores (ionomycin), Cyto B cytochalasin B, fMLP N-formyl-

methionyl-leucyl-phenylalanine, GM-CSF granulocyte/macrophage colony stimulating 

factor, IL interleukin, LAMs lipoarabinomannans, LPS Lipopolysaccharide, LTB4 
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leukotriene B4, PAF platelet activating factor, PMA phorbol myristate acetate, R848 (a 

TLR7 and TLR8 agonist), TNF-α tumor necrosis factor α. − no effect, + weak effect, ++ 

moderate effect, +++ strong effect, ? contradictory data reported in the literature. 

Adapted from: (El-Benna, Dang & Gougerot-Pocidalo 2008). 

 

Phosphorylation is an important process in the activation of the NAD(P)H oxidase. The 

phosphorylation of p47phox, p67phox and p40phox as well as a membrane bound 

component has been implicated in the activation process. More importantly, the activation 

of NAD(P)H oxidase is assisted by an extensive p47phox phosphorylation on several 

serine residues located in the polybasic region of the carboxy-terminal of the protein which 

is surrounded by serines 303 to 379 (el Benna, Faust & Babior 1994; El Benna et al. 1996). 

Among these different serines, serine379 (Ser379) phosphorylation is shown to be 

necessary for both the translocation of p47phox and the activation of the oxidase (Faust et 

al. 1995). However, it has been demonstrated that p47phox can be inactivated by mutation 

of a pair of serines to alanine, such as mutation of Ser303 and Ser304 which are known to 

be phosphorylated during oxidase activation, decreases oxidase activity dramatically 

(Inanami et al. 1998). Johnson et al. reported that the oxidase activity and phosphorylation 

of p47phox is greatly reduced in p47phox-deficient B lymphoblasts expressing the 

p47phox Ser359A/Ser370A or p47phox Ser359K/Ser370K double mutation compared 

with the same cells expressing wild type p47phox (Johnson et al. 1998). All of these, 

together with previous studies, suggest that oxidase activation requires the sequential 

phosphorylation of at least two serines on p47phox and the translocation of p47phox to the 

membrane (Babior 1999). 

It has been shown that the pro-inflammatory cytokines, granulocyte/macrophage colony 
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stimulating factor (GM-CSF) and TNF-α are able to induce partial phosphorylation of 

p47phox on a major peptide, and enhance N-formyl-methionyl-leucyl-phenylalanine 

(fMLP) induced p47phox phosphorylation of other sites (Dang et al. 1999; Dewas et al. 

2003). Utilizing site-directed mutagenesis of Ser345 and the competitive inhibitory peptide 

containing the Ser345 sequence, Ser345 was identified in neutrophils as the 

phosphorylation site for TNF-α and GM-CSF (Dang et al. 2006), by phosphorylation of 

p47phox on Ser345 is thought to be a critical mechanism for the priming of ROS 

production by neutrophils. LPS and PAF has also been shown to induce partial 

phosphorylation of p47phox (Brown et al. 2004; DeLeo et al. 1998). 

In addition to ROS, neutrophils may induce damage to the reperfused tissue through other 

mechanisms as well. The degranulation products of neutrophils such as proteases, 

collagenases, lipoxygenases, phospholipases and MPO can all contribute to neutrophil-

mediated tissue damage.  

1.3.2.2 Myloperoxidase  

As mentioned above, MPO is another important enzyme released from neutrophils during 

the neutrophil respiratory burst (Klebanoff, S.J. 1991). MPO is a heme-containing enzyme 

that metabolises H2O2 to produce hypochlorous acid (HOCl) and other reactive oxidants 

which cause protein halogenation, nitration, and oxidative cross-linking (Figure 1-7). 

HOCl can chlorinate, nitrate or oxidize a variety of target molecules; reactions of HOCl 

with amines or ammonia leads to increased chloramines, which are also powerful oxidants. 

Overall, HOCl is widely considered to be a major factor modulating neutrophil 

cytotoxicity (Badwey & Karnovsky 1980; Weiss 1989).  
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Figure 1-7: Schematic representation of inflammatory mediators with cardiotoxic 

potential released from activated neutrophils.  

HOCl, hypochlorous acid; H2O2, hydrogen peroxide; MPO, myeloperoxidase; E, elastase; 

C, collagenase; LTB4, leukotriene B4; and PAF, platelet-activating factor. Adapted from: 

(Hansen 1995). 

 

There is substantial evidence that MPO-catalyzed reactions contribute to the pathogenesis 

of many cardiovascular diseases, including initiation, propagation, and acute complication 

phases of the atherosclerotic process (DiDonato et al. 2014; Zheng et al. 2004).  By 

reacting with HOCl or MPO, NO2
- rapidly accelerates tyrosine nitration through formation 

of nitryl chloride and nitrogen dioxide radical (a reactive species that converts tyrosine to 

3-nitrotyrosine) (Eiserich et al. 1996; van der Vliet et al. 1997). The NO-derived oxidation 

products generated by MPO, such as 3-nitrotyrosine and 3,5-dinitrotyrosine, are increased 

within human atheroma (Beckmann et al. 1994; Leeuwenburgh et al. 1997).  
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A recent study also showed that apolipoprotein A-I (apoA-I), the primary protein 

constituent of high-density lipoprotein (HDL), is a selective target for MPO-catalyzed 

nitration and chlorination in vivo (Zheng et al. 2004). Shao and colleagues (Shao, 

Pennathur & Heinecke 2012) demonstrated that nitration of apoA-I by MPO at tyrosine 

192 transforms HDL into a more atherogenic molecule and therefore loss of its 

cardiovascular protective role. Thus increased plasma MPO concentrations represent a 

biomarker predicting adverse clinical outcomes of a number of cardiovascular diseases, 

including acute MI, reperfusion injury, stroke and HF (Loria et al. 2008; Tang et al. 2006). 

1.3.3 Anti-oxidative mechanisms  

Several antioxidant defense systems exist to balance the free radical formation in healthy 

subjects, including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), 

thioredoxins, peroxiredoxins and also nonenzymatic antioxidants (e.g. glutathione).  

SOD is believed to be one of the primary antioxidant defenses in vivo, catalyzing the 

dismutation of O2
- to O2 and H2O2. It has been reported that Mn-SOD activity is reduced in 

failing heart (Sam et al. 2005).  

GPx, another key antioxidant, catalyzes the reduction of H2O2 and hydroperoxides (Figure 

1-8). It has also been shown that GPx is largely present in the heart, notably in the 

cytosolic and mitochondrial compartments (Le et al. 1993). Furthermore, GPx has a higher 

affinity for H2O2 than catalase and prevents the formation of OH• and other toxic radicals 

(Figure 1-8). GPx is thought to be more effective compared with SOD and catalase within 

the heart. Overexpression of the GPx gene attenuates myocardial oxidative stress, 

remodeling and failure in mice (Matsushima, Kinugawa, et al. 2006; Shiomi et al. 2004).  
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Figure 1-8: Reactions underlying the generation and degradation of reactive oxygen 

species.  

Adapted from: (Paravicini, Drummond & Sobey 2004). 

 

The thioredoxin system consisting of thioredoxin, thioredoxin interacting protein, 

thioredoxin reductase and NAD(P)H (Holmgren 1995), is one of the major cellular thiol-

reducing and antioxidant systems that can protect cells by scavenging ROS. Oxidised 

thioredoxin is reduced by thioredoxin reductase and NAD(P)H. Two main thioredoxins 

have been described: - thioredoxin-1 and thioredoxin-2. It is reported that cytosolic 

thioredoxin-1 can protect the heart against oxidative stress and inhibit cardiac hypertrophy 

via its antioxidant activity (Yamamoto et al. 2003). 

Peroxiredoxin-3 (Prx-3) is a member of peroxiredoxin family, which is an effective 

defense against oxidative stress. Prx-3 preferentially scavenges H2O2 together with thiol 

and ONOO- (Bryk, Griffin & Nathan 2000). Prx-3 is localized mainly in the mitochondria 
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(Kang et al. 1998) and studies involving in vivo transfer of the Prx-3 gene showed a 

protective role of Prx-3 on neurons against cell death induced by ROS release (Hattori et al. 

2003). Furthermore, it has been recently demonstrated that overexpression of Prx-3 had 

beneficial effects in limiting post-MI remodeling and failure in mice. This effect is 

consistent with attenuation of oxidative stress, mitochondria DNA decline, and dysfunction 

(Matsushima, Ide, et al. 2006).   

Regarding the leukocyte NAD(P)H oxidase, sulfhydryl groups play important roles. 

Previous studies have shown that naturally existing sulfhydryl blockers such as the 

aldehyde 4-hydroxynonenal inhibited NAD(P)H oxidase (Siems et al. 1997). Aldehyde is a 

major product of lipid peroxidation, therefore, inhibition of NAD(P)H oxidase by 4-

hydroxynonenal is of physiological significance. NOX2-targeted inhibitory peptides such 

as NOX2 docking sequence-tat, which is a 18-amino acid peptide, have been shown to 

inhibit NAD(P)H oxidase activity in vivo and in vitro (Jacobson et al. 2003; Liu, J et al. 

2003; Rey et al. 2001). Other peptide inhibitors targeting the other subunits of NAD(P)H 

oxidase have also been reported to act as effective antagonists, as well as small molecule 

inhibitors including diphenyleneiodonium (DPI), VAS2870 and VAS3947, fulvene-5, 

Gkt136901, ML171, celastrol (for review see (Cifuentes-Pagano, Csanyi & Pagano 2012)). 

NO also exerts direct antioxidant effects by inhibiting the NAD(P)H oxidase through 

limiting the assembly of the oxidase during activation (Fujii et al. 1997). Nitrosothiols 

prevent the translocation of the cytosolic subunits p47phox and p67phox to the membrane, 

and therefore also inhibit NAD(P)H oxidase activation (Ding et al. 1996).  

1.4 Congestive HF: focus on inflammatory activation  

Inflammation has been implicated in the pathophysiology of HF in both animal models 
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(Sun, Y et al. 2002) and humans (Torre-Amione, Kapadia, Benedict, et al. 1996; Torre-

Amione, Kapadia, Lee, et al. 1996). A number of signaling molecules are involved in 

mediating inflammatory responses, including PGs, C-reactive protein (CRP), soluble 

CD40 ligand, adiponectin, and inflammatory cytokines, such as TNF-a. Several studies 

have demonstrated increased expression and release in HF patients of inflammatory 

cytokines such as TNF-α, IL-1, IL-6, IL-18, cardiotrophin-1 and Fas ligand, as well as 

chemokines including monocyte chemoattractant peptide (MCP)-1, IL-8 and macrophage 

inflammatory protein-1α (Adamopoulos, Parissis & Kremastinos 2001; Aukrust et al. 1999; 

Aukrust et al. 1998; Damas, Gullestad, et al. 2000; Torre-Amione, Kapadia, Benedict, et al. 

1996; Torre-Amione, Kapadia, Lee, et al. 1996). Increased plasma levels of inflammatory 

cytokines and chemokines have been significantly correlated with worsening of cardiac 

function (Adamopoulos, Parissis & Kremastinos 2001; Aukrust et al. 1999; Aukrust et al. 

1998; Damas, Eiken, et al. 2000; Testa et al. 1996; Torre-Amione, Kapadia, Benedict, et al. 

1996; Torre-Amione, Kapadia, Lee, et al. 1996). The relationships between inflammatory 

mediators and symptoms of inflammation are summarized in Table 1-3. Moreover, these 

inflammatory mediators are also valuable prognostic markers in patients with chronic HF 

(Deswal et al. 2001; Torre-Amione, Kapadia, Benedict, et al. 1996; Ueland et al. 2005). 

1.4.1 Cellular mechanisms 

The increased circulating inflammatory cytokines in HF have multiple sources including 

several tissues and cell types. The myocardium itself may be an important source of the 

increased inflammatory mediators found in the circulation in HF. It has been demonstrated 

that the failing myocardium expresses increased levels of a range of inflammatory 

mediators, such as adhesion molecules, TNF-α, IL-6-related cytokines and chemokines 

(Damas, Eiken, et al. 2000; Eiken et al. 2001; Torre-Amione, Kapadia, Lee, et al. 1996). 
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Valen et al. claimed that the activation of transcriptional factor nuclear factor (NF)-κB, a 

major mediator of inflammation within the failing myocardium, has anti-apoptotic rather 

than pro-apoptotic effects (Valen, Yan & Hansson 2001). Thus, the release of these 

cytokines from the failing heart may not only contribute to the pathogenesis of HF, and 

other cells within the failing heart such as endothelial cells and fibroblasts may relate to the 

myocardial inflammation in HF. 

Apart from the myocardium itself, several tissues and cells contribute to the inflammation 

condition in HF, including leukocytes, platelets, tissue macrophages and endothelial cells 

(Yndestad et al. 2006). Patients with chronic HF are characterized by increased expression 

of inflammatory mediators in circulating leukocytes. A number of studies have shown that 

mononuclear cells including T cells, B cells, NK cells and monocytes from the peripheral 

blood of HF patients have increased gene expression as well as release of inflammatory 

cytokines such as chemokines and ligands in the TNF superfamily (Conraads et al. 2005; 

Damas et al. 2001; Yndestad et al. 2002; Yndestad et al. 2003; Zhao & Xu 1999). 

Activated platelets can also release inflammatory mediators such as chemokines and 

soluble CD40 ligand (Aukrust et al. 1998; Damas, Eiken, et al. 2000; Ueland et al. 2005). 

It has been demonstrated that the platelet-derived mediators may induce inflammatory 

responses in leukocytes and endothelial cells nearby, which in turn will further stimulate 

platelet activation (Weber 2005). Endothelial cells are another source of inflammatory 

mediators, which is activated in chronic HF and results in enhanced expression of 

chemokines such as IL-8 and MCP-1, adhesion molecules and cyclooxygenase-2 as well as 

promoting leukocyte-endothelial interaction (Colombo et al. 2005; Tousoulis, Charakida & 

Stefanadis 2005). Furthermore, other sources of inflammatory cytokines have also been 

reported: clinical and experimental studies have shown that expression of cytokines (MCP-
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1 and IL-6) is increased in the lung of HF patients (Mabuchi et al. 2002; Tonnessen et al. 

2003), and that the pulmonary endothelium is another source of inflammatory mediators 

(Gaertner et al. 2003); moreover, elevated serum levels of TNF-α represent in part release 

from the liver in pacing-induced HF rabbits (Aker et al. 2003).  

Table 1-3: Relationships between inflammatory mediators and symptoms of 

inflammation in cardiovascular diseases.  

Symptom Mediators 

Vascular permeability 

Vasoactive amines 

Bradykinin 

Leukotrienes C4,D4,E4  

PAF 

Complement (C3a and C5a) 

Substance P 

NO 

Vasodilatation 

NO 

PGI2, PGE1, PGE2, PGD2 

H2O2 

Vasoconstriction 

Tromboxane A2 

Leukotrienes C4,D4,E4  

O2
- 

Chemotaxis and leukocyte 

adhesion 

Chemokines 

LTB4, HETE, lipoxins 

C5a 

Bacterial antigens 

O2
- 

Tissue and Endothelial damage 

ROS 

iNOS 

Lyzosomal enzymes 
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PAF platelet activating factor, LTB4 leukotriene B4, NO nitric oxide, PG prostaglandin, 

O2
- superoxide, H2O2 hydrogen peroxide, ROS reactive oxygen species, iNOS inducible 

nitric oxide synthase. Adapted from: (Guzik, Korbut & Adamek-Guzik 2003). 

 

1.4.2 Humoral mechanisms 

ROS release has recently been indicated to play a key role in modulating the release of 

other inflammation mediators, due to the expression of NAD(P)H oxidases in various 

tissues (Guzik et al. 2000). ROS produced by NAD(P)H oxidase can increase chemokine 

and cytokine expression (Kimura et al. 2003). Hypoxia and ischemia have also been found 

to induce inflammatory cytokines such as TNF-α, MCP-1 and IL-8 which probably 

through production of ROS with secondary activation of the transcription factor NF-κB in 

the endothelium, leukocyte subpopulations and ischemic and reperfused canine 

myocardium (Li, N & Karin 1999). Therefore, intracellular ROS may possibly act as 

second messengers in inflammatory signal transduction. Moreover, mechanical overload 

and shear stress may induce MCP-1, IL-1β and IL-8 expression in cardiomyocytes and 

endothelial cells (Okada et al. 1998; Shioi et al. 1997). Oxidized low density lipoprotein 

(Ox-LDL) has been reported to increase cytokine expression in monocyte-derived 

macrophages (Janabi et al. 2000); this process may play an important role in myocardial 

failure secondary to CAD. Furthermore, several other stimuli have been demonstrated to 

be involved, such as toll-like receptors (TLR), autoantibodies, heat-shock proteins, 

microbial antigens, endotoxins, hemodynamic overload and neurohormones etc. (Figure 

1-9). 
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A variety of inflammatory cytokines are up-regulated in chronic HF. Inflammatory 

cytokines together with related mediators could be used as markers for risk stratification 

and prognostication in patients with HF. CRP has been used widely as an inflammatory 

biomarker in cardiovascular disease, based on its ability to reflect upstream inflammatory 

activity. Several studies have shown elevated CRP levels in association with HF 

development and adverse outcome. Recently, a study demonstrated that in patients with 

HF, enhanced CRP was associated with features of more severe HF and was independently 

associated with adverse outcome (Anand et al. 2005). Moreover, a substudy of the 

Controlled Rosuvastatin Multinational Trial in HF (CORONA) demonstrated a significant 

interaction between CRP and the effect of rosuvastatin on adverse events (McMurray et al. 

2009). Furthermore, several studies suggest that TNF-α, IL-6 or IL-β can predict adverse 

outcome in these patients (Deswal et al. 2001; Orus et al. 2000). Therefore, assessing these 

cytokines in a larger population of HF patients may provide important pathophysiological 

insights. 

