Fine Mapping of Nematode Resistance Genes *RInn1* and *Cre8* in Wheat (*Triticum aestivum*)

A thesis submitted in fulfillment of the requirements for the degree of the Doctor of Philosophy at the University of Adelaide

By

Dimanthi Vihanga Jayatilake

School of Agriculture, Food and Wine

Faculty of Sciences

The University of Adelaide

September, 2014

List of Abbreviations

- 7AL long arm of chromosome 7A
- 6BL long arm of chromosome 6B
- RLN root lesion nematodes
- CCN cereal cyst nematodes
- QTL quantitative trait loci
- MAS marker-assisted selection
- AFLP amplified fragment length polymorphism
- DH doubled haploid
- RFLP restriction fragment length polymorphism
- STS sequence tagged site
- SSR simple sequence repeat
- BAC bacterial artificial chromosome
- NBS nucleotide-binding-site
- LRR leucine-rich-repeat
- DAI days after inoculation
- qPCR quantitative real-time polymerase chain reaction
- DArTTM Diversity Arrays Technology

- SNP single nucleotide polymorphism
- ISBP insertion site based polymorphism
- KASP[™] Kompetitive allele-specific polymerase chain reaction
- GBS genotyping-by-sequencing
- PCR polymerase chain reaction
- LOD likelihood of odds
- SM single marker analysis
- SIM simple interval mapping
- CIM composite interval mapping
- MIM multiple interval mapping
- WGAIM whole genome average interval mapping
- LRS likelihood ratio statistics
- EST expressed sequence tags
- Pt Puccinia triticina
- Pgt Puccinia graminis
- BLUPs best linear unbiased predictions
- RI recombinant inbred
- HRM high resolution melting technology
- BLUEs best linear unbiased estimates

FISH - fluorescent in-situ hybridisation

- BS bootstrap support
- TILLING targeting induced local lesions in genomes
- FISHIS fluorescent in-situ hybridization in suspension

Table of contents

List of Tables	viii
List of Figures	x
List of Appendices	xiv
Abstract	xvi
Thesis declaration	xviii
Acknowledgements	xix
Chapter 1: Introduction	1
Chapter 2: Literature review	6
2.1 Root lesion nematodes	6
2.1.1 Resistance against <i>Pratylenchus neglectus</i> in wheat	
2.1.2 Pratylenchus neglectus resistance locus Rlnn1	9
2.1.3. Other important genes mapped near <i>Rlnn1</i>	10
2.1.3a Phytoene synthase gene <i>Psy-A1</i> and the catalase gene <i>Cat3-A1</i>	10
2.1.3b Rust resistance genes on 7AL	
2.2 Cereal cyst nematodes	
2.2.1 Resistance against <i>Heterodera avenae</i> in wheat	
2.2.2 Heterodera avenae resistance locus Cre8	16
2.2.3. Plant defence responses to cereal cyst nematode infection	
2.3 Evaluation of resistance against <i>H. avenae</i> and <i>P. neglectus</i>	

2.4 Molecular markers, linkage and QTL mapping
2.4.1 Molecular markers
2.4.2 Linkage mapping
2.4.3 QTL mapping
2.5 Research gaps
2.6 Overall research goal
Chapter 3: Genetic mapping and marker development for resistance of wheat against the
root lesion nematode Pratylenchus neglectus
3.1 Statement of Authorship
3.2 Abstract
3.3 Keywords
3.4 Background
3.5 Results
3.6 Discussion
3.7 Conclusions
3.8 Methods
Chapter 4: Suppressed recombination in a region of wheat chromosome 7A that carries loci
affecting resistance against a root lesion nematode and fungal pathogens
4.1 Statement of Authorship
4.1 Introduction
4.2 Part A – Improving the Excalibur/Kukri chromosome 7A linkage map and refining the
map position of the <i>Rlnn1</i> locus
4.2.1 Objectives