 

Figure 1-9: schematic representative of systemic inflammation in chronic HF.  
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Ox-LDL Oxidized low density lipoprotein, TLR toll-like receptors. Adapted from: 

(Yndestad et al. 2006). 

 

1.5 CHF: focus on impairment of endothelial function 

The vascular endothelium is a monolayer of cells between the circulating blood in the 

vessel lumen and the vascular smooth muscle cells. It regulates the peripheral blood flow 

and vasomotor tone through the production and release of a number of vasoactive factors 

and chemical signals (Petty & Pearson 1989; Vane, Anggard & Botting 1990). Generally 

speaking, the healthy endothelium maintains a non-adhesive luminal surface and has 

vasoconstrictor and vasodilator, growth inhibition, anticoagulation, anti-inflammatory, and 

antioxidant properties (Rubanyi 1993). 

Vascular endothelial function plays a key role in the pathophysiology and the prognosis of 

HF (Katz et al. 2005). Endothelial dysfunction is an early and important characteristic of 

many vascular diseases. Considerable evidence has shown that patients with HF have 

abnormal endothelial function (Bonetti, Lerman & Lerman 2003; Fischer et al. 2005; 

Heitzer et al. 2005). The key factors modulating endothelial dysfunction are reduced 

bioavailability of NO (which can be caused by decreased eNOS expression of the 

endothelial cells), decreased substrate for NO formation, increased degradation of NO by 

ROS as well as excessive formation of ROS within the vascular wall (Pou et al. 1992; 

Shimokawa, Flavahan & Vanhoutte 1991; Wilcox et al. 1997).  

In a rat model of HF, decreased eNOS expression and NO synthesis in the endothelium 

have been reported (Comini et al. 1996). In patients with HF, a reduction in nitrate 

excretion by the kidneys at rest and during exercise after arginine infusion, which reflects 

http://en.wikipedia.org/wiki/Blood
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impairment of NO generation, has also been reported (Katz et al. 1999). Moreover, NO 

resistance at the level of platelet aggregation has been described in HF (Anderson et al. 

2004). Impaired endothelium-dependent vasodilation in patients with HF is thought to be 

associated with reduced activity of the L-arginine-NO synthetic pathway, increased 

degradation of NO by ROS, and hyporesponsiveness in vascular smooth muscle as well as 

decreased antioxidant defenses (Bauersachs et al. 1999; Katz et al. 1999). 

Various components of endothelial dysfunction may be evaluated physiologically or 

biochemically. Asymmetric dimethylarginine (ADMA) is generated via protein catabolism 

and cleared by dimethylarginine dimethylaminohydrolase, which is a redox-dependent 

enzyme. ADMA can be assayed in either plasma or tissue samples (Murray-Rust et al. 

2001). Increased plasma concentrations of ADMA have been found in HF patients, and 

this elevation is associated with poor cardiovascular outcomes (Duckelmann et al. 2007). 

Tissue sGC activity (Sakurada et al. 2008) is another potential modulator of endothelial 

function. Responses to acetylcholine (Halcox et al. 2002; Schachinger, Britten & Zeiher 

2000) or salbutamol (Rambaran et al. 2008) are normally used as measures of “endothelial 

function” in vivo, while responses to nitroglycerin (NTG) or sodium nitroprusside (SNP), 

the NOS-independent sources of NO, are used to evaluate NO-based signaling pathways 

(Kasprzak, Klosinska & Drozdz 2006).  

1.6 Focus on BNP in HF  

1.6.1 Synthesis and storage of BNP 

Although BNP was initially purified from porcine brain extracts (Sudoh et al. 1988) and 

given the name “brain natriuretic peptide”, the highest concentration of BNP is present in 

the heart (Ogawa, Y et al. 1990). As a novel cardiac hormone, BNP is mainly synthesized 
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in and secreted from the ventricle (Mukoyama et al. 1991; Nakao et al. 1991; Ogawa, Y et 

al. 1991). The BNP gene is located on the distal short arm of chromosome 1, and encodes 

the prohormone proBNP, which is close to and upstream from the ANP gene (Tamura et al. 

1996; Vila et al. 2008). In the secretory granules of atrial and ventricular myocytes, the 

BNP precursor protein (proBNP) coexists with ANP (Nakamura, S et al. 1991; Wei, 

Heublein, et al. 1993).     

1.6.2 Release of BNP: physiology and pathology  

Mean BNP concentration in venous blood are detectable at picomolar concentrations in 

normal subjects. Although BNP has a short half-life of only about 20 minutes in healthy 

subjects (Holmes et al. 1993; Mukoyama et al. 1991), plasma BNP concentrations do not 

generally show rapid fluctuation in healthy subjects, unlike ANP. ANP is released 

immediately from atrial storage granules in response to atrial wall stretching, whereas BNP 

secretion is largely controlled at the transcriptional level (de Bold, Bruneau & Kuroski de 

Bold 1996; Magga et al. 1997). A longer term stimulus is generally associated with 

increased plasma BNP concentrations by increasing the rate of synthesis as well as 

secretion (Lang et al. 1991). Nevertheless, some stimuli can increase plasma BNP 

concentrations within minutes. Intense exercise produces a moderate increase in plasma 

BNP concentration, and a greater increase was observed in individuals with LV 

hypertrophy or HF (Friedl et al. 1999; Wijbenga et al. 1999; Yamazaki et al. 2000).  

Although stretch and wall tension are likely to be important in controlling production and 

secretion of BNP, the precise mechanisms are still unclear. BNP up-regulation is seen in 

several pathological states, such as hypertrophic cardiomyopathy, dilated cardiomyopathy 

(Hasegawa et al. 1993), and other forms of HF (Wei, Heublein, et al. 1993). Plasma BNP 

concentration is also elevated in pulmonary hypertension, which is thought to be due to 
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secretion from the right ventricle (Cowie & Mendez 2002). This plasma BNP elevation is 

well correlated with right ventricular end-diastolic pressure and right ventricular muscle 

mass (Nagaya et al. 1998). Reduced oxygen tension has also been reported to stimulate 

BNP gene expression in cultured ventricular myocytes (Casals et al. 2009; Goetze et al. 

2003; Xia, WJ et al. 2011).  

Although the main source of circulating BNP is the heart, plasma levels of BNP can be 

affected by extra cardiac disease states and also by factors that affect clearance of the 

peptide, such as variation in neutral endopeptidase and vasopeptidase inhibitors. The effect 

of various disease conditions on the plasma concentration of NPs is summarized in (Table 

1-4). 

1.6.3 Physiological actions of BNP 

BNP acts through binding to NPR-A which results in the generation of the second 

messenger cGMP (Garbers 1992). The intracellular cGMP is believed to produce cellular 

and physiological responses by interacting with cGMP-dependent protein kinases (PKGs), 

cGMP-gated ion channels (CGN), and cGMP-regulated cyclic nucleotide 

phosphodiesterases (Figure 1-10) (Lincoln & Cornwell 1993), which means that cGMP 

regulates a number of intracellular processes, such as vascular smooth muscle relaxation 

(Rivero-Vilches et al. 2003), protection from oxidant damage (Grosser & Schroder 2003), 

proliferation (Morbidelli et al. 1996), Ca2+ handling by the sarcoplasmic/endoplasmic 

reticulum ATPase (Lau et al. 2003), and the control of endothelial permeability (Kiemer et 

al. 2002; Pedram, Razandi & Levin 2002).  
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Table 1-4: The effect of various disease states (other than HF) on the plasma 

concentrations of the cardiac NPs:  

(Adapted from: (Cowie & Mendez 2002). 

Disease Likely effect on plasma concentrations 

Pulmonary 

disease 

Chronic pulmonary disease Increased in cor pulmonale or pulmonary 

disease with evidence of right heart "strain", 

especially in the presence of acute 

exacerbation of airways disease or severe 

hypoxia 

Vascular 

disease 

Systemic hypertension May be increased (especially in presence of 

concentric LV hypertrophy with a typically 3-

fold elevation of BNP) 

Pulmonary hypertension Increased 

Structural 

cardiac 

disease 

Aortic or mitral stenosis Increased 

Hypertrophic cardiomyopathy Increased 

Endocrine 

& 

metabolic 

disease 

Thyroid disease Increased in hyperthyroidism 

Cushing's syndrome (or 

exogenous glucocorticoids) 

Increased 

Primary aldosteronism Increased 

Addison's disease May be increased in treated cases 

Diabetes mellitus Possibly increased in patients with 

microalbuminuria or autonomic dysfunction 

Hepatic cirrhosis with ascites Increased 

Renal failure (acute or chronic) Greatly increased (decreases with 

hemodialysis) 

Paraneoplastic syndrome May be increased 

Subarachnoid hemorrhage Increased 
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Figure 1-10: Cyclic GMP signaling pathway.  

(Adapted from: (Potter, Abbey-Hosch & Dickey 2006).  

 

On the other hand, BNP may function in parallel/competition with NO, which also releases 

cGMP through activation of sGC (Garg & Hassid 1989), and thus maintain cardiovascular 

and renal homeostasis (Moncada, Palmer & Higgs 1991). NO is produced by NOS, which 

has been identified in three isoforms, eNOS, nNOS and iNOS that are expressed in many 

tissues, including endothelium, vascular smooth muscle, specific segments of the nephron 

and the heart (Alderton, Cooper & Knowles 2001; Forstermann et al. 1991). In 1987, it 

was reported that ANP and SNP independently increase cGMP in cultured rat lung 

fibroblasts by activating pGC-A and sGC (Leitman et al. 1987). However, in recent studies, 

increasing evidence has accumulated of cross-talk between these two enzymes (Kotlo, 

Rasenick & Danziger 2010). ANP has also been reported to stimulate the NO signaling 

pathway via activation of NOS in primary cultures of human proximal tubular cells 

(McLay et al. 1995), rat kidney (Elesgaray et al. 2008), and rabbit ventricular myocytes 
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(William et al. 2008) via NPR-C. Furthermore, by comparing the vasorelaxing effects of 

ANP and CNP in aorta and mesenteric small arteries from wild-type and endothelial NOS 

knockout mice, in the presence of NPR-A antagonist, Madhani et al. proved that both 

NPR-A and NPR-B-linked GC pathways are modulated by NO-cGMP signaling (Madhani 

et al. 2003).  

In HF, BNP has numerous potentially beneficial effects, including diuretic, natriuretic, 

vasodilating (Dries 2011; Okumura et al. 1995), decreasing renin-angiotensin system 

activation (Dries 2011; Struthers 1994), anti-fibrotic, anti-hypertrophic effects (Dries 2011) 

and inhibition of the synthesis of ET-1 (Stoupakis & Klapholz 2003). In patients with 

chronic HF, BNP improves central hemodynamics, including the cardiac index, through 

suppression of myocyte proliferation, cardiac growth, and compensatory hypertrophy of 

the heart (Stoupakis & Klapholz 2003). 

1.6.4 Clearance of BNP  

All three NPs are degraded through two well-characterized processes: (1) NPR-C-mediated 

internalization followed by lysosomal degradation; and (2) enzymatic degradation. It has 

been reported that the active BNP1-32 can be degraded by dipeptidyl peptidase IV 

(DPPIV), NEP, meprin and IED to form BNP3-32, BNP5-32, BNP8-32 and smaller 

degradation peptides (Figure 1-11) (Boerrigter et al. 2009; Boerrigter et al. 2007; Brandt et 

al. 2006; Muller et al. 1992; Pankow et al. 2007; Ralat et al. 2011; Toll et al. 1991). 

Studies in sheep have demonstrated that the enzymatic and receptor-mediated processes 

contribute equally to the degradation of ANP and BNP (Charles et al. 1996). 
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Figure 1-11: BNP1–32 degradation and cleavage sites.  

DPPIV dipeptidyl peptidase IV, IDE insulin-degrading enzyme, NEP neutral 

endopeptidase. Adapted from: (Ichiki, Huntley & Burnett 2013). 

 

1.6.5 Circulating BNP fragments 

While it is known that BNP represents an enzymatic cleavage product of the 108 amino 

acid precursor peptide proBNP, it has recently emerged that the release of peptides into the 

circulation includes not only BNP, but also proBNP and a range of inactive cleavage 

products of proBNP (Ala-Kopsala et al. 2010; Liang et al. 2007). This has been most 

intensely studied in acute HF, where most commercial BNP assay kits detect several of the 

non-BNP peptides (Liang et al. 2007); the extent to which this also occurs in normal 

subjects is less clear. The molecular analysis of BNP in subjects with acute HF reveals 2 

distinct peptides related to: high-molecular weight form, proBNP1-108, and a low-

molecular weight form, the biologically active BNP1-32 (Shimizu et al. 2002). There is 

substantial cross-reactivity of the commercially available BNP and N-terminal pro B-type 
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natriuretic peptide (NT-proBNP) assays with proBNP (Liang et al. 2007). It appears that 

proBNP1-108, the intact precursor peptide compared to BNP and NT-proBNP, circulates 

at high concentrations in patients with HF and may be the predominant form of circulating 

natriuretic peptide. In addition, it is clear that breakdown products of BNP1-32 circulate as 

well and most of the degradation fragments of BNP1-32 are also detected by BNP assays. 

Thus, it appears that there is probably very little bioactive BNP (BNP1-32) in the plasma 

of HF patients. These findings suggest there are abnormalities in the processing of 

proBNP1-108 in HF. This problem, along with the breakdown of the BNP1-32 may be 

contributing to the poor compensatory response of the NP system in chronic HF. 

1.6.6 Clinical use of BNP in decompensated CHF 

BNP is secreted largely in response to ventricular volume expansion and pressure overload. 

Muders et al. reported a direct relationship between ventricular wall stress and secretion of 

BNP (Muders et al. 1997). Tsutamoto and others (Cheng et al. 2001; Tsutamoto, Wada, 

Maeda, Hisanaga, Fukai, et al. 1997) suggested that BNP is the “emergency hormone” that 

responds immediately to ventricular overload. In accordance with the physiological effects 

of BNP, the NPs could be of value clinically in two different aspects: Firstly, their 

concentrations in the plasma could useful as diagnostic information about cardiac function 

or structure (de Lemos et al. 2001; Maisel, AS et al. 2002; Rodeheffer 2004; Sun, T, Wang 

& Zhang 2006). Secondly, NPs have been tried as therapeutic agents in HF (Chen et al. 

2012; Dandamudi & Chen 2012; Hobbs, RE et al. 1996; Marcus et al. 1996). 

1.6.6.1 BNP and NT-proBNP as a diagnostic modality 

In healthy subjects, plasma BNP levels are low, but they rise dramatically in response to 

cardiovascular stress. Recent studies indicate that increased BNP concentration in plasma 
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may represent a bio-marker in several cardiovascular diseases, including congestive HF 

(Gardner et al. 2003; Ruskoaho 2003). It is very important to distinguish HF from other 

causes of dyspnoea in patients presenting to the emergency department with acute 

shortness of breath. But sometimes symptoms and physical examination findings are not 

specific enough to make an accurate diagnosis (Stevenson & Perloff 1989), especially in 

the presence of pre-existing lung disease. Although echocardiography is considered to be 

the gold standard for detecting LV dysfunction, it is relatively expensive, not universally 

accessible and less reliable in the presence of severe pulmonary disease (Devereux, 

Liebson & Horan 1987). BNP levels have been shown to be elevated in patients with LV 

dysfunction and correlate with New York Heart Association (NYHA) class as well as 

prognosis (Clerico et al. 1998; Maeda et al. 1998). A number of studies have shown that 

elevated BNP levels can predict congestive HF (Clerico et al. 1998; Maeda et al. 1998). 

Using the Triage® assay (a fluorescence immunoassay), BNP levels can reliably predict 

the presence or absence of LV dysfunction on echocardiogram (Krishnaswamy et al. 2001). 

BNP blood concentration measurement is considered to be a sensitive and specific test to 

diagnose congestive HF in urgent-care settings (Dao et al. 2001). In the setting of acute 

dyspnoea, Maisel and colleagues (2002) measured BNP in the emergency department, 

using the Triage® assay, in 1586 patients and compared their results to the final clinical 

diagnosis. They found that BNP levels were more accurate than any historical or clinical 

findings or laboratory values in identifying congestive HF as the cause of the dyspnoea 

(Maisel, A 2002). 

1.6.6.2 BNP as a therapeutic tool 

With the known cardiorenal and humoral physiological effects, the natriuretic peptide 

system has been utilized in the treatment of disorders of cardiorenal function including 
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congestive HF. Two clinical investigations in patients with congestive HF, have 

demonstrated that acutely administered BNP caused vasodilation, increases in cardiac 

output and natriuresis in the absence of deleterious neurohumoral activation (Hobbs, RE et 

al. 1996; Marcus et al. 1996). Intravenous recombinant human BNP (Nesiritide) is 

becoming increasingly utilized in the therapeutic management of acute decompensated HF 

recently, where it has favourable actions, largely without adverse effects (Arora, 

Venkatesh & Molnar 2006; Nishikimi, Maeda & Matsuoka 2006). Studies conducted by 

Sackner-Bernstein and colleagues raised concerns of potential adverse influence of 

Nesiritide on renal function and mortality (Sackner-Bernstein, J & Aaronson 2005; 

Sackner-Bernstein, JD, Skopicki & Aaronson 2005). Furthermore, the ASCEND-HF trial 

demonstrated that Nesiritide was not associated with reduced rate of death and 

rehospitalization after 30 days therapy in patients with acute decompensated HF, and 

Nesiritide therapy did not reduce dyspnea when utilized in combination with standard HF 

therapies (O'Connor et al. 2011).  

1.7 Impaired tissue responsiveness to BNP: how strong is the evidence? 

In normal subjects, elevated ANP and BNP levels activate NPR-A, which decreases blood 

pressure by stimulating natriuresis, diuresis, and vasorelaxation and generally antagonizing 

the RAAS. Although plasma levels of NPs (as detected by relatively nonspecific 

commercial assays) rise to very high levels in the setting of acute and chronic HF, recent 

studies indicated that HF may actually be a state of BNP insufficiency, due to both a 

deficiency of biologically active BNP 1-32 and resistance to its effects (Chen 2007; Forfia 

et al. 2007; Hawkridge et al. 2005; Liang et al. 2007). Possible reasons for impaired 

responsiveness to BNP also include the increased degradation of cGMP (Margulies & 

Burnett 1994), decreased NPR-A activity (Tsutamoto et al. 1993; Tsutamoto, Wada, 
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Maeda, Hisanaga, Maeda, et al. 1997) and up-regulated ‘clearance’ receptors (Andreassi et 

al. 2001) in patients with HF.  

The renal and renin effects of ANP and BNP has been reported to be attenuated in animal 

models and patients with HF despite marked serum ANP and BNP concentrations (Garcia, 

Bonhomme & Schiffrin 1992; Supaporn et al. 1996; Tsutamoto et al. 1993). Hawkridge 

and collegues’ (2005) study in severe human HF suggests the absence of circulating 

BNP1-32 and existence of altered forms of BNP, while another study also reported that 

BNP8-32 has reduced bioactivity compared with the mature BNP1-32 (Boerrigter et al. 

2009).  

Furthermore, it has been reported that the reduced NPR-A concentration (Bryan et al. 2007) 

as well as activity (Dickey et al. 2012; Dickey et al. 2007) in congestive HF is responsible 

for decreased tissue responsiveness to NPs.  Previous studies have suggested that 

endothelin and AngII released during neurohormonal activation in HF caused the down-

regulation of cardiovascular (Gopi et al. 2013; Jaiswal 1992) and renal (Haneda et al. 1991) 

NPR-A. 

In a rabbit model of atherosclerosis, aorta ring relaxation to BNP was attenuated but 

restored by inhibition of NEP, together with a reduction in atheroma formation. These data 

suggested the pivotal importance of increased local natriuretic peptide degradation 

(Schirger et al. 2000). 

Moreover, although NPs are thought to inhibit  the progression of HF (Munagala, VK, 

Burnett, JC, Jr. & Redfield, MM 2004), the administration of recombinant BNP (Nesiritide) 

to HF patients was recently found to be ineffective in acute HF patients (O'Connor et al. 

2011). Therefore, it is potentially of great value to study tissue responsiveness to BNP in 
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HF patients to help understand the pathophysiology of the disease and further guide the 

diagnostic and therapeutic application of BNP.  

1.8 Scope of the current study 

In the current study, we assessed the possibility that tissue responsiveness to BNP is 

impaired in patients with acute decompensated HF.  

Specifically:  

 In section 3.3, we evaluated BNP effects on the neutrophil burst in healthy control 

subjects. 

 In section 3.4, a study demonstrated that BNP effects on the neutrophil burst are 

impaired in patients with acute HF, despite high circulating BNP levels. 

 In section 3.5, it was demonstrated that tako-tsubo cardiomyopathy (TTC) is also 

associated with tissue desensitization to BNP; this implies that increased BNP release, 

rather than severe HF, is the basis for desensitization. 

 In addition, we explore the possibility that activated inflammation, impaired tissue 

responsiveness to endogenous or exogenous NO, and increased oxidative stress might 

play a role in modulating the effects of BNP on neutrophils. 
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Chapter 2: Methods and materials  

2.1 Subject selection: 

A total of 50 control subjects with no previously recorded cardiac dysfunction and 45 heart 

failure (HF) patients admitted to a tertiary care hospital (the Queen Elizabeth Hospital, 

Adelaide, Australia) with a primary diagnosis of acute HF but without planned coronary 

revascularization and/or valve replacement were studied. Consistent with international 

guidelines (McMurray et al. 2012; Yancy et al. 2013), the diagnosis of acute HF was based 

on the presence of dyspnea at rest or on minimal exertion, together with physical and 

radiological signs of fluid overload and echocardiographic evidence of systolic and/or 

diastolic left ventricular dysfunction.  

All patients underwent early clinical assessment and simultaneous venesection after 

(median: 2 days) hospital admission for determination of acute responses to B-type 

natriuretic peptide (BNP). Following stabilization and at least 3 weeks’ (median: 5 weeks) 

treatment, patients were approached regarding repeat evaluation (n=25).  

The study was approved by the Queen Elizabeth Hospital Ethics of Human Research 

Committee and informed consent was obtained prior to study entry. 

2.2 Blood sampling  

Blood samples were drawn by venesection from an antecubital vein. Blood was collected 

into heparinized vacutainer tube for whole blood reactive oxygen species (ROS) 

assessment; a tube containing 24mmol/L EDTA for neutrophil preparation. For platelet 

aggregometry, blood was collected in plastic tubes containing 1:10 volume of acid citrate 

anticoagulant (two parts of 0.1 mol/L citric acid to three parts of 0.1 mol/L trisodium 
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citrate). Acidified citrate was utilized to minimize deterioration of platelet function during 

experiments (Kinlough-Rathbone, Packham & Mustard 1983). 

2.3 Preparation of neutrophils 

For neutrophil preparation, blood samples were centrifuged at 150g for 10 minutes, and 

plasma was replaced by an equal volume of Hanks’ balanced salt solution (HBSS), pH 7.4. 

Neutrophils were isolated using a Ficoll-Hypaque gradient centrifugation as previously 

described (Boyum 1968). Following centrifugation at 550g for 30 minutes, the lower layer 

containing neutrophils and red blood cells was collected. Following lysis of the red blood 

cells and washing to remove the lysis buffer (ammonium chloride 155 mmol/L, EDTA 100 

mol/L, NaHCO3 10 mmol/L, pH 7.4), the neutrophils were pelleted (550g, 10 minutes) and 

resuspended in HBSS (pH 7.4) at 1.7х106 cells per mL. The viability of neutrophils was 

shown to be over 95% by Trypan blue exclusion.  

2.4 Intra-neutrophil cGMP determination 

2.4.1 Methodological experiments 

Experiment 1. Determination of optimal neutrophil cell concentration and BNP 

incubation time. 

Intra-neutrophil cGMP content was assayed according to the previously described 

methodology for intra-platelet cGMP content analysis (Chirkov et al. 1999). Briefly, 

neutrophils suspensions (1mL) at concentration of 2×106,  5×106, 10×106, 20×106 cells/mL 

were pre-incubated at 37°C with BNP (1μmol/L) (Huntley et al. 2006) for 1, 5, 10 minutes 

in the presence of the phosphodiesterase inhibitor 3-Isobutyl-1-methylxanthine (IBMX, 

1mmol/L, added to the sample 1 minutes before BNP). Samples were mixed every 3 
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minutes during incubation. After incubation, samples were filtered through GF/C Glass 

Microfibre Filters (Whatman) to harvest the neutrophils. Filters with neutrophils were 

rinsed with saline (0.9%) and placed into the glass tubes containing 0.5 mL EDTA 

(4mmol/L). After boiling in a water bath for 5 minutes, tubes were centrifuged at 3000g for 

10mintes and cGMP concentration in the supernatant was estimated using “cGMP [I125] 

assay system” (Biomedical Technologies Inc, Soughton, MA, USA). A representative 

standard curve is shown in Figure 2-1, and results are shown in Table 2-1. 

 

 

Figure 2-1: Representative standard curve for cGMP [I125] radioimmunoassay. 
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Table 2-1: Impact of duration of incubation with BNP on changes in intra-neutrophil 

cGMP content (fmol). 

Experiment 

NO. 

Vehicle  IBMX  IBMX 

BNP 1min  

IBMX 

BNP 5min  

IBMX BNP 

10min  

cells/mL 

1 10.96 11.00 9.87 11.14 12.84 2×106 

2 14.03 10.51 10.51 9.51 8.74 5×106 

3 24.42 17.01 13.86 14.38 15.08 5×106 

4 10.75 17.46 23.35 34.26 42.67 10×106 

5 10.81 13.95 9.78 9.77 11.98 10×106 

 

Results of this set of experiments showed that 10 minutes incubation with BNP and 10×106 

cells/mL was superior to other conditions. However, the signal was low: within the 5 

experiments there was no statistically significant increase in intro-neutrophil cGMP 

content with different cell numbers and incubation times. The reasons might include: 

(1). a proportion of cells might be damaged during filtering and rinsing  

(2). The EDTA solution (4mmol/L) might be not strong enough to fragment the cells;  

(3). Interference between the buffer and samples might exist;  

(4). Boling the samples might not be sufficient to release all the cGMP.  

Therefore, the following experiments were designed to address these concerns. 
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Experiment 2. Determination of cGMP in neutrophils: no filtering.  

In this set of experiment, the nitric oxide (NO) donor sodium nitroprusside (SNP) was 

applied. SNP is known to activate sGC and induce cGMP formation. Samples (0.5 mL 

with 20×106 cells/mL) were incubated with/without BNP/SNP for 5minutes, and at the end 

of the incubation 0.5 mL EDTA was added directly into the sample and boiled for 5 

minutes. Same cGMP assay methodology was applied as in experiment 1. Results (Table 

2-2) revealed similar values as obtained in experiment 1 (Table 2-1), and indicated that the 

filtering of neutrophils was not the reason for the low cGMP detection.  

 

Table 2-2: Results of experiment 2 (no neutrophil filtering). 

Vehicle 

(fmol) 

IBMX 

(fmol) 

IBMX+BNP 

5min (fmol) 

IBMX+SNP 

5min (fmol) 

cells/mL 

16.51 15.56 14.81 15.08 20×106 

 

Experiment 3. Determination of cGMP in neutrophils: no filtering and hydrochloric 

acid instead of EDTA: effects of incubation with SNP.  

In this set of experiments, samples (0.5 mL with 20×106 cells/mL) were incubated 

with/without SNP (rather than BNP) for 1minutes, and at the end of the incubation 0.5 mL 

ice cold hydrochloric acid (HCl 0.1mol/L) was either added directly into the samples or 

samples were pelleted by centrifugation (550g for 10 minutes at 4ºC) and cells were re-

suspended in 0.5 mL of HCl (0.1mol/L). After that, all of the samples were boiled for 5 

minutes. The same radioimmunoassay assay method was applied as in experiment 1. 

Results are shown in Table 2-3. Although the protein extraction methods utilized for these 
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two sets of sample were different, the results were similar. However, the second set of 

experiments was better because the values were on the more accurate area of the standard 

curve (Figure 2-1), and it was possible to detect cGMP.  

 

Table 2-3: Results of experiment 3. 

Experiment NO. Vehicle IBMX IBMX+SNP 1min cells/mL 

1 14.81 15.69 18.08 10×106 

2 29.71 33.33 39.88 20×106 

 

Experiment 4. Determination of cGMP in neutrophils after sonication: impact of SNP. 

In this set of experiments, neutrophil samples (0.5 mL, 20×106 cells/mL) were incubated 

with/without SNP for 1minute, and at the end of the incubation samples were pelleted by 

centrifugation (550g, 10 minutes at 4 ºC) and cells were re-suspended in 0.5 mL HCl 

(0.1mol/L). After that, samples were boiled for 5 minutes and underwent sonication 

(sonicator bath [Unisonics PTY.LTD, NSW, Australia] or Branson Sonifer-250 [Danbury, 

CT, USA]) to further break down the cells. Same radioimmunoassay assay method applied 

as in experiment 1. Results are shown in Table 2-4. These results indicated that the effect 

of these different sonication methods were similar.  
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Table 2-4: Results of experiment 4. 

Incubation reagent Sonication methods cGMP content (fmol) 

Vehicle Unisonics 16.51 

Branson Sonifer 16.83 

IBMX Unisonics 25.26 

Branson Sonifer 17.53 

IBMX+SNP Unisonics 20.87 

Branson Sonifer 19.45 

 

Experiment 5. Determination of cGMP in neutrophils: different cGMP extraction 

conditions. 

In this set of experiments, after incubation of neutrophils with SNP, either (1) HCl 

(0.1mol/L), (2) sodium acetate buffer (0.05mol/L, pH 6.2, as used in the cGMP 

radioimmunoassay kit), (3) HBSS (pH 7.4, the same buffer used for neutrophil suspension) 

was added to the samples. All samples were then boiled in a water bath for 5 minutes. 

After centrifugation of samples at 2500g for 10 minutes, cGMP concentration in 

supernatant was estimated using the same radioimmunoassay assay method applied in 

experiment 1. Results are shown in Table 2-5. 

The results in this experiment showed that the acetate buffer should be used in this assay 

and interference existed between sample and antibody supplied by the manufacture. 

Therefore, experiments were designed to clarify this interference.  
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Table 2-5: Results of experiment 5: generation of cGMP in neutrophils on incubation 

with SNP. 

Solutions/buffers added  

after incubation  

Incubation reagent cGMP content (fmol) 

HCl Vehicle 19.55 

IBMX 24.43 

IBMX+SNP 24.05 

Acetate buffer Vehicle 31.44 

IBMX 37.07 

IBMX+SNP 23.11 

HBSS buffer Vehicle 206.04 

IBMX 179.54 

IBMX+SNP 136.85 

 

Experiment 6. Determination of the interfering substrate on cGMP assay in 

neutrophils: 

In this set of experiments, the samples (with no buffer added) collected from the last 

experiment were assayed, extra amount of cGMP standard/normal saline (NaCl) was added 

into each sample. Sample combinations and results are shown in Table 2-6. The results of 

this experiment showed the extra amount of 25fmol cGMP standard was quenched by the 

original sample and confirmed the interference claimed in the last experiment.  
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Table 2-6: Sample preparations and results for experiment six. 

Samples with HBSS buffer only cGMP content (fmol) 

cGMP standard 25fmol (50µL) + NaCl (50ul) 24.35 

Vehicle (100µL) 206.04 

Vehicle (50µL) + cGMP standard 25fmol (50µL) 89.61 

Vehicle (50µL) + NaCl (50µL) 99.58 

IBMX+SNP (100µL) 136.85 

IBMX+SNP (50µL) + cGMP standard 25fmol (50µL) 68.27 

IBMX+SNP (50µL) + NaCl(50µL) 69.79 

Samples in red indicate that the values were obtained from the last experiment. 

 

Experiment 7. Sample purification before cGMP assay: 

Samples (with no buffer added) collected from experiment 5 were assayed. Samples were 

centrifuged at room temperature for 5 minutes at 3000g and purified by solid phase 

extraction using vacuum manifold-10 columns and Strata SAX cartridges (Phenomenex, 

CA, USA). The solid phase extraction cartridges were equilibrated with methanol and 

water before 250µL samples were transferred into the columns. After all the solutions 

passed through the columns, 3mL methanol was passed through the column under vacuum 

and collected, and then 3mL acidified methanol (0.1mol/L HCl in methanol) was passed 

through the column and collected as well. The samples were then evaporated under the 
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flow of nitrogen at 37°C and reconstituted in 250µL acetate buffer (0.05mol/L, pH 6.2). 

Samples were assayed as shown in Table 2-7. 

Results of this experiment indicated that HBSS interferes with the cGMP assay. The 

recovery of the additional 25fmol cGMP standard was approximately 100% after samples 

been extracted. And dilution of sample (Sample B) did not improve the accuracy of the 

results. Therefore, it was necessary to clean up the samples by extraction after incubation. 

 

Table 2-7: Sample conditions and results for experiment 7: effects of HBSS buffer.  

Samples  Samples’ conditions cGMP content (fmol) 

HBSS HBSS buffer alone (100µL) 11.86 

Sample A original (100µL)  57.97 

extracted (100µL) 47.14 

extracted (100µL) + 25fmol (cGMP standard) 73.64 

Sample B original (50µL) + Acetate buffer (50µL) 32.20 

original (25µL) + Acetate buffer (75µL) 23.43 

original (12.5µL) + Acetate buffer (87.5µL) 22.36 

 

2.4.2 Final experiment protocol for intra-neutrophil cGMP determination: 

Neutrophil suspensions (500µL) were pre-incubated at 37°C with either BNP (1μmol/L) 

for 10 minutes or SNP (10μmol/L) for 1 minute in the presence of the IBMX (1mmol/L). 
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Intra-neutrophil cGMP content was assayed via radioimmunoassay. After incubation, 

samples were placed on ice and centrifuged at 550g for 5 minutes at 4°C. Pellets were re-

suspended in 500μL ice cold acetate buffer then put in a boiling water bath for 5 minutes 

and sonicated for 5 minutes using the sonication bath (Unisonics PTY.LTD, NSW, 

Australia). After centrifugation of samples at 2500g for 10 minutes, cGMP concentration 

in supernatant was extracted and estimated using “cGMP [I125] assay system” (Biomedical 

Technologies Inc, Soughton, MA, USA). Results were expressed as increase (%) in intra-

neutrophil cGMP accumulation in response to BNP or SNP in the presence of IBMX in 

comparison with IBMX alone. 

2.5 Electron paramagnetic resonance (EPR) spectroscopy measurement 

of ROS  

2.5.1 Theory of EPR spectroscopy  

Electron paramagnetic resonance (EPR), also called electron spin resonance (ESR) is a 

technique which quantitates free radicals and transition metal ions with unpaired electrons 

by absorption of microwave radiation stimulated by free radicals in an electromagnetic 

field (Frejaville et al. 1995; Zhang et al. 2000). The components of an EPR spectrometer 

includes a microwave generator, a resonator cavity centered between a pair of electrical 

magnets and a recorder of the translated signal intensity (Figure 2-2 A). The microwaves 

generated by the microwave generator are transmitted to the resonator cavity, and after 

adjustment of the spectrometer, all of the energy will be absorbed which results in no 

detection of microwave energy by the resonator. When the sample is placed into the 

magnetic field, the unpaired electrons will orient to the same direction as the magnetic 

field, which generates 2 different energy states for the unpaired electrons and a transition 
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from the lower state to the higher state will be formed by absorption of microwave energy 

(Figure 2-2 B) (Weil, Bolton & Wertz 1994). The different electron energy formed 

between the 2 states is equivalent to the microwave energy (hυ=g×µB×B, “hυ” is the 

microwave energy, “g” is the factor constant equal to 2.002 for most organic samples, and 

“µB” is the Bohr magneton constant) (Dikalov, S, Griendling & Harrison 2007).  