4.2.2 Methods
4.2.3 Results
4.3 Part - B: Is recombination suppressed in the distal end of chromosome 7AL?
4.3.1 Objective
4.3.2 Method
4.3.3 Results
4.4 Part - C: What causes the suppressed recombination?
4.4.1 Objective
4.4.2 Method
4.4.3 Results
4.5 Discussion
Chapter 5: Genetic mapping of the Cre8 locus for resistance against cereal cyst nematode
Chapter 5: Genetic mapping of the <i>Cre8</i> locus for resistance against cereal cyst nematode (<i>Heterodera avenae</i> Woll.) in wheat
Chapter 5: Genetic mapping of the <i>Cre8</i> locus for resistance against cereal cyst nematode (<i>Heterodera avenae</i> Woll.) in wheat
 Chapter 5: Genetic mapping of the <i>Cre8</i> locus for resistance against cereal cyst nematode (<i>Heterodera avenae</i> Woll.) in wheat
 Chapter 5: Genetic mapping of the <i>Cre8</i> locus for resistance against cereal cyst nematode (<i>Heterodera avenae</i> Woll.) in wheat
Chapter 5: Genetic mapping of the <i>Cre8</i> locus for resistance against cereal cyst nematode (<i>Heterodera avenae</i> Woll.) in wheat
Chapter 5: Genetic mapping of the Cre8 locus for resistance against cereal cyst nematode 116 (Heterodera avenae Woll.) in wheat 116 5.1 Statement of Authorship 118 5.2 Abstract 120 5.3 Keywords 120 5.4 Introduction 120 5.5 Materials and methods 122
Chapter 5: Genetic mapping of the Cre8 locus for resistance against cereal cyst nematode 110 (Heterodera avenae Woll.) in wheat 111 5.1 Statement of Authorship 112 5.2 Abstract 120 5.3 Keywords 120 5.4 Introduction 120 5.5 Materials and methods 122 5.6 Results 127
Chapter 5: Genetic mapping of the Cre8 locus for resistance against cereal cyst nematode 110 (Heterodera avenae Woll.) in wheat 110 5.1 Statement of Authorship 111 5.2 Abstract 120 5.3 Keywords 120 5.4 Introduction 120 5.5 Materials and methods 122 5.6 Results 122 5.7 Discussion 132
Chapter 5: Genetic mapping of the Cre8 locus for resistance against cereal cyst nematode 110 (Heterodera avenae Woll.) in wheat 110 5.1 Statement of Authorship 110 5.2 Abstract 120 5.3 Keywords 120 5.4 Introduction 120 5.5 Materials and methods 122 5.6 Results 122 5.7 Discussion 132 Chapter 6: Development of materials for fine mapping Cre8 139

6.2 Methods
6.3 Results and Discussion 141
Chapter 7: General discussion 150
7.1 Genetic mapping of the nematode resistance loci <i>Rlnn1</i> and <i>Cre8</i>
7.2 Towards cloning of <i>Cre8</i> 155
7.3 Suppressed recombination at the distal end of chromosome 7AL in Excalibur/Kukri
genetic material158
7.4 A translocation at the distal end of 7AL? 160
7.5 Other possibilities 165
7.6 Future prospects for <i>Rlnn1</i>
7.7 Resistance responses of <i>Cre8</i> and <i>Rlnn1</i> resistance locus
Chapter 8: Contributions to knowledge 172
References
Appendix 1: Supplementary material of Chapter 3 199
Appendix 2: Supplementary material of Chapter 4 232
Appendix 3: Supplementary material of Chapter 5
Appendix 4: A first look at the infection of cereal cyst nematode (Heterodera avenae
Woll.) and establishment of syncytia in wheat carrying the Cre8 resistance
allele
S4.1 Introduction
S4.2 Methods
S4.3 Results
S4.4 Discussion

List of Tables

Table 3.1: PCR markers designed based on five wheat expressed sequence tags (ESTs) 58
Table 4.1: Primer sequences of newly designed molecular markers based on the 9K-iSelect
genotyping array75
Table 4.2: Primer sequences of newly designed insertion site-based polymorphism markers. 77
Table 4.3: Primer sequences of molecular markers designed based on single nucleotide
polymorphisms between Excalibur and Kukri sequences
Table 5.1: Composite interval mapping (CIM) statistics of major quantitative trait loci
(QTL) for resistance against cereal cyst nematode in the Trident/Molineux
doubled haploid population as assessed in experiments conducted in 2004 and
2005
Table S1.1: Rice BLASTN results using query sequences for ESTs from wheat deletion
bins 7AL16-0.86-0.90 and 7AL18-0.90-1.00
Table S1.2: Primer sequences of markers schfc3, sts638, csPSY and PSY7A5
Table S2.1 Polymorphism of 53 KASP [™] markers between Excalibur and Kukri 232
Table S2.2: BLAST hit table of amplicon/EST/contig sequences representing molecular
markers from the terminal cluster of Excalibur/Kukri chromosome 7A linkage
map against chromosome 7A syntenic build 242
Table S2.3: BLAST hit table of amplicon/EST/contig sequences representing molecular
markers from the terminal cluster of Excalibur/ Kukri chromosome 7A linkage
map against chromosome 7B syntenic build
Table S2.4: BLAST hit table of amplicon/EST/contig sequences representing molecular
markers from the terminal cluster of Excalibur/Kukri chromosome 7A linkage
map against chromosome 7D syntenic build 247