 

Figure 2-2: The typical EPR spectrometer  

(A) EPR composition. The electron has a magnetic moment; it acts like a compass when it 

placed in a magnetic field (B). It will have a state of lowest energy when the moment of the 

electron is aligned with the magnetic field (↑) and a state of highest energy when it aligned 

against the magnetic field (↓). The energy of the unpaired electron, therefore, is a function 

of the magnetic field: E=±0.5gµBB, where “g” is the g-factor constant, “µB” is the Bohr 
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magneton constant, and “B” is the magnetic field. Adapted from: (Dikalov, S, Griendling 

& Harrison 2007) 

 

In summary, the transition formed by placing the sample containing unpaired electrons in 

an applied magnetic field will be detected by EPR as absorption of microwave energy. The 

amplitude of the EPR signal (microwave energy) represents the number of the unpaired 

electrons present in the sample (Figure 2-2 B), thus enable quantification of free radicals. 

The EPR spin-trapping technique has been used to detect ROS in whole blood (Fink, 

Dikalov & Bassenge 2000) and O2
- generation in neutrophils induced by inflammation via 

NAD(P)H oxidase in cellular systems in vitro (Bannister et al. 1982; Dikalov, SI et al. 

2011; Tanigawa, Kotake & Reinke 1993). 

The half-life of most free radicals is very short and makes it a challenge to detect them in 

biological samples. A variety of chemicals that form stable adducts with free radicals have 

been studied and developed as “spin traps” (Janzen 1984), and used for detection of free 

radicals (Dikalov, S, Jiang & Mason 2005; Dikalova, Kadiiska & Mason 2001; Zhang et al. 

2000). However, it was found that the nitrone radical adducts are not stable. The O2
- adduct 

EMPO-OOH (trapped by EMPO) is rapidly converts to EMPO-OH, which are identical to 

OH• radical adducts, by GPx within seconds (Zwicker et al. 1998). Therefore, it is difficult 

to distinguish one from another without a specific inhibitor. Also, in biological samples, 

nitrone radical adducts can be reduced to EPR silent species by a number of compounds 

such as flavins, thiols and ascorbate etc. (Figure 2-3). Furthermore, the reactivity of nitrone 

spin traps with O2
- is relatively low compared to cytochrome c (Koppenol et al. 1976). 

Therefore, investigators have been focused on developing of more effective and specific 

spin probes.  
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The cyclic hydroxylamines, although not spin traps, can be oxidized by free radicals to 

form stable radicals with much longer half-lives (up to several hours). They have been 

proven to be effective and easily be detected by EPR in tissues and cells (Dikalov, S, 

Skatchkov & Bassenge 1997) for detection and quantitation of  O2
- both extra- & intra-

cellular as well as mitochondrial origin and showed more effective than the nitrone spin 

traps, for review see (Dikalov, SI et al. 2011). Furthermore, the formation of nitroxide by 

hydroxylamine is stable and persistent with reductase in biological samples (Figure 2-3 B) 

(Dikalov, S et al. 1997). 

 

 

Figure 2-3: Detection of O2
- by ESR.  

A, Spin trapping of O2
- by spin trap EMPO produces O2

- radical adduct EMPO/OOH, 

which is decomposed by glutathione peroxidase (GPx) into OH-adduct and reduced by 

flavin enzymes and ascorbate into ESR silent hydroxylamine. B, The reaction of O2
- with 
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spin probe CM-H produces stable nitroxide radical, which can be conveniently detected in 

frozen samples. (Dikalov, S, Griendling & Harrison 2007). 

 

Detection of intracellular O2
- by EPR showed that CM-H is highly cell permeable with the 

highest rate of intracellular accumulation of nitroxide among all the tested hydroxylamines 

(Figure 2-4 and Figure 2-5). However, as hydroxylamines can be oxidized by several ROS, 

it is important to perform experiments with SOD, ONOO- scavengers, or other inhibitors 

to identify which ROS generated the signal in individual case. 

 

 

Figure 2-4: General scheme of EPR detection of O2
- in extracellular, intracellular or 

mitochondrial compartments using cyclic hydroxylamine spin probes.  

Cyclic hydroxylamines 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium 

chloride (CAT1-H), 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride 

(CP-H), 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl pyrrolidine (CM-H), 1-

hydroxy-4-phosphono-oxy-2,2,6,6-tetramethylpiperidine (PP-H), 1-hydroxy-4-methoxy-

2,2,6,6-tetramethylpiperidine (TM-H), N-(1-Hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)-2-
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methylpropanamide (TMT-H), 1-hydroxy-4-[2-(triphenylphosphonio)-acetamido]-2,2,6,6-

tetramethylpiperidine (mitoTEMPO-H,), spin trap 5-ethoxycarbonyl-5-methyl-1-pyrroline 

N-oxide (EMPO). Adapted from: (Dikalov, SI et al. 2011). 

 

 

Figure 2-5: Representative EPR signals captured by hydroxylamine spin probes with 

different Cell permeability.  

This figure demonstrated that CM-H is the most cell-permeable spin probe among those 

tested. Data were obtained in confluent rat aortic smooth muscle cells. Adapted from: 

(Dikalov, SI et al. 2011). 
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2.5.2 Whole blood ROS determination by EPR spectroscopy  

Quantitation of total ROS in whole blood was performed utilizing EPR spectroscopy, as 

previously described (Mariappan et al. 2009; Mrakic-Sposta et al. 2012). Whole blood 

samples were incubated with BNP (1µmol/L) or vehicle for 10minutes before 

measurement by EPR spectroscopy. All EPR samples were prepared using the spin probe 

CM-H (0.2mmol/L) in Krebs - Hepes buffer (pH 7.4) in the present of 25µmol/L 

deferoxamine and 5µmol/L sodium diethyldithiocarbamate trihydrate and placed in 50μL 

Micropipettes DURAN® glass capillaries (Noxygen, Elzach, Germany). Reaction of ROS 

with CM-H generates a stable nitroxide radical, the formation of which was measured by 

monitoring the amplitude of the low-field component of the EPR spectrum as previously 

described (Rosen, Finkelstein & Rauckman 1982), and calculated from the accumulation 

of nitroxide, obtained from a calibration curve for intensity of the EPR signal of 3-

carboxyproxyl. Total ROS formation in blood was determined from the time-dependent 

accumulation of the stable nitroxide radical. For this purpose, EPR kinetics were analysed 

by linear regression using WinEPR software (Bruker Biospin Corp, Billerica, MA, USA).  

EPR spectra were recorded using an e-scan M EPR spectrometer (Bruker, Germany, 

Figure 2-6) and super-high Q microwave cavity with the following settings: field sweep, 

10 G; microwave frequency, 9.75 GHz; microwave power, 19 mW; modulation amplitude, 

2 G; conversion time, 10.24 ms; time constant, 40.96 ms; receiver gain, 3.2 x 102. Data 

were expressed as µM/mL/minutes of nitroxide accumulation. Intra-assay CV was 5.6%. 
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Figure 2-6: Electron paramagnetic resonance (EPR) spectroscopy (Bruker BioSpin e-

scan).  

From left to right: PC recorder, microwave generator, magnetic unit and temperature and 

gas controller BIO-III. 

 

2.5.3 Determination of O2
- generation in isolated neutrophils by EPR spectroscopy 

Neutrophil intracellular O2
- accumulation was determined by EPR as previously described 

(Dikalov, SI, Dikalova & Mason 2002; Dikalov, SI et al. 2011). Specificity of O2
- 

detection by CM-H was validated by supplementation of SOD which eliminated 

approximately the entire EPR signal (Figure 2-7) (Dikalov, SI et al. 2011). In the current 

study, neutrophils were incubated with either BNP (1μmol/L, 100nmol/L, 10nmol/L, and 

1nmol/L) or 8-(4-Chlorophenylthio)-guanosine 3′,5′-cyclic monophosphate (8-pCPT-

cGMP, 500μmol/L) for 10 minutes then stimulated with either phorbol 12-myristate 13-

acetate (PMA, 100nmol/L, for 20minutes) or N-formyl-methionyl-leucyl-phenylalanine 

(fMLP, 1μmol/L) (Liu, FC et al. 2012) before the addition of CM-H (0.2mmol/L). Samples 
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were scanned immediately after supplementation of spin probe CM-H. As the EPR signal 

is a measure of the total ROS, for assessment of the O2
- component, values obtained in 

presence of the NAD(P)H oxidase inhibitor DPI (18μmol/L), and results showed that DPI 

inhibited all the PMA-induced O2
- release (Figure 3-2). EPR settings were identical to 

those utilized for whole blood ROS determination. EPR experiments were performed in 

triplicate. 

 

Figure 2-7: O2
- production by PMA-stimulated human neutrophils.  

Cells were stimulated by 1µmol/L PMA with/without SOD and O2
- was measured with 

1µmol/L spin probes. Adapted from: (Dikalov, SI et al. 2011). 
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2.6 Western blotting analysis 

2.6.1 Sample preparation  

Isolated neutrophils from control subjects and HF patients were pre-treated with or without 

BNP (1μmol/L) for 10 minutes at room temperature and then stimulated with fMLP for 20 

minutes. The reaction was stopped by placing samples on ice. After centrifugation (550g 

for 10 minutes at 4°C) the cells were lysed by resuspension in lysis buffer (Tris-HCl 

100mmol/L, NaCl 0.45mol/L, EDTA 50mmol/L, EGTA 10mmol/L, sodium 

pyrophosphate 20mmol/L, β-glycerophosphate 20mmol/L, protease inhibitor cocktail 1, 

1%, protease inhibitor cocktail 2, 1%, phosphatase inhibitor, 1%, Triton X-100 10%). 

Proteins in the cleared supernatant were denatured in Laemmli’s sample buffer (with 5% 2-

mercaptoethanol). The samples were then subjected to SDS (10%) -PAGE and western 

blot using standard techniques. The separated proteins were transferred to nitrocellulose 

membrane, which was blocked with 5% milk/ bovine serum albumin in TBS containing 

Tween 20 (0.1%) for 1hour. After blotting, the membranes were probed with the 

appropriate primary antibody and followed by incubation with HRP-labeled secondary 

antibody accordingly.  

2.6.2 Immunoblot analysis of p47phox and phosphorylation of p47phox in 

neutrophils  

The phosphorylated-p47phox at Ser345 and total p47phox was bloted on separate gels. The 

primary antibody dilutions were as follows: p47phox (D21F6) rabbit monoclonal antibody 

(1:1000) (Cell Signaling Technology, Danvers, Massachusetts, USA), rabbit polyclonal to 

p47phox (Phospho-Ser345) (1:1000) (Biorbyt Limited, Cambridge, UK) and Mouse anti β-

actin monoclonal antibody (1:2500) (Abcam, Cambridge, UK).The intensity of 
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phosphorylated-p47phox at Ser345, total p47phox and β-actin on the same membrane was 

visualized by chemiluminescence using ImageQuant LAS-400 (GE Healthcare Life 

Sciences, Buckingham, UK) and quantified by densitometry using the Multi Gauge V3.0 

analysis program. Phosphorylated intensities were corrected for the corresponding amounts 

of total p47phox present on the membrane. Because the p47phox and phosphor p47phox 

Ser345 has the same molecular weight (47kD), the two proteins were blotted on separate 

membranes, results were correlated with β-actin presented on each membrane. Example 

immunoblots are shown in Figure 2-8. 

 

 

 

Figure 2-8: Example blots showing p47phox, β-actin (upper panel) and phospho-

p47phox Ser345 (lower panel). 

 

2.6.3 Immunoblot analysis of NPR-A/pGC-A in neutrophils 

For NPR-A blots, rabbit anti-PGC-A rabbit polyclonol antibody was probed in untreated 

neutrophil lysate. Several primary antibody dilutions were attempted, including 1:500, 

1:1000, 1:2000 and 1:5000 in combination with secondary antibody dilutions: 1:500, 



69 

 

1:1000, 1:2000 and 1:5000. However, no visible protein band was revealed (no results will 

be shown for this part).  

2.7 Assessment of endothelial function 

2.7.1 Applanation tonometry  

Pulse wave analysis, together with administration of endothelium-independent vasodilator 

NTG and endothelium-dependent vasodilator salbutamol (β2-agonist), was used to evaluate 

vascular NO responsiveness and endothelial function, respectively.   

Augmentation index (AIx), as a measure of arterial stiffness was determined using 

SphygmaCor device (AtCor Medical, Sydney, Australia), as previously described 

(Hayward et al. 2002; Wilkinson et al. 2002). A high-fidelity micro-manometer probe 

(SPT-301B; Millar Instruments, Texas, USA) was used to obtain recordings of the 

peripheral pressure waveforms by flattening, but not occluding, the radial artery of the 

dominant arm at the position where the pulse was most evident. Radial artery pulse 

waveforms were recorded directly onto a computer-linked SphygmaCor analysis system 

(SCOR-Px, software version 7.01, AtCor Medical Pty Ltd. Sydney, Australia). The 

SphygmaCor system generated an average peripheral pulse waveform contour from an 11-

second recording period (Figure 2-9). The corresponding central (ascending aortic) 

waveform was derived from the radial artery waveform using a validated mathematical 

transfer function within the software package (SphygmaCor). From this a rate corrected 

augmentation index, a value of change in AIx, which is a measure of arterial stiffness, was 

derived and corrected for a standard heart rate of 75 bpm. Representative waveforms are 

shown in Figure 2-9.  
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Figure 2-9: Pulse wave analysis, representative waveforms.  

Peripheral pressure waveforms recorded electronically with the SphygmaCor device. The 

peripheral waveform is converted to a central waveform via an integral transfer function 

to derive a rate-corrected augmentation index. AIx is the difference (ΔP) between the first 

(P1) and second systolic (P2) pressure peaks, divided by pulse pressure (PP), expressed as 

a percentage of the pulse pressure, which is used to evaluate vascular endothelial function 

and NO responsiveness profiles. Adapted from: (Crilly et al. 2007)). 

 

Baseline pulse recordings were taken in triplicate and averaged. After obtaining baseline 

augmentation index values, subjects were administered sublingual NTG (50 µg). Blood 

pressure was measured at 2 minutes intervals for 20 minutes. NTG produces generalized 

vasodilation, thereby decreases venous return and workload on the heart. Previous studies 

have confirmed that 20 minutes was sufficient for haemodynamic changes to return to 

baseline after administration of NTG (Wilkinson et al. 2002). After augmentation index 

had returned to baseline values, the protocol was repeated for salbutamol (400 µg), 
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administered by inhalation with a spacer device. Immediately after each blood pressure 

measurement, radial pulse recordings were taken. The arterial pressure waveforms were 

calibrated with the brachial diastolic and systolic pressure and a calibration system integral 

to the device. Only high quality recordings with an in-device quality index > 85 % were 

used. Effects of NTG and salbutamol were quantified by determination of the drug-induced 

changes in rate adjusted augmentation index. Vascular responses to NTG and salbutamol 

were expressed as area under the curve in augmentation index. As shown in Figure 2-10, 

subjects with endothelial dysfunction have a decreased response or do not respond to 

endothelial dependent vasodilator, salbutamol. Subjects with NO resistance have a 

diminished response to NTG. 

 

Figure 2-10: Effects of salbutamol and nitroglycerin (NTG) on the radial waveforms 

derived from pulse wave analysis. 
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 Panel A: Normal Subject: The second systolic peak, at baseline, is diminished by 

salbutamol and further decreased following NTG. The change in the wave-shape is 

quantified using AIx. 

Panel B: Subject with endothelial dysfunction: no response to endothelium-dependent NO 

donors.  

Panel C: Subject with impaired vascular NO responsiveness: no response to endothelium-

dependent and -independent NO donors. 

Adapted from: (Hayward et al. 2002). 

 

2.7.2 Determination of Plasma ADMA, Symmetric Dimethylarginine and L-arginine  

Plasma concentrations of the endogenous NOS inhibitor ADMA, Symmetric 

Dimethylarginine (SDMA) and L-arginine were determined via high-performance liquid 

chromatography as previously described (Heresztyn, Worthley & Horowitz 2004). Blood 

was collected into heparinised tubes, placed on ice immediately and then centrifuged at 

1800g for 15 minutes at 4ºC. The plasma was collected and stored at -80ºC until assayed.  

2.7.2.1 Sample Extraction and Derivatization  

Plasma samples were defrosted and vortexed to make solution homogeneous. Samples 

were then centrifuged at 1800g for 10 minutes. All samples were diluted by adding 150μL 

of plasma sample to 1.4mL of distilled H2O, and 60μL of 5μg/mL N-monomethyl-L-

arginine (L-NMMA) which was treated as an internal control. 300μL 10% (w/v) 5-

sulfosalicyclic acid was added into the solution to precipitate plasma proteins from 
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solution and incubated on ice for 10 minutes. Samples were then centrifuged at 9000g for 2 

minutes at room temperature and the supernatant was retained. Samples underwent solid 

phase extraction using a Gilson GX-274 ASPEC Liquid Handler (run using Trilution LH 

version 2.0 software, Gilson) and Bond Elut SCX cartridges (Agilent Technologies, US). 

The solid phase extraction cartridges were washed with 0.1M phosphate buffer, pH 6.0 and 

methanol prior to eluting the analytes with 2% (w/v) triethylamine/65% (v/v) methanol in 

distilled H2O. The eluent was evaporated under nitrogen flow at 55ºC and reconstituted in 

distilled H2O. Samples were centrifuged at 9000g for 2 minutes at room temperature and 

50μL supernatant transferred into fresh vials to be derivatized using the AccQ-Fluor 

Reagent Kit (Waters, UK).  