Table S2.5: Graphical representation of the genotypes and estimated <i>P. neglectus</i> DNA/pe	ot
of Excalibur, Kukri and 14 informative Excalibur/Kukri recombinant inbred	
lines at the distal end of chromosome 7AL.	248
Table S2.6: Details about the <i>Psy1</i> allele sequences used in the phylogenetic analysis	253
Table S3.1: Primer sequences of KASP TM assays	264
Table S3.2: Primer sequences of HRM and gel-based assays	266
Table S4.1: Analysis of variance (ANOVA) table.	295

List of Figures

Figure 2.1: A schematic representation of the carotenoid biosynthesis pathway of plants
(based on Lu and Li [94]) 12
Figure 3.1: Pratylenchus neglectus resistance of rust-resistant and rust-susceptible
Excalibur/Kukri doubled haploid lines
Figure 3.2: Genetic map of chromosome 7A showing Rlnn1, Lr20/Sr15, Psy-A1 and
molecular marker loci
Figure 3.3: Amplicons of markers wri1, wri2, wri3, wri4 and wri5 separated by agarose gel
electrophoresis
Figure 3.4: High-resolution melting curves for amplicons of markers wri1 (A) and wri3
(B)
Figure 3.5: High-resolution melting curves for amplicons of the co-dominant marker <i>wri1</i> 48
Figure 4.1: Amplicons of marker AWW5L7 separated by agarose gel-electrophoresis
Figure 4.2: Amplicons of markers Cat3-A1 (A) and AWW622 (B) separated by agarose gel-
electrophoresis
Figure 4.3: High-resolution melting curves of insertion site based polymorphism marker
wri41 and wri34 and 9K-iSelect array derived markers wri30 and wri28
Figure 4.4: Genetic map of chromosome 7A showing Rlnn1, Lr20, Sr15, Psy-A1, Cat3-A1
and molecular marker loci
Figure 4.5: Schematic representation of the map positions of common markers between
Excalibur/Kukri and other published linkage maps
Figure 4.6: A graphical illustration of the anchored positions of markers from the 'terminal
cluster' on the Chinese Spring syntenic builds 7A (A), 7B (B) and 7D (C)