2.7.2.2 Chromatographic Separation and Fluorescent Detection  

Samples were loaded onto an 1100 series HPLC system (Agilent Technologies, US) with a 

1200 series fluorescence detector (Agilent Technologies, US) using a 717plus Autosampler 

(Waters, UK) maintained at 12ºC and the analytes separated on a Luna 5μm C18(2) 

column (Phenomenex, US) using a gradient of 4% (v/v) acetonitrile in 0.1M sodium 

acetate, pH 6.0 (Mobile Phase A) and 30% (v/v) acetonitrile in 0.1M sodium acetate, pH 

6.0 (Mobile Phase B) at a flow rate of 1.0mL/minute. Column temperature was maintained 

at 40
o

C using a TCM-004055 incubator (Waters, UK) for ADMA/SDMA (20μL injection 

volume) determination and 30
o

C for L-arginine (2.5μL injection volume) determination. 

Analyses were performed separately for ADMA/SDMA and L-arginine determinations. 

Fluorescent detection of derivatized sample was achieved using excitation at λ=250nm and 

emission at λ=395nm. The system was managed using ChemStation for LC 3D Systems 

software, version Rev B.03.02 [341].  



74 

 

2.7.2.3 Sample Analysis  

Data analysis was also performed using ChemStation for LC 3D Systems software, version 

Rev B.03.02[341]. Standard curves were generated by measuring the area under the curve 

for known concentrations of ADMA, SDMA and L-arginine and calculating ratios relative 

to the area under the curve for the internal standard (L-NMMA). ADMA, SDMA and L-

arginine concentrations in the studied samples were calculated from “unknown 

sample/internal standard” ratios and using the standard curve to determine ADMA, SDMA 

and L-arginine concentrations. 

2.8 Assessment of platelet response to NO 

2.8.1 Whole blood impedance aggregometry 

Whole blood impedance aggregometry is a technique to measure platelet aggregation in 

vitro (Cardinal & Flower 1980). After collection, blood samples were kept on the bench at 

room temperature for 20 minutes for stabilization, prior to aggregation studies. An 

electrode probe consisting of two metal wires was immersed in the blood sample, and 

small voltage was applied to the circuit. When platelets are exposed to an agonist (e.g. 

adenosine diphosphate (ADP)), they aggregate on the surface of the electrode. The 

accumulation of platelets adds electrical impedance to the circuit, which is proportional to 

the extent of platelet aggregation and is quantified by the aggregometer, in Ohms (Ω). The 

electrical impedance between two electrodes in whole blood samples is recorded over time.  

2.8.2 Platelet response to adenosine diphosphate in whole blood 

Platelet aggregation in whole blood was studied using a dual-channel impedance 

aggregometer (Figure 2-11 A, Model 560, Chrono-Log, Havertown, Pennsylvania, USA) 



75 

 

as previously described (Chirkov et al. 1999). In brief, tests were performed at 37 ºC and 

stirred using siliconized stir bars (Chrono-log Corporation, US) with stirring speed of 900 

rpm. Samples of whole blood were diluted two-fold with normal saline with a final volume 

of 1 mL in polystyrene cuvettes (Chrono-log Corporation, US) and pre-warmed for 5 

minutes at 37 ºC. Electrodes were then inserted into the samples and the aggregometer was 

calibrated for each sample relative to a resistance of 20Ω before the induction of 

aggregation by adding 2.5mmol/L ADP. Aggregation was evaluated as the net change in 

resistance (ohms Ω). All tests were run in duplicates.  

A.                                                                          B. 

    

Figure 2-11: Assessment of platelet responsiveness to NO.  

A. Platelet aggregation and platelet NO responsiveness was evaluated in whole blood 

samples via impedance aggregometry. 

B. Inhibition of adenosine diphosphate-induced platelet aggregation in whole blood by 

sodium nitroprusside (SNP; 10μmol/L) as an NO donor. On the vertical axis is platelet 

aggregation expressed in Ohms and on the horizontal axis time in minutes. 
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2.8.3 Platelet response to SNP in whole blood 

The NO donor SNP (10μmol/L) was utilized to quantitate platelet responsiveness to NO. 

SNP was added to samples 1 minute before ADP. Duration of pre-incubation with SNP 

was estimated as the optimal in previous experiments (Chirkov et al. 1999). Inhibition of 

aggregation was evaluated as a percentage comparing the extent of maximal aggregation in 

the presence and absence of SNP (Figure 2-11 B). 

2.9 Measurement of total MPO release in neutrophils 

MPO released from neutrophils was assayed with an MPO-ELISA kit (Mercodia 

Developing diagnostics, Uppsala, Sweden). Neutrophil cell suspension of 5х106/mL was 

pre-incubated with BNP (1µmol/L) for 10 minutes. After stimulation with PMA for 20 

minutes at room temperature, the cell suspension was immediately placed on ice to avoid 

further release of MPO and centrifuged at 550g for 10 minutes at 4°C, the supernatant was 

retained. Control assays were performed with un-stimulated cells in HBSS buffer with 

proper vehicle control. Supernatant was assayed immediately in triplicate according to 

manufacturer’s instructions.  

2.10 Determination of Plasma Thrombospondin-1  

Plasma thrombospondin-1 levels were determined by ELISA according to manufacturer’s 

instructions (Quantikine®, R&D Systems, and US). Briefly, blood was collected into 

heparinised tube and placed on ice immediately. Samples were centrifuged at 1800g for 15 

minutes at 4
o

C. The supernatant was retained and centrifuged again at 10,000g for 10 

minutes at 4
o

C to remove any residual platelets and red blood cells. The supernatant was 

collected and stored at -80
o

C until assayed. Samples were assayed in triplicate with 
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coefficients of variation determined from 5 replicate samples over 6 consecutive runs. 

Intra-assay CV was 6.6% and inter-assay CV was 6.3%. 

2.11 Other parameters examined 

(a) The NT-proBNP level was assayed within 2 hours after venesection. The determination 

of plasma NT-proBNP was performed at admission and follow up via Roche 

CARDIAC® proBNP (NT-proBNP assay) (Roche Diagnostics, Mannheim, Germany). 

(b)  CRP levels were determined with a high-sensitivity CRP assay (hs-CRP) (Beckman 

Immage Immunochemistry System, Fullerton, California, USA).  

2.12 Chemicals  

BNP was purchased from BACHEM (Bubendorf, Switzerland) and stock solution was 

prepared with deoxygenated water and aliquoted and stored at -80°C. cGMP 

radioimmunoassay kits was purchased from Biomedical Technologies Inc. (Stoughton, 

MA, USA). MPO-ELISA kit (Mercodia Developing diagnostics, Uppsala, Sweden). CM-H 

was purchased from Enzo Life Sciences (San Diego, CA, USA). Stock solutions of CM-H 

(400mmol/L) were prepared in dimethyl sulfoxide (DMSO) and kept at -20 ̊C; Working 

solutions of CM-H (2mmol/L for neutrophil O2
– and 400µmol/L for whole blood ROS) 

were prepared daily in Krebs - Hepes buffer (pH 7.4) containing 5.786g/L NaCl, 0.35g/L 

KCl, 0.368g/L CaCl2, 0.296g/L MgSO4 , 2.1g/L NaHCO3 , 0.142g/L K2HPO4 , 5.206g/L 

Na-Hepes, 2g/L D-glucose, pH 7.4, in the presence of 25µmol/L deferoxamine  and 

5µmol/L diethyldithiocarbamate. 8-pCPT-cGMP was purchased from Biolog life science 

institute (Bremen, Germany). PMA, fMLP, and all other reagents were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). 
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Chapter 3: Evaluation of BNP-triggered biochemical 

signaling in neutrophils: physiology and pathology 

3.1 Background  

Plasma levels of B-type natriuretic peptide (BNP) increase dramatically in congestive heart 

failure (HF) (Gardner et al. 2003; Hobbs, FD et al. 2002). BNP is one of the most 

important biomarkers for the diagnosis, risk stratification, and prediction of death in 

patients with congestive HF (Braunwald 2008; Lainchbury, Espiner, Frampton, et al. 1997; 

Lainchbury, Espiner, Nicholls, et al. 1997; Palazzuoli et al. 2012). Natriuretic peptides 

(NPs) are generally regarded as cardioprotective hormones for their ability to reduce blood 

pressure, plasma volume, and myocardial infarct size (Burley & Baxter 2007; Molkentin 

2003). However, other investigators reported increased infarct size after ANP 

administration in a murine model of myocardial infarction (MI) (Houng et al. 2009). 

Moreover, although NPs are thought to limit the progression of HF (Munagala, VK, 

Burnett, JC & Redfield, MM 2004), the administration of recombinant BNP (Nesiritide) 

was found to be ineffective in acute HF patients (O'Connor et al. 2011). Thus, although 

NPs have been viewed as a “compensatory” neurohormonal system in HF, it is important 

to delineate the role of BNP and its potential variability in HF patients on a biochemical 

basis. 

The beneficial effects of NPs are attributed to the formation of the secondary messenger 

cGMP, which has smooth muscle relaxing and vasodilating effects (Daniels & Maisel 2007; 

Murad 2006). cGMP acts as an important mediator of many signaling events by interacting 

with PKGs, CGN, and cGMP-regulated cyclic nucleotide phosphodiesterases (Figure 1-10) 

(Lincoln & Cornwell 1993), which means that through these receptor proteins in the cell, 
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cGMP could theoretically regulate a number of intracellular processes, exerting negative 

metabolic and functional effects in myocardium and other functional sites (Murad 1994; 

Shah et al. 1994).   

Intracellular cGMP formation is dependent on two forms of guanylyl cyclases: soluble 

guanylyl cyclase (sGC) and particulate guanylyl cyclase (pGC) (Lucas et al. 2000). As 

described in section 0, BNP acts through binding to natriuretic peptide receptor-A (NPR-A) 

linked pGC, which results in the generation of cGMP (Garbers 1992). Therefore, to study 

BNP-triggered biochemical signaling, the primary target should be stimulation of 

formation of cGMP. Increased cGMP formation has previously been demonstrated with 

BNP administration in plasma, in tissue/cells culture (Bryan et al. 2007; Forfia et al. 2007; 

Huntley et al. 2006; Jaiswal 1992; Piggott et al. 2006), as well as in isolated cells such as 

neutrophils (Matsumura et al. 1996). Furthermore, nitric oxide (NO)-induced cGMP 

formation through activation of the cytosolic sGC has been studied extensively, as 

mentioned in section 1.2.5.1.2.2. It has also been reported that both NO and NO donors 

such as SNP, increased cGMP production in human neutrophils (Elferink & de Koster 

1992; Morikawa et al. 1995).  

The effects of NPs and NO on superoxide (O2
-) release from cells are less clear-cut. Two 

groups have reported that A-type natriuretic peptide (ANP) (Wiedermann et al. 1992) and 

BNP (Garlichs et al. 1999) sensitized mechanisms for O2
- production in human neutrophils. 

However, Lin et al. reported that BNP inhibited angiotensin II (AngII)-induced O2
- release 

in cultured rat cardiomyocytes (Lin et al. 2012). As regards NO, data are more consistent: 

NO has been reported to suppress O2
- release both in neutrophils (Clancy, Leszczynska-

Piziak & Abramson 1992) (Moilanen et al. 1993) and in cardiomyocytes, and it has been 
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shown that these effects are also seen with cGMP. Therefore, it is potentially important to 

determine whether BNP might differ from NO, and if so, how. 

The impetus for such investigations has been increased by recent report that under some 

circumstances, both BNP and cGMP may increase catecholamine release (Chan et al. 

2012), in which case these might be “paradoxical” effects in vivo, but presumably not in 

vitro.  

3.2 Can we quantitate cGMP generation by BNP stimulation in 

neutrophils? 

3.2.1 Methods: 

3.2.1.1 Subject selection 

A total of 19 healthy subjects, aged from 23-55, with no previously recorded cardiac 

diseases/dysfunction and 5 acute HF patients (selection based on section 2.1) were 

recruited in this study. The protocol was approved by the institutional Ethics of Human 

Research Committee, and informed consent was obtained prior to study entry. 

3.2.1.2 Neutrophil isolation 

Refer to section 2.3 

3.2.1.3 Intracellular cGMP determination  

Refer to section 2.4. 
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3.2.2 Results: 

In neither control subjects (n=19) nor acute HF patients (n=5) did BNP significantly 

increase neutrophil cGMP production. For example, in control subjects the increase in 

cGMP production with maximal BNP concentration (1μmol/L) was 8±6% (p=NS) while 

SNP increased neutrophil cGMP production by 17±5% (p<0.05) (Figure 3-1). 

 

Figure 3-1: Effect of BNP and SNP on cGMP levels in human neutrophils.  

(A): Control subjects (n=19); (B): Acute HF patients (n=5). Neutrophils were 

preincubated with or without BNP (10minutes) or SNP (1minute) in the presence of IBMX. 

Results were expressed as ratio relative to IBMX alone (Mean±SEM). 

 

3.2.3 Discussion  

In this study, we were unable to quantitate the incremental cGMP production in 

neutrophils treated with BNP despite the previously documented activation of pGC by 
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BNP (Matsumura et al. 1996). However, Weidermann et al (Wiedermann et al. 1992) also 

were unable to detect increases in cGMP content in neutrophils following ANP exposure 

as were Su et al. with CNP in myocardium (Su, Scholz & Weiss 2005). This could be due 

to the technical limitations of the assay, which does not allow for the localized detection of 

cGMP generation in proximity to membrane-bound pGC, but instead operates with the 

total cell volume (Piggott et al. 2006; Su, Scholz & Weiss 2005). The existence of 

particulate and cytosolic sources of guanylyl cyclases may result in the distinct rather than 

uniform distribution of cGMP within cells. Furthermore, diffusion of the newly formed 

cGMP will likely be limited by the localization of phosphodiesterases (some of the 

phosphodiesterases and their isomers are soluble, while others are bound to plasma and 

intracellular membrane) which are able to hydrolyze cGMP (Francis, SH, Turko & Corbin 

2001). The different subcellular sources of cGMP and the presence of cGMP 

phosphodiesterases represent potential explanations for a diversely localized elevation of 

cGMP within the cell (Piggott et al. 2006; Su, Scholz & Weiss 2005). 
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3.3 BNP effects on neutrophil O2
- production in healthy control subjects  

3.3.1 Introduction:  

Neutrophil activation and infiltration is critical in inflammatory responses associated with 

various forms of heart disease, including myocarditis, acute myocardial infarction (MI) and 

atrial fibrillation (Friedrichs et al. 2014; Goldmann et al. 2009). The pro-inflammatory 

actions of neutrophils relate largely to NAD(P)H oxidase, which generates superoxide 

anion radical (O2
-), and myeloperoxidase (MPO), which produces hypochlorous acid 

(HClO), upon neutrophil degranulation, a process known as the “neutrophil burst” (Weiss 

1989). 

It has become increasingly clear in recent years that the neutrophil burst is subject to 

physiological and pharmacological modification. Nitric oxide (NO) may act to suppress 

NADPH oxidase activation (Clancy, Leszczynska-Piziak & Abramson 1992; Moilanen et 

al. 1993), and appears to do so via stimulation of its major biochemical “receptor” sGC, 

with subsequent increase in cGMP concentration. Another cGMP generator is membrane-

bound particulate guanylyl cyclase (pGC), which can be activated by B-type natriuretic 

peptide (BNP) via natriuretic peptide receptor A (NPR-A). BNP is released largely from 

atrial and ventricular myocardium in response to distension (Cowie & Mendez 2002) 

and/or inflammatory activation (Ogawa, T & de Bold 2012) and has been shown to exert 

vasodilatation and natriuretic effects. BNP has been suggested as a physiologically 

stabilizing hormone, for example in heart failure (HF) (Kellett 2006). Given that the main 

biochemical product of BNP release is cGMP, we hypothesized that BNP might, like NO, 

suppress the neutrophil burst. We therefore evaluated this putative effect in isolated 

neutrophils obtained from normal subjects. Given that protein kinase G (PKG) is activated 
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by cGMP, thus initiating a variety of intracellular effects (sequestration of cytosolic Ca2+, 

suppression of extracellular Ca2+ influx, inhibition of phospholipases C and A2, etc.), this 

enzyme is an important regulator of neutrophil function (Werner et al. 2005; Wyatt, 

Lincoln & Pryzwansky 1993). In order to examine this final step within the BNP-induced 

cGMP signaling, we investigated the effect of a PKG inhibitor (KT5823) on the 

hypothesized suppression of the neutrophil burst by BNP. 

3.3.2 Methods: 

3.3.2.1 Subject selection 

A total of 20 healthy subjects, aged from 23-55 years, with no previously recorded cardiac 

diseases/dysfunction were recruited in this study. The protocol was approved by the 

institutional Ethics of Human Research Committee (The Queen Elizabeth Hospital, 

Adelaide, Australia), and informed consent was obtained prior to study entry. 

3.3.2.2 Neutrophil isolation 

Refer to section 2.2. 

3.3.2.3 Determination of neutrophil O2
- release and MPO release 

Refer to sections 2.5.3 and 2.9.  

a) BNP effects on O2
– release in nuetrophils 

Neutrophil cell suspensions 1.7х106 /mL were incubated with BNP (1μmol/L, 100nmol/L, 

10nmol/L, and 1nmol/L) for 10minutes then stimulated with either the PKC agonist 

phorbol 12-myristate 13-acetate (PMA, 100nmol/L, incubated for 20 minutes) (Liu, FC et 
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al. 2012) or N-formyl-methionyl-leucyl-phenylalanine (fMLP, 1μmol/L, no incubation) 

before the addition of CM-H (0.2mmol/L). 

b) BNP effects on MPO release in neutrophils 

Neutrophil cell suspension of 5х106 /mL was preincubated with BNP (1µmol/L) for 

10minutes. After stimulation with PMA for 20minutes at room temperature, the cell 

suspension was immediately placed on ice to avoid further release of MPO and centrifuged 

at 550g for 10 minutes at 4°C. Control experiments were performed with unstimulated 

cells in HBSS buffer alone. Supernatant was collected and assayed immediately using the 

MPO-ELISA kit (Mercodia Developing Diagnostics, Uppsala, Sweden) according to 

manufacturer’s instructions. 

c) Comparisons with cell-permeable cGMP analogue 

Neutrophil suspensions (1.7×106 cells/mL) were incubated with the cell permeable cGMP 

analogue 8-pCPT-cGMP (0.5mmol/L) for 10minutes and then stimulated with either PMA 

(100nmol/L), or fMLP (1μmol/L) before the addition of CM-H (0.2mmol/L). 

d) Effect of protein kinase G inhibition 

Neutrophil suspensions (1.7×106 cells/mL) were incubated with BNP (1μmol/L) followed 

by KT5823 (PKG inhibitor, 1μmol/L) or DMSO (vehicle control) for 10minutes, then 

stimulated with either PMA or fMLP before the addition of CM-H (0.2mmol/L). 

3.3.2.4 Chemicals 

Refer to section 2.12. 
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3.3.2.5 Statistical analysis  

All normally distributed data are expressed as means ± SEM. Statistical significance was 

determined by Student’s paired t-test. Effects of interventions were assessed by ANOVA. 

GraphPad Prism version 5.04 for Windows (GraphPad Software, San Diego, CA, USA) 

was used. Values of P<0.05 were considered statistically significant.  

3.3.3 Results  

3.3.3.1 O2
- and MPO generation during neutrophil burst 

The rate of O2
- accumulation significantly increased upon stimulation of neutrophils with 

PMA (approximately 13 fold increase), and fMLP (approximately 2.5 fold increase) 

(Figure 3-2). Specificity of O2
- anion detection by the spin probe-CMH was confirmed by 

inhibition of EPR signal with the NAD(P)H oxidase inhibitor diphenyleneiodonium (DPI; 

see Methods). There was also a 2-fold increase of MPO release from PMA-stimulated 

neutrophils compared to baseline state (Figure 3-3).  
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Figure 3-2: O2
– production in neutrophils with both PMA (n=20) and fMLP (n=16) 

stimulation. 

Note suppression of PMA-induced O2
- release with DPI. ***P<0.001 

 

Figure 3-3: BNP and cGMP analog, 8-pCPT-cGMP effects on neutrophil MPO 

release. 

n=6; **P<0.01 
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3.3.3.2 Effects of BNP and of cGMP analogue on neutrophil O2
- and MPO generation 

BNP caused concentration-dependent suppression of PMA-stimulated O2
- release (P<0.01, 

ANOVA; Figure 3-4), with the maximum effect occurring at 1μmol/L. We therefore 

evaluated BNP effects at this concentration throughout the remainder of the study. BNP 

suppressed PMA-induced O2
- release by 23±6% (P<0.001), and fMLP-induced O2

- release 

by 24±8% (P<0.05; Figure 3-5). This effect of BNP is not affected by age or gender. 

Importantly, BNP in this concentration did not affect either basal O2
- release from 

neutrophils (basal: 1.36±0.2 µM/106cells/minute, vs BNP: 1.31±0.2 µM/106cells/minute; 

n=13) or resting neutrophil MPO content or PMA-stimulated MPO release (Figure 3-3). 

Analogously, the cGMP analogue 8-pCPT-cGMP suppressed both PMA- and fMLP-

induced O2
- release (by 16% and 28% respectively; P<0.05, Figure 3-6), but had no 

statistically significant effects on resting neutrophil MPO content or PMA-stimulated MPO 

release (Figure 3-3). 

 

Figure 3-4: Concentration response relationship for BNP suppression of PMA-

stimulated O2
- release. 
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(n=20 for BNP concentrations of 1μmol/L and 1nmol/L, n=11 for BNP 100nmol/L, and 

n=12 for BNP 10nmol/L; P<0.01 ANOVA). 

 

 

Figure 3-5: O2
--suppressing actions of BNP.  

BNP (1µM) suppresses O2
- release by both PMA (n=20) and fMLP (n=16) * P<0.05; *** 

P<0.001). 

 

3.3.3.3 Effects of PKG inhibition on neutrophil O2
- generation 

Given that O2
- release was inhibited by 8-p-CPT-cGMP, but BNP did not cause a 

significant increase in intracellular cGMP content, we sought additional clarification  for 

the signal transduction pathway for BNP-induced suppression of O2
- release, utilizing the 

protein kinase G inhibitor KT5823 (1µmol/L). KT5823 alone exert no significant effect on 

PMA-induced (Δ -10±5%) or fMLP-induced (Δ -16±11%) O2
- release. However, KT5823 

attenuated by approximately 65% the effects of BNP on O2
- release in the presence of 
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PMA (P<0.05, Figure 3-7), with a trend towards similar effect on fMLP-mediated O2
- 

release. 

 

Figure 3-6: O2
--suppressing actions of cGMP analogue.  

8-pCPT-cGMP (0.5mmol/L) suppressed both PMA- (n=9) and fMLP- (n=8) induced 

neutrophil O2
- generation. 
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Figure 3-7: Effects of PKG inhibitor KT5823 (1μmol/L) on O2
--suppressing actions of 

BNP.  

n=5; *P<0.05. 

 

3.3.4 Discussion  

This study, performed in healthy subjects, has some important new findings regarding 

neutrophil physiology. Firstly, BNP inhibited neutrophil O2
- generation stimulated by both 

PMA and fMLP. Secondly, this BNP effect was mimicked by a cGMP analogue, 8-pCPT-

cGMP, and abolished by a PKG inhibitor KT5823. We therefore infer that this effect of 

BNP is likely to be mediated by the cGMP-PKG pathway.  

Although the molecular mechanisms involved in BNP suppression of the neutrophil burst 

are not fully defined, the fact that suppression could be elicited with a variety of factors 



92 

 

suggested some possible mechanisms. The suppressing effect of BNP on neutrophil O2
- 

generation stimulated by both PMA and fMLP is analogous to that previously reported  in 

a study utilizing NO donors ( 4-aryl-substituted oxatriazol derivatives) (Moilanen et al. 

1993). Similarly, previous studies showed that a cell-permeable cGMP analogue, N2,2’-O-

dibutyryl guanosine 3’:5’-cyclic monophosphate (db-cGMP) inhibited O2
- generation 

stimulated by fMLP and platelet-activating factor. Also, db-cGMP inhibited fMLP-induced 

neutrophil degranulation (Ervens, Schultz & Seifert 1991; Wenzel-Seifert, Ervens & 

Seifert 1991). 

The potential limitation of the current study is the uncertainty as to whether the currently 

demonstrated effects of BNP in vitro are physiologically relevant. While the utilized 

concentrations of BNP (Figure 3-4) may occur in the settings of increased BNP release 

with HF (Maisel, A 2002), we chose primarily 1µmol/L BNP throughout the study on the 

basis that this would provide reproducible and substantial response. Identification of 

precise threshold concentration for BNP effect in vitro would serve little purpose, given 

that it would not necessarily correspond to in vivo responsiveness: it is commonly the case 

for responsiveness to agonists in vitro to be lower than that seen in vivo. 

Importantly, the cell-permeable cGMP analogue, 8-p-CPT-cGMP mimicked the effect of 

BNP (Figure 3-6).  We also investigated the effect of PKG inhibition on the suppression of 

the neutrophil burst by BNP (Figure 3-7). KT5823 inhibited the effect of BNP and 

confirmed our postulate that this effect of BNP is cGMP-mediated.  

The inhibition of neutrophil activation by BNP is of potential importance not only in host 

defense circumstances, but also in cardiovascular diseases, such as acute MI, AF, and HF, 

in which neutrophil-mediated inflammatory response plays a major role. Wiedermann and 

colleagues demonstrated that ANP inhibited fMLP-induced chemotaxis of neutrophils 
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(Wiedermann et al. 1992); and that stimulation of migration of neutrophils by fMLP is 

inhibited in the presence of ANP. In isolated rat cardiomyocytes, BNP also limits O2
- 

generation (Lin et al. 2012); these myocardial effects also appear to be modulated by 

cGMP-dependent signaling (Laskowski et al. 2006). 

In a cardiovascular context, we speculate that BNP may function to limit inflammatory 

responses in the presence of tissue infiltration by neutrophils. The current data raise the 

important issue of whether this may be relevant to limitation of myocardial injury 

following onset of infarction.  
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3.4 BNP effects on neutrophil O2
- production-acute and chronic HF 

3.4.1 Introduction: 

B-type natriuretic peptide (BNP) has a wide range of important physiological effects, 

including natriuresis, diuresis, vasodilation, and inhibition of rennin-angiotensin-

aldosterone system RAAS and sympathetic nervous systems (Kita et al. 1989; Lang et al. 

1991; Wambach & Koch 1995). BNP is involved in regulation of cardiac and renal 

homeostasis, with beneficial effects mediated by stimulation of cellular membrane-bound 

particulate guanylyl cyclase (pGC), leading to formation of cGMP, and resulting in smooth 

muscle relaxing and vasodilating effects (see (Zois et al. 2014) for review). 

Congestive heart failure (HF), which remains a major health-care problem (Go et al. 2013; 

Nieminen et al. 2006), is associated with BNP up-regulation (Gardner et al. 2003; Hobbs, 

FD et al. 2002). In theory, this should tend to restore cardiovascular homeostasis. Early 

clinical trials showed that systemic infusion of Nesiritide, a recombinant human BNP, 

improves hemodynamic parameters in acutely decompensated hearts (Abraham et al. 1998; 

Chandra et al. 2008; Colucci et al. 2000; Hobbs, RE et al. 1996; Mills et al. 1999). 

However, the ASCEND-HF trial (O'Connor et al. 2011) demonstrated that Nesiritide, 

relative to placebo, did not reduce the rate of death and re-hospitalization after 30 days’ 

therapy in patients with acute decompensated HF. Moreover, Nesiritide did not 

significantly reduce dyspnea when utilized in combination with standard HF therapies. 

This raises the possibility of attenuated BNP response in such patients. However, to date, 

the issue of variability in tissue responsiveness to BNP has received relatively little 

attention. While data in animal models of congestive HF provided some support for the 
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concept of “BNP resistance” (Baerts et al. 2012), this possibility has yet to be evaluated in 

humans. 

It is increasingly clear that in many patients HF is associated with inflammatory activation 

within the myocardium, largely mediated by neutrophil infiltration and associated 

generation of reactive oxygen species (ROS), especially superoxide (O2
-) (Amir et al. 2009; 

Charniot et al. 2008; Koba, Gao & Sinoway 2009; van Empel et al. 2006). There is 

evidence that subsets of leukocytes markedly and differentially modulate inflammatory 

activation (Vaduganathan et al. 2013). BNP is known to exert anti-inflammatory and anti-

fibrotic effects. It may well be that suppression of O2
- release by BNP (Liu, S et al. 2014) 

limits myocardial inflammation in many forms of acute HF (Neil, C et al. 2012; Ogawa, T 

et al. 2008) . 

We have recently demonstrated in neutrophils obtained from healthy subjects that BNP 

suppresses phorbol 12-myristate 13-acetate (PMA)- and N-formyl-methionyl-leucyl-

phenylalanine (fMLP)-stimulated O2
- generation (Liu, S et al. 2014). The cell-permeable 

cGMP analogue (8-pCPT-cGMP) suppressed both PMA- and fMLP-induced neutrophil 

O2
- release. Furthermore, an inhibitor of cGMP-protein kinase (KT5823) attenuated the 

suppressing effects of BNP on both fMLP- and PMA-associated O2
- production. These 

findings therefore suggest that the O2
- suppressing effect of BNP utilizes the pGC/cGMP 

signaling pathway. 

However, to date the impact of incremental BNP release from the myocardium on 

neutrophil ROS release has not been evaluated in the context of HF, either acute or chronic. 

In the current study, in neutrophils obtained from patients with acute and chronic HF, we 

focused on the ability of BNP to suppress O2
- generation by NAD(P)H oxidase, and (1) 

examined whether it is different from that in healthy subjects, (2) evaluated potential 
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mechanism(s) underlying this putative change and (3) determined whether such effects 

persist during chronic treatment for HF.  

3.4.2 Methods: 

3.4.2.1 Study Cohort: 

A total of 29 healthy subjects with no previously recorded cardiac dysfunction and 45 HF 

patients admitted to a tertiary care hospital (The Queen Elizabeth Hospital, Adelaide, 

Australia) with a primary diagnosis of acute HF but without planned coronary 

revascularization and/or valve replacement were compared. Consistent with international 

guidelines (McMurray et al. 2012; Yancy et al. 2013), the diagnosis of acute HF was based 

on the presence of dyspnea at rest or on minimal exertion, together with physical and 

radiological signs of fluid overload and echocardiographic evidence of systolic and/or 

diastolic left ventricular (LV) dysfunction.  

All patients underwent early assessment and simultaneous venesection after (median: 2 

days) hospital admission for determination of acute responses to BNP. Following 

stabilization and at least 3 weeks’ (median: 5 weeks) treatment, patients were approached 

regarding repeat evaluation (n=25). Plasma concentrations of NT-proBNP were 

determined at admission and follow up via Roche CARDIAC® proBNP (NT-proBNP assay) 

(Roche Diagnostics, Mannheim, Germany).  

The study was approved by the Ethics of Human Research Committee of The Queen 

Elizabeth Hospital (Adelaide, Australia), and informed consent was obtained prior to study 

entry. 
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3.4.2.2 Blood sampling and preparation of neutrophils  

Refer to section 2.2. 

3.4.2.3 Electron Paramagnetic Resonance Spectroscopy measurement of ROS  

Refer to section 2.5. 

3.4.2.4 Immunoblot analysis of p47phox and phosphorylation of p47phox in neutrophils  

Refer to section 2.6.  

3.4.2.5 Assessment of Endothelial Function 

Refer to section 2.7. 

3.4.2.6 Assessment of Platelet Response to NO 

Refer to section 2.8. 

3.4.2.7 Chemicals  

Refer to section 2.12. 

3.4.2.8 Data analysis 

All normally distributed data are expressed as means ± SEM or as median for skewed data. 

Statistical significance was determined by Student’s paired t-test for normally distributed 

data and via paired Wilcoxon test for non-Gaussian data. Effects of interventions were 

assessed by ANOVA. We also sought to identify determinants of variable BNP effects and 

platelet NO response among HF patients by backwards stepwise multiple linear regression 

analysis. For BNP effects, left ventricular ejection fraction (LVEF), gender, diabetes 
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mellitus and therapy with aldosterone antagonists, ACE inhibitors and perhexiline were 

utilized as potential correlates. For NO responses, gender, NYHA class, diabetes mellitus 

and therapy with statins and aldosterone antagonist were considered as potential correlates. 

Clinical correlates of changes in neutrophil responses to BNP with treatment of HF were 

evaluated via univariate analysis followed by backwards stepwise multiple logistic 

regression: - parameters evaluated in this respect were patients’ age, duration of therapy, 

change in NT-proBNP levels, change in NYHA functional status and hs-CRP levels. 

GraphPad Prism version 5.04 for Windows (GraphPad Software, San Diego, CA, USA) 

and IBM SPSS software version 21 (Chicago, Illinois, USA) was used. Values of P<0.05 

were considered statistically significant.   

3.4.3 Results 

3.4.3.1 Subject/patient characteristics and pharmacotherapy:  

Table 3-1 summarizes the clinical characteristics of patients admitted with acute HF and 

control subjects. The two groups differed as regards symptomatic status, comorbidities (e.g. 

diabetes), and age. Moreover only the acute HF patients were receiving pharmacotherapy. 

At baseline, NT-proBNP levels were markedly elevated in acute HF patients. In 

approximately 80% of acute HF patients, there was a longstanding history of impaired LV 

function, with at least 1 previous admission: hence the background of extensive 

pharmacotherapy. Consistent with the known effects of treatment with ACE inhibitors and 

perhexiline on the cGMP-system (Chirkov & Horowitz 2007), platelet NO responsiveness 

was within the normal range (Table 3-1). Furthermore, plasma ADMA concentrations were 

significantly higher in both acute and chronic HF patients than those seen in control 

subjects.  
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Table 3-1: Patients/Control subjects characteristics and pharmacotherapy: 

 

- =not assessed. LVEF, left ventricular ejection fraction; NYHA class, New York Heart 

Association class; NT-proBNP, N-terminal pro B-type natriuretic peptide; hs-CRP, High-

sensitivity C-reactive protein; AIx, augmentation index; ADMA, asymmetric 

 Control 

(29) 

Acute HF 

(45) 

Treated HF 

(25) 

Age (years±SEM) 44±3 71±2** 69±2 

Gender (M/F) (%) 52/48 69/31* 63/37 

Previous myocardial infarction (n/%) 0/0 6/13 4/16 

Diabetes mellitus (n/%) 0/0 20/44** 13/52 

LVEF %  - 35±2 34±3 

NYHA class 

I (n/%) 0/0 0/0 0/0 

II (n/%) 0/0 0/0 7/28# 

III (n/%) 0/0 24/53** 12/48 

IV (n/%) 0/0 21/47** 6/24 

NT-proBNP (pg/mL; median) <60 3613 2409 

hs-CRP (mg/L; median) 1.0 14** 4.5### 

Vascular NO 

responses (δAIx) 

δ AIx Salbutamol 370±48 - 360±48 

δ AIx  NTG 317±42 - 297±48 

ADMA (μmol/L) 0.58±0.02 0.70±0.02** 0.68±0.02 

SNP-induced inhibition of aggregation (%)  30±5 37±5 31±6 

Therapy 

ACE inhibitor (%) 0 49** 70# 

ARB (%) 0 11 7 

Statin (%) 0 51** 52 

Aldosterone antagonist (%) 0 33* 59## 

β-blocker (%) 0 60** 81## 

Perhexiline (%) 0 22* 15 

Digoxin (%) 0 29* 48# 

“Triple therapy” (%) † 0 18* 40## 
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dimethylarginine; SNP, sodium nitroprusside; ACE, angiotensin-converting-enzyme; ARB, 

angiotensin receptor blocker; β-blocker, β-adrenoreceptor blocker. 

δAIx in response to salbutamol and NTG is expressed as area under the response-time 

curve. * P<0.05, ** P<0.0001, compared with control group. The comparison between 

acute HF and treated HF was based only on the 25 patients who had been evaluated at 

both time points (# P<0.05, ## P<0.001, ###P<0.0001). 

† “Triple therapy” refers to those patients receiving combinations of: (a) ACE inhibitor or 

ARB; (b) β-adrenoceptor antagonist; (c) Aldosterone antagonist. 

 

3.4.3.2 Effects of BNP and cGMP analogue on whole blood ROS and neutrophil O2
– 

generation in acute HF patients. 

Baseline whole blood total ROS content did not vary significantly between control subjects 

and acute HF patients, nor did incubation with BNP for 10 minutes significantly alter ROS 

content in either control subjects or acute HF patients (two-way ANOVA, Figure 3-8 A). 

Furthermore, both BNP and the cell permeable cGMP analogue, 8-pCPT-cGMP, did not 

significantly affect O2
- generation by neutrophils (without PMA or fMLP stimulation) in 

either normal subjects or acute HF patients (Figure 3-8 B). In control subjects, consistent 

with our previous observations (see section 3.3), BNP suppressed PMA- and fMLP-

induced O2
- generation by 23.6±4.7% and 33.3±5.8% respectively (P<0.05 for both). In 

contrast, there was significant attenuation of this effect of BNP in the acute HF patients 

relative to control subjects (Figure 3-9), with only 4.3±4.7% suppression of PMA-induced 

O2
- generation by BNP (P=NS).  
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Figure 3-8: Lack of effect of BNP on whole blood ROS (A) and O2
- generation by un-

stimulated neutrophils (B).  

Data for control subjects (n=14) and patients with acute HF (n=15) are compared, and no 

significant differences were observed. In no case did BNP have a significant effect in either 

control subjects or acute HF patients (two-way ANOVA). Neutrophil counts in whole blood 

were greater in HF patients than control subjects (on average: 137.5×103 vs 87.5×103 

cells/sample). 
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Figure 3-9: Comparison of BNP effects on PMA-stimulated (A) and fMLP-stimulated 

(B) O2
- generation by neutrophils from acute HF patients (n=45) and control subjects 

(n=29).   

Raw data for acute HF patients (C) and control subjects (D). *P<0.05  
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The observed decrease in BNP response in acute HF patients was not correlated with 

platelet response to SNP (Table 3-1). On multivariate analysis, no significant correlates of 

response to BNP could be identified. Furthermore, the effects of the cell permeable cGMP 

analogue, 8-p-CPT-cGMP, in suppressing PMA-induced O2
- generation did not vary 

significantly between acute HF patients and control subjects (Figure 3-10). 

 

Figure 3-10: Suppression of O2
- generation by the cGMP analogue 8-pCPT-cGMP 

(0.5mmol/L) in neutrophils from acute HF patients and control subjects.  

 

3.4.3.3 BNP effects on phosphorylation of p47phox in acute HF patients 

As p47phox phosphorylation is critical for NAD(P)H oxidase activation and priming, we 

compared the BNP effects on this process in neutrophils from healthy control subjects and 

patients with HF. In control subjects (n=7), fMLP-induced p47phox Ser345 

phosphorylation was inhibited by 17.5±11% in the presence of BNP (p<0.05). In acute HF 

patients (n=9) no significant changes in p47phox phosphorylation occurred after 

incubation with BNP (P=0.25 versus control, Figure 3-11). 
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Figure 3-11: BNP effect on phosphorylation of p47phox Ser345. 

A: In acute HF patients (n=9) there is loss of the BNP (1μmol/L) suppresses p47phox 

Ser345 phosphorylation stimulated by fMLP, which is seen in neutrophils from 

healthy subjects (n=7). The relative ratio of p47phox Ser345/total p47phox for samples 

treated with fMLP was taken as control (100%). *P<0.05.  

B: Representative immunoblots: - acute HF patient and control subject. Note 

suppression of phosphorylation of Ser345 by BNP in control subjects but not acute HF.  
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3.4.3.4 Impact of chronic treatment of HF 

Patients (n=25) receiving intensified treatment including ACE inhibitors, aldosterone 

antagonists and β-adrenoceptor antagonists were re-evaluated after 5 weeks (median) 

(Table 3-1). 52% of this group of patients had improved by at least 1 functional NYHA 

class. However, NT-proBNP plasma levels had not decreased significantly (median: 3613 

to 2409 pg/mL). Paired evaluation of BNP responses before and after this incremental HF 

treatment (Figure 3-12) revealed partial restoration (P<0.05) of inhibition of O2
- generation 

with treatment. On univariate analysis, decrease in NT-proBNP level was not predictive of 

this progressive re-sensitization (Figure 3-13). Moreover, on multivariate analysis no 

relationship was found between BNP effect on neutrophils and duration of treatment, age, 

NT-proBNP, hs-CRP, or NYHA class.  

Neither in vitro platelet response to SNP, in vivo vascular responsiveness to salbutamol or 

NTG, or plasma ADMA concentrations correlated significantly with BNP effects on O2
- 

generation.  
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Figure 3-12: Impact of 3 weeks’ therapy on BNP-induced suppression of PMA-

stimulated O2
- generation in neutrophils from HF patients. 

n=25; *P<0.05. 

 

 

Figure 3-13: Correlation between fall in NT-proBNP level and re-sensitization of BNP 

effect after HF treatment.  

r=0.17; P=0.47. 
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3.4.4 Discussion 

We have characterized suppression of neutrophil O2
- generation (PMA- or fMLP-

stimulated neutrophil burst) by BNP as a measure of its physiological activity in the 

previous section (section 3.3). The central finding of the current study is that this effect of 

BNP is attenuated in acute HF patients, thus constituting “BNP resistance”. This 

observation is of potential clinical importance for the management of acute and chronic HF, 

from both a mechanistic and therapeutic perspective. From a mechanistic point of view, 

HF is characterised by substantial release of BNP, largely due to ventricular distension 

(Yasue et al. 1994). Yet, this release fails to restore homeostasis. From a therapeutic 

standpoint, there is the issue of the potential benefit of treatment with synthetic BNP 

(Nesiritide) or other BNP analogues: to date such treatment has been disappointing 

(Abraham, Trupp & Jarjoura 2010), and there has been no consistent explanation in the 

literature for this treatment failure.  

We have previously documented that suppression of O2
- release in neutrophils in response 

to BNP is mediated by pGC/cGMP signalling (Liu, S et al. 2014). However, BNP did not 

significantly increase total neutrophil cGMP content, consistent with the relative paucity of 

natriuretic peptide receptor A (NPR-A) in neutrophils(Thom et al. 1997). Therefore, in the 

present study we did not evaluate cGMP accumulation in neutrophils in response to BNP 

because of lack of a reliable detection/quantitation method. Instead, we focused on the 

effects of BNP on NAD(P)H oxidase function. 

The stimulation of neutrophils by PMA and fMLP, with the subsequent phosphorylation of 

p47phox, one of the cytosolic components of NAD(P)H oxidase, is the key process that 

controls and regulates the NAD(P)H oxidase activation (El-Benna et al. 2009; Liu, S et al. 

2014). ROS released upon NAD(P)H oxidase activation can damage surrounding tissues. 
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In the current study, it was found that BNP administration leads to suppressed 

phosphorylation of p47phox in normal subjects, and that this effect tends to be diminished 

in acute HF. Theoretically, this change may represent a desensitization of NPR-A or 

impairment of pGC function in these patients, and may not be the only change in either 

NAD(P)H oxidase or neutrophil function induced in the presence of BNP.  

Scientific evidence to date to substantiate a condition of tissue resistance to BNP in 

congestive HF has been limited. It has been reported that in chronic HF patients the 

vasodilator effects of BNP are impaired (Nakamura, M et al. 1998), and suggested that 

high endogenous BNP levels are associated with the down-regulation of cardiac BNP 

receptors, contributing to the progression of HF (Tsutamoto, Wada, Maeda, Hisanaga, 

Maeda, et al. 1997). Furthermore, in dogs with severe congestive HF induced by rapid 

ventricular pacing, both the vasodilator response to BNP and the associated cGMP 

generation were attenuated in comparison with controls (Matsumoto et al. 1999). 

Importantly, BNP-induced increases in plasma cGMP level were lower in HF dogs 

compared with control animals (Lainchbury et al. 2000).  

Furthermore, NPR-A protein levels are reduced in kidney membranes of mice with HF 

induced by aortic constriction (Bryan et al. 2007), and expression of the cardiac NPR-A 

has been reported to be diminished in an animal model of HF (Dickey et al. 2007). Also, 

density of NPR-A in the heart and coronary arteries of humans with ischemic HF is 

decreased (Singh, G et al. 2006). Prolonged ANP exposure reduced NPR-A receptor 

density in a number of cell lines with consequent implications of diminution in 

responsiveness to both ANP and BNP (Flora & Potter 2010).  

Although a direct assessment of BNP receptor in the current setting would be desirable, the 

low number of NPR-A receptors on neutrophils (Thom et al. 1997) would render the 
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detection of partial desensitization difficult. However, it is clear from the current results 

that distal to NPR-A(pGC) the BNP signalling pathway is intact. Indeed, while the 

suppressing effects of BNP on p47phox phosphorylation and O2
- release are diminished in 

neutrophils from HF patients, responsiveness to the cell permeable cGMP analogue, 8-

pCPT-cGMP, was preserved. This implies HF-associated dysfunction of the NPR-A(pGC), 

potentially due to both receptor desensitization and susceptibility of pGC to oxidative 

stress from O2
-. Despite this role of O2

-, there was no correlation between responsiveness 

to BNP and platelet/vascular responsiveness to NO donors in individual patients, 

suggesting that mechanisms of “BNP resistance” are different to those of “NO resistance”, 

based on the impact of oxidative stress on soluble GC (Chirkov & Horowitz 2007). 

With treatment of HF, half of the patient cohort improved symptomatically, although NT-

proBNP levels generally remained elevated. This raises the possibility that more intense 

and/or prolonged HF therapy might have both reduced NT-proBNP levels and 

concomitantly significantly improved neutrophil responses to BNP. Indeed, there is some 

evidence that “BNP-guided therapy” of HF is associated with improved outcomes 

(Porapakkham et al. 2010): one possible mechanism underlying this would be limitation of 

neutrophil O2
– release and thus amelioration of oxidative stress.   

Given that these investigations have been performed in neutrophils rather than myocardial 

cells, it is appropriate to review briefly the roles of neutrophils as modulators of the natural 

history of HF. Previous investigations have documented elevation of neutrophil count 

(Arruda-Olson et al. 2009), and elevation of neutrophil-to-lymphocyte ratio (Benites-

Zapata et al. 2015) in community studies of HF. Furthermore, both in experimental models 

of HF (Kawakami et al. 2004) and clinically (Ladich, Otsuka & Virmani 2014), neutrophil 

infiltration of myocardium is a common finding. Kawakami et al. (Kawakami et al. 2004) 
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documented that in BNP-transgenic mice, the number of neutrophils infiltrating areas of 

infarcted myocardium was significantly increased. Thus it might be postulated that chronic 

elevation of BNP levels (as in HF) results both in increased neutrophil presence in the 

myocardium and loss of the inhibitory role which BNP normally plays in modulating O2
– 

release. 

The question arises as to whether attenuated tissue responsiveness to BNP in acute and 

chronic HF is deleterious. Superficially, the current data add to this suspicion: increase in 

net O2
– generation associated with the “neutrophil burst” would be likely to induce 

aggravation of redox stress, compounding the impact of diminution of hemodynamic and 

natriuretic effects of BNP. It has also recently emerged that BNP may increase 

catecholamine release (Chan et al. 2012). It remains to be determined whether this effect is 

also attenuated in HF: if so, the deleterious effects of “BNP resistance” might be mitigated.   

As stated above, the current data can be taken as a theoretical support for “BNP-guided 

therapy” in HF. Furthermore, it may be possible to maintain tissue responsiveness to BNP 

via appropriate HF pharmacotherapy: in the recently published PARADIGM trial 

(McMurray et al. 2014), the combination of valsartan with the neprilysin inhibitor 

sacubitril (AHU377) was associated with markedly improved outcomes despite greater 

BNP accumulation in plasma. 

Although natriuretic peptides are potentially cardioprotective, our results may help 

rationalize the findings of a recent large clinical trial (O'Connor et al. 2011) that treatment 

with recombinant BNP fails to protect HF patients from rehospitalization and death. Thus, 

amelioration of “BNP resistance” emerges as a relevant therapeutic target in acute HF. 
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3.5 Does increased BNP release “automatically” down-regulate 

neutrophil O2
- generation: studies in Takotsubo Cardiomyopathy. 

3.5.1 Introduction  

Takotsubo Cardiomyopathy (TTC), also called stress-induced cardiomyopathy, apical 

ballooning syndrome or broken heart syndrome, is often confused with acute coronary 

syndrome (ACS) (Bybee et al. 2004; Gianni et al. 2006). TTC occurs predominantly in 

ageing women, and episodes of chest pain corresponding to the onset of TTC are usually 

associated with emotionally or physically stressful events. Irrespective of symptoms, the 

diagnosis of TTC tends to be made on the basis of transient segmental left ventricular (LV) 

wall motion abnormalities particularly involving the LV apex or mid-ventricle without 

obstructive coronary artery disease (CAD) (Gianni et al. 2006). Although the syndrome 

was first recognized and reported by a Japanese group (Dote et al. 1991) it is now 

recognized that TTC occurs frequently in Caucasian populations, and indeed that it 

accounts for up to 10% of “heart attacks” in women aged more than 50 years (Raman et al. 

2014).   

The pathophysiology of the TTC syndrome remains incompletely elucidated at present. 

Among pathophysiological mechanisms which have been proposed are multivessel 

coronary vasospasm, abnormalities in coronary microvascular function or spasm, 

catecholamine-mediated myocardial “stunning”, coronary emboli with spontaneous 

fibrinolysis and/or transient obstruction of the LV outflow tract (Gianni et al. 2006; Prasad, 

Lerman & Rihal 2008). However, more recently, it has emerged that TTC is primarily an 

inflammatory “myocarditis”, with cardiac magnetic resonance imaging (MRI) 
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investigations revealing extensive, although mainly apical, oedematous reactions (Neil, CJ 

et al. 2012). 

The cause of inflammation in TTC is at present not well delineated. Excessive release of 

catecholamines has been suggested to induce redox stress via release of ROS and promote 

inflammatory processes, resulting in myocyte dysfunction and apoptosis. Apart from 

cardiac MRI scanning (Eitel et al. 2010), inflammation has been documented directly via 

endomyocardial biopsies (Nef et al. 2007; Yoshida et al. 2007). Experimentally, a British 

group has provided evidence that TTC may be triggered by β2-adrenoceptor stimulation 

and Gi-based signaling, but did not delineate the basis for inflammatory activation (Paur et 

al. 2012). 

A number of investigations have reported markedly elevated plasma levels of B-type 

natriuretic peptide (BNP) (Akashi et al. 2004; Grabowski et al. 2008) or NT-proBNP (Nef 

et al. 2008) despite the fact that the LV filling pressure is not generally elevated in TTC 

(Akashi et al. 2003; Park et al. 2009). The marked and persistent elevation of NT-

proBNP/BNP levels in TTC is correlated with both the extent of catecholamine increase 

and the severity of LV systolic dysfunction (Nguyen et al. 2011). Furthermore, a study 

conducted by Morel et al. (Morel et al. 2009) demonstrated that in TTC patients, 

inflammatory activation corresponded to the extents of impairment of LV function and 

neurohormonal activation. For example, C-reactive protein (CRP) levels were correlated to 

left ventricular ejection fraction (LVEF) and BNP levels, and plasma leukocyte counts 

were correlated both to BNP and noradrenaline levels (Morel et al. 2009). These data 

extend the argument that the predominant stimulus for BNP release in TTC is 

inflammatory rather than myocardial distension. 
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We have shown (see section 3.3 and 3.4) that BNP inhibited O2
- generation in stimulated 

neutrophils of healthy subjects, and this effect is attenuated in acute HF patients. Given the 

presence of dramatically increased plasma NT-proBNP and BNP levels in acute TTC 

patients as well, the question arises: - “Does increased BNP release “automatically” down-

regulate neutrophil response?” Therefore, the objective of the present study was to 

determine (1) whether BNP-induced suppression of neutrophil O2
- release is also present 

during the acute stages of TTC; (2) what are the determinants of BNP effect in individual 

patients with TTC. 

3.5.2 Methods  

3.5.2.1 Study cohort: 

Patients with TTC were prospectively identified according to the Mayo Clinic criteria 

(Madhavan & Prasad 2010). The study was approved by the institutional Ethics of Human 

Research Committee of The Queen Elizabeth Hospital (Adelaide, Australia), and informed 

consent was obtained prior to study entry.  

All acute TTC patients underwent routine clinical assessment, including ECG monitoring, 

transthoracic echocardiography and coronary angiography. Additionally, blood samples 

were taken for determination of NT-proBNP and hs-CRP levels, and wherever possible 

(based on clinical stability and absence of contra-indications) cardiac MRI was performed 

to (i) exclude MI and (ii) quantitate oedema via T2-based imaging (Neil, C et al. 2012). 

Plasma levels of metanephrine and normetanephrine were determined at the time of 

diagnosis. All acute TTC patients had blood taken for neutrophil evaluation 0.5-5.5 days 

(mean 2.5±0.3 days) post onset of symptoms. Patients were re-approached for evaluation 

of BNP response in neutrophils at least 3 months post onset of symptoms.  
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3.5.2.2 Blood sampling and preparation of neutrophils  

See section 2.2 

3.5.2.3 BNP effects on neutrophil O2
- generation by EPR spectroscopy  

Refer to section 2.5.3 

3.5.2.4 Platelet aggregatory and determination of platelet response to SNP 

Refer to section 2.8 

3.5.2.5 Chemicals  

Refer to section 2.12 

3.5.2.6 Data analysis 

All normally distributed data are expressed as means ± SEM. Statistical significance was 

determined by Student’s t test for paired normally distributed data. GraphPad Prism 

version 5.04 for Windows (GraphPad Software, San Diego, CA) was used. Values of 

p<0.05 were considered statistically significant.  

Comparisons were made between TTC patients (n=19), and control subjects (n=16, 

aged >40 years). In order to evaluate the time course of putative changes in BNP response 

in TTC, we correlated duration of symptoms (from the time of onset of symptoms till 

blood sampling). Also, correlations were sought between plasma NT-proBNP levels, 

platelet responsiveness to SNP, patients’ inflammation status, LVEF, pulmonary capillary 

wedge pressure (PCWP), systolic blood pressure on admission, catecholamine release and 

impact of angiotensin converting enzyme (ACE) inhibitors and residual BNP response. 
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3.5.3 Results 

3.5.3.1 Patient characteristics  

The clinical characteristics of the 19 acute TTC patients are summarized in Table 3-2. All 

patients were female, aged >40 years, and none had evidence of pulmonary congestion 

although LV systolic function varied substantially.  

Evaluation occurred 0.5 to 5.5 days post onset of symptoms: this corresponded to marked 

but variable evaluation of NT-proBNP and hs-CRP, with 6 of the 19 patients having started 

treatment with ACE inhibitors at the time of blood sampling.  

Table 3-2: Clinical characteristics of TTC 

TTC patients  N=19 

Age (years±SEM) 70±2 

Sex (M:F) 0:19 

Peak troponin (ng/L) 441±62  

LVEF (%) 44±2 

T2 score (median) #  0.65 

Normetanephrine (pmol/L, median) 1230 

Metanephrine (pmol/L, median) 230 

Peak NT-proBNP (pg/mL, median) 4569 

hs-CRP (mg/L, median) 7.2 

ACE inhibitor therapy (n/%) 6/32 

# Method of (Neil, C et al. 2012); Normal range: 0.47±0.04 arbitrary units 
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3.5.3.2 Effects of BNP on neutrophil O2
– generation in TTC patients 

As regards the impact of BNP in suppressing PMA- and fMLP-induced O2
- release in TTC 

patients, significant attenuation was observed compared to control subjects (Figure 3-14): - 

in general, there was no suppression of O2
- release in the TTC population, but there was 

considerable inter-individual variability.  

 

Figure 3-14: Comparison of BNP effects on neutrophils O2
- generation between 

control subjects and TTC patients.  

(A) BNP effects on PMA-induced O2
- generation: Control (n=16), TTC patients (n=19). 

*P<0.05. 

(B) BNP effects on fMLP-induced O2
- generation: Control (n=11), TTC patients (n=13). 

*P<0.05. 

 

The age of the TTC cohort was significantly greater than that of the control subjects (mean 

ages 70±2 and 58±2 years respectively, P<0.01). Furthermore, only 69% of the control 
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subjects were females. Of the control subjects, 9 were age-matched females (mean age 

60±3 years). In these subjects, BNP induced similar suppression of O2
- release to the entire 

control group (20±7 % for PMA-stimulation; and 30±8 % for fMLP-stimulation). 

3.5.3.3 Correlations of clinical parameters with BNP effects 

Among TTC patients, no correlation was observed between metanephrine, 

normetanephrine, hs-CRP (Figure 3-15), LVEF, T2 score, troponin T, peak NT-proBNP 

levels (Figure 3-16) and BNP response; furthermore duration of symptoms (2.5±0.3 days) 

was also not a significant determinant of BNP response (Figure 3-17); moreover, unlike 

controls, platelet responsiveness to SNP was not correlated with the residual BNP response 

in TTC patients (Figure 3-18). 

 

Figure 3-15: Correlation between hs-CRP levels and extent of BNP effects on 

neutrophil O2
- generation.   

r=0.1, P=NS. 
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Figure 3-16: Correlation between plasma NT-proBNP levels and extent of BNP 

effects on neutrophil O2
- generation.  

r=0.08, P=NS. 

 

Figure 3-17: Correlation between duration of onset symptoms and extent of BNP 

effects on neutrophil O2
- generation.  

r=0.004, P=NS. 



119 

 

 

Figure 3-18: Correlations between BNP effects in isolated neutrophils and SNP 

responsiveness in whole blood. 

(A) TTC patients (r=0.08, P=NS); (B) Healthy control subjects (r=0.54, P=0.02).  
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3.5.3.4 Impact of treatment of TTC 

Acute TTC patients, 5 in whom initial BNP response was blunted were re-approached after 

at least 3 months recovery. The NT-proBNP level was 206pg/mL (median), which is 

significantly decreased compared to peak levels in acute phase.  However, no improvement 

was observed with neutrophil response to BNP (Figure 3-19). 

 

Figure 3-19: Comparison of BNP effects on neutrophil O2
- generation in response to 

PMA between acute and follow up TTC patients.  

 

3.5.4 Discussion  

In this pilot study we found that the suppressing of O2
– generation effect of BNP is 

attenuated in patients in the acute stages of TTC, in association with marked increases of 

plasma levels of NT-proBNP. Thus, TTC, like acute HF, is associated with suppression of 

BNP effect.  

The patients concerned were studied more than 12 hours after the onset of symptoms, at 

which time there was no correlation between plasma NT-proBNP levels and residual BNP 
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effect. Thus the study did not reveal: (1) The time course for suppression of BNP effect; (2) 

The extent of BNP release necessary to induce such suppression. However, the results of 

this pilot study can be combined with those of the experiment described in chapter 3.4 to 

infer that suppression of BNP effect is likely to result from BNP release per se, rather than 

from associated redox stress. 

Chan et al. (Chan et al. 2012) demonstrated that both BNP-induced and NO-induced 

release of cGMP could under some circumstances perpetuate increased catecholamine 

release. It remains to be seen whether progressive attenuation of BNP-based signaling in 

TTC functions in part to “turn off” the potential vicious cycle of associated cGMP release 

and continuing catecholamine effects on the myocardium. 

Although the molecular mechanisms involved in TTC pathophysiology have not been fully 

defined, the fact that inflammatory processes induce cardiac damage is clear. Recent 

studies demonstrated that TTC is associated with intense myocardial inflammation (Eitel et 

al. 2010; Nef et al. 2007; Yoshida et al. 2007) and “inflammatory” BNP release (Akashi et 

al. 2004; Grabowski et al. 2008; Nef et al. 2008; Nguyen et al. 2011), which is a different 

mechanism of BNP release compared to that in HF patients (in which the elevated BNP 

levels is predominantly due to increased ventricular stress). Paradoxically, this could result 

in rapid suppression of the BNP-mediated signal transduction, and thus perpetuation of the 

inflammatory response.  

The data on recovery of BNP signaling are only fragmentary, but even with n=5 patients it 

appears that a considerable period of time elapses before normal function is restored after 

TTC. Interestingly, this was despite the fact that NT-proBNP levels had returned almost to 

normal values. It is possible that factors other than extent of BNP elevation, such as redox 

stress, contribute to down-regulation of BNP signaling in this circumstance.  
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Although this pilot study establishes that BNP-based anti-inflammatory signaling is 

attenuated in TTC, it leaves several key questions unanswered. First, does this attenuation 

also apply to the vasodilator effects of BNP, which have been postulated to play a role in 

the early hypotension and shock seen in some patients (Chong et al. 2013). Second, does 

BNP signaling recover? In general, BNP levels fall progressively over the first 3 months 

post onset of TTC (Nguyen et al. 2011) and restoration of BNP-based anti-inflammatory 

effects might be relevant to the eventual resolution of symptoms. However, the data on 

follow-up patients were very limited. Finally, is suppression of BNP effect “inevitable” for 

all conditions where BNP levels are markedly elevated for any length of time? If this is the 

case, the homeostatic role of BNP is actually a very limited one.  

  



123 

 

Chapter 4: Summary, conclusions and future perspectives: 

Although extensive research efforts have been made in the past decades, cardiovascular 

disease, together with cancer, remains the most important cause of death in Western 

societies (Stewart et al. 2001), and the underlying pathophysiological mechanisms remain 

incompletely understood. B-type natriuretic peptide (BNP) is a well-known endogenous 

vasodilator, which also exerts natriuretic and anti-hypertrophic effects and improves left 

ventricular (LV) relaxation (Potter, Abbey-Hosch & Dickey 2006). As LV distension in 

heart failure (HF) stimulates BNP release, this could be expected to restore cardiovascular 

homeostasis, as should exogenous administration of BNP. However, clinical data suggest 

that HF may be associated with tissue resistance to BNP (O'Connor et al. 2011), and it is 

possible that this resistance represents the main limitation to efficacy of BNP-based 

therapeutics.  

The objective of the current PhD project was to address a number of issues regarding 

attenuated BNP effects in cardiovascular diseases. A state of prolonged exposure to high 

concentrations of BNP/NT-proBNP both in HF and Tako-tsubo cardiomyopathy (TTC) 

patients might theoretically be associated with BNP receptor desensitization or 

internalization.  

This thesis encompasses three studies designed to address the possibility of attenuated 

BNP effects in cardiovascular disease. The first part of the thesis describes studies 

performed in isolated human neutrophils obtained from healthy subjects, focusing on BNP 

effect on the neutrophil burst, an effect which was evaluated when it became clear that 

BNP stimulation induced too little release of cGMP for routine quantitation. The second 

part focuses on the effects of BNP on neutrophil superoxide (O2
-) generation in patients 
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with HF, both acute and chronic. The third part of the experimental studies was performed 

in TTC patients to examine whether the markedly elevated circulating BNP levels 

desensitize BNP response. 

1) In control subjects (without diagnosed cardiovascular disease), we have identified a 

novel effect of BNP in suppressing the release of the inflammatory modulator O2
- from 

isolated neutrophils. This effect of BNP is likely to be mediated by the cGMP-PKG 

pathway, because BNP effect is mimicked by a cGMP analogue and abolished by a 

PKG inhibitor.  

Although neutrophil O2
- generation has long been recognized as an important component 

of host defense systems to protect the body from the injuries of microbial organisms, it 

plays a pivotal role in the pathophysiology of cardiovascular disease as an important 

source of reactive oxygen species (ROS) generation. The suppressing effect of BNP on 

neutrophil O2
- generation might have clinical importance as BNP has beneficial effects on 

myocardial ischemia-reperfusion injury (Burley & Baxter 2007; Hu et al. 2014; Ren et al. 

2010; Sun, YG et al. 2010; Wu, B et al. 2009), by reducing the expression of pro-

inflammatory cytokines, apoptosis, myocardial kinases and thus limiting infarct size. The 

next issue, therefore, is whether this potentially beneficial effect is maintained in the 

presence of incremental BNP release, as in acute (and chronic) HF: if so, BNP-based 

therapy might be useful in limiting inflammatory responses. 

The O2
- suppressing effect currently demonstrated with BNP is in contrast to previous 

studies which have reported priming effects of A-type natriuretic peptide and BNP on 

neutrophil O2
- release (Garlichs et al. 1999; Wiedermann et al. 1992). However, the O2

- 

suppressing effect is analogous to that seen in previously studies utilizing nitric oxide 
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donors, which are known to activate soluble guanlyly cyclase to produce cGMP (Ervens, 

Schultz & Seifert 1991; Moilanen et al. 1993; Wenzel-Seifert, Ervens & Seifert 1991).  

2) The effects of BNP in suppressing O2
- generation are significantly attenuated in 

patients with acute HF, but recover partially with chronic treatment of HF: - better 

recovery tends to occur in younger patients. Furthermore, the cGMP analog effect on 

neutrophil O2
- generation in acute HF patients is similar to that in control subjects. 

“BNP resistance” has been described in a number of studies (Baerts et al. 2012; Nakamura, 

M et al. 1998; Tsutamoto, Wada, Maeda, Hisanaga, Maeda, et al. 1997). The finding in the 

present study extends this conclusion, thus explaining the ineffectiveness of Nesiritide as a 

HF treatment. The attenuated BNP effects might also contribute to perpetuation of 

inflammatory activation in acute HF patients. Circulating “BNP” measured by current 

methods, might not entirely reflect the active BNP1-32 (Liang et al. 2007): - other forms of 

BNP fragments have been identified as well as increased activity of BNP degradation 

enzymes (Boerrigter et al. 2009; Boerrigter et al. 2007; Brandt et al. 2006; Muller et al. 

1992; Pankow et al. 2007; Ralat et al. 2011; Toll et al. 1991). Understanding of BNP 

biology and physiology is still limited, and more information regarding its processing, 

bioactivity and clearance in different disease states is required to enable the effects of BNP 

to be utilized optimally for HF management.  

3) In the acute stage of TTC, suppression of O2
– generation effect by BNP is attenuated, 

in association but not in proportion with marked increases of plasma levels of NT-

proBNP. This might be particularly important in TTC, where both BNP elevation 

(Nguyen et al. 2011) and myocardial inflammation (Neil, C et al. 2012) have been 

shown to persist for at least 3 months after acute attacks. Potentially therapeutic 

restoration of BNP effect might accelerate recovery.  
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The results of the current study demonstrating attenuated BNP effects in acute TTC, with 

marked elevated BNP levels, suggest that this is a “general” response to elevated levels. 

While the beneficial effects of BNP are lost, any residual BNP-induced cGMP formation 

might promote catecholamine release (Chan et al. 2012) and further harm the myocardium 

in TTC patients. 

The studies described in this thesis therefore add another aspect to the understanding of 

BNP effects in HF patients and may guide the development for the pharmacotherapy of HF. 

A number of residual issues should be addressed in future research studies. Specifically 

mechanistic studies on attenuated BNP responsiveness in cardiac tissue should be 

performed in animal model. Furthermore, BNP effect on reducing inflammation should be 

studied in cardiomyocytes. It should not be assumed that oxidative stress within 

myocardium is of indirect “infiltrative” origin: the main source of cardiac ROS is 

myocardial cells. Moreover, hypotension is one of the side effects for Nesiritide therapy, 

and BNP exerts vasodilatory effects as well: - therefore, evaluating vascular responses to 

BNP in HF settings is essential to understand the role of BNP in the pathophysiology of 

HF. BNP responsiveness should also be evaluated with different circulating BNP levels to 

work out whether there is a correlation between BNP response and BNP levels. 

Furthermore, it will be interesting to examine the BNP effects in recovered TTC patients.  

Finally, the precise nexus between integrity of BNP signaling and suppression of 

neutrophil O2
– release is of further interest. The attenuation of a biochemical response to 

BNP, whether it is purely cGMP production or O2
– suppression, presumably reflects either 

down-regulation or internalization of natriuretic peptide receptors. The mechanics of this 

process have not been evaluated to date. It is even possible that oxidative stress engendered 

by O2
– release might predispose towards down-regulation or internalization of these 
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receptors, contributing to the potential for a “vicious cycle” effect in acute HF. The highest 

priority should therefore be accorded to elucidating these mechanisms.   
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Addenda and corrigenda 

1. Issue of systolic left ventricular function in heart failure patients.  

It is certainly true that the pathophysiology of heart failure would vary in patients with 

and without substantial impairment of left ventricular systolic function. In fact, in 20% 

of the heart failure population evaluated in chapter 3, LVEF was >40%. 

2. Inter-individual variability in heart failure patients.  

The pathophysiology of heart failure population is multifactorial. It will be ideal to 

subgroup the patients in regarding of BNP responsiveness. However, the total number 

of patients recruited in this project is not big enough to do so, and this is also a 

limitation of the study which has been stated in the thesis. 

3. Role of natriuretic peptide fragments in suppression effect. 

So far, systematic study of the effects of different BNP fragments has not been carried 

out, although it is clear that several fragments are biologically active. Indeed, this 

could be helpful for understanding of the whole story, answering the question with 

regard to impaired BNP responsiveness and guiding the development of more effective 

therapies.  

4. Neutrophil stability. 

All experiments have been done immediately and within 3 hours of isolation of 

neutrophils. Diminution of effect over time has been observed in some cases with 

fMLP stimulation; therefore, all of the fMLP-related measurements were performed at 

the very beginning.  

5. Is wall stress the only BNP release stimulus?  
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Although it has been suggested that end diastolic wall stress is the key determinant of 

BNP release, recent publications implicated other stimuli such as inflammation. 

Furthermore, the “active BNP1-32” is not the only circulating forms of BNP that has 

physiological effects (see 3 above). Available commercial BNP assays do not 

differentiate between different fragments. Subsequent studies using chromatographic 

assays could be aimed at those aspects. 

6. The ASCEND-HF trial may have failed for other reasons.  

The results of the ASCEND-HF trial indicated that “nesiritide (synthesis BNP) cannot 

be recommended for routine use in the broad population of patients with acute heart 

failure”, because that Nesiritide has no effect either on the rate of death and 

rehospitalization or dyspnea when used in combination with other therapies. One 

possibility is lack of effective receptors for nesiritide: - the predominant active 

natriuretic peptide receptor in heart failure may be NPR-B rather than NPR-A. 

However, nesiritide was associated with an increase in rates of hypotension suggesting 

at least some biological activity.  

7. Caveat: neutrophils are not equal to other cells.  

This is true. In this particular study we chose neutrophils as the study tissue because: 

(1) neutrophils have been suggested to play an important role in cardiovascular 

diseases; (2) they are readily accessible in vivo, unlike myocardium.  

8. Basis for recovery could involve change in spectrum of natriuretic peptide fragments.  

This is possible; however, this has not been assessed in this particular study.  

9. Non-recovery in TTC suggests that the processes not just BNP-mediated.  

In this research project, we only obtained recovery data from 5 TTC patients, which is 
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obviously too small a number to draw a final conclusion. Other factors such as 

severity of the initial attack or treatment could also be involved in the recovery of BNP 

effects in such patients.  
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