Figure 4.7: A graphical representation of the separation and re-ordering of molecular
markers from the distal-end of chromosome 7AL
Figure 4.8: Frequency histogram showing the distribution of 94 Excalibur/Kukri
recombinant lines carrying the Excalibur allele at the marker <i>wri2</i>
Figure 4.9: Frequency histogram showing the distribution of 626 Excalibur/Kukri
recombinant inbred lines carrying Excalibur allele at the marker wri2
Figure 4.10: Re-evaluation of <i>P. neglectus</i> DNA/pot in Excalibur, Kukri and six
Excalibur/Kukri recombinant inbred lines carrying Excalibur allele at the
marker <i>wri2</i>
Figure 4.11: Best linear unbiased estimates of <i>P. neglectus</i> DNA/pot of Excalibur, Kukri
and 14 Excalibur/Kukri recombinant lines and 6 Excalibur/Kukri recombinant
inbred line progeny carrying informative recombinations at the distal end of
7AL
Figure 4.12: Estimated P. neglectus nematode DNA/pot in Excalibur, Kukri and 25 pairs of
Excalibur/Kukri recombinant inbred 'sister-lines'.
Figure 4.13: Alignment of sequences of <i>PSY7A5_F/R</i> amplicons from cultivar
Figure 4.13: Alignment of sequences of <i>PSY7A5_F/R</i> amplicons from cultivar Schomburgk to an extraction of the <i>Psy-A1t</i> allele sequence of the breeding
Figure 4.13: Alignment of sequences of <i>PSY7A5_F/R</i> amplicons from cultivar Schomburgk to an extraction of the <i>Psy-A1t</i> allele sequence of the breeding line WAWHT2074 [GenBank:HM006895] and the <i>Psy-A1s</i> allele sequence of
 Figure 4.13: Alignment of sequences of <i>PSY7A5_F/R</i> amplicons from cultivar Schomburgk to an extraction of the <i>Psy-A1t</i> allele sequence of the breeding line WAWHT2074 [GenBank:HM006895] and the <i>Psy-A1s</i> allele sequence of the cultivar Schomburgk [GenBank:EU649795]
 Figure 4.13: Alignment of sequences of <i>PSY7A5_F/R</i> amplicons from cultivar Schomburgk to an extraction of the <i>Psy-A1t</i> allele sequence of the breeding line WAWHT2074 [GenBank:HM006895] and the <i>Psy-A1s</i> allele sequence of the cultivar Schomburgk [GenBank:EU649795]
 Figure 4.13: Alignment of sequences of <i>PSY7A5_F/R</i> amplicons from cultivar Schomburgk to an extraction of the <i>Psy-A1t</i> allele sequence of the breeding line WAWHT2074 [GenBank:HM006895] and the <i>Psy-A1s</i> allele sequence of the cultivar Schomburgk [GenBank:EU649795]
 Figure 4.13: Alignment of sequences of <i>PSY7A5_F/R</i> amplicons from cultivar Schomburgk to an extraction of the <i>Psy-A1t</i> allele sequence of the breeding line WAWHT2074 [GenBank:HM006895] and the <i>Psy-A1s</i> allele sequence of the cultivar Schomburgk [GenBank:EU649795]
 Figure 4.13: Alignment of sequences of <i>PSY7A5_F/R</i> amplicons from cultivar Schomburgk to an extraction of the <i>Psy-A1t</i> allele sequence of the breeding line WAWHT2074 [GenBank:HM006895] and the <i>Psy-A1s</i> allele sequence of the cultivar Schomburgk [GenBank:EU649795]
 Figure 4.13: Alignment of sequences of <i>PSY7A5_F/R</i> amplicons from cultivar Schomburgk to an extraction of the <i>Psy-A1t</i> allele sequence of the breeding line WAWHT2074 [GenBank:HM006895] and the <i>Psy-A1s</i> allele sequence of the cultivar Schomburgk [GenBank:EU649795]

resistance on chromosome 6B based on composite interval mapping using data

from 161 Trident/Molineux doubled haploid lines. B) A comparison of the
Trident/Molineux chromosome 6B linkage map of Williams et al. [197] (left)
with the corresponding region of the current map (right)
Figure 5.2: Mean nematode counts for eight genotypic classes of Trident/Molineux lines
with different combinations of alleles at markers linked with the H. avenae
resistance loci Cre5 (gwm359-wmc177), QCre.srd-1B (wmc367-gwm140) and
<i>Cre8</i> (<i>BS00011603</i>)
Figure 5.3: Marker haplotypes for Molineux, Trident and 13 other wheat cultivars
Figure 6.1: An illustration of the crossing procedure in wheat
Figure 6.2: A graphical representation of the chromosome 1BG2, 2A and 6B of TMDH006
and TMDH082142
Figure 6.3: Line means of nematode counts in 2004 versus 2005 of 121 Trident/Molineux
doubled haploid lines
Figure 6.4: $wri15$ assay on 101 F ₁ progeny of a cross between TMDH082 and TMDH006. 145
Figure 6.5: A flow diagram illustrating the population development and screening for
informative recombinants
Figure S1.1: Pairwise recombination fraction and LOD linkage plot of chromosome 7A 199
Figure S1.2: Alignment of sequences of <i>PSY7A5_F/R</i> amplicons from Excalibur and 11
other cultivars to the <i>Psy-A1t</i> allele sequence of the breeding line
WAWHT2074 [GenBank:HM006895] and the <i>Psy-A1s</i> allele sequence of the
cultivar Schomburgk [GenBank:EU649795] 211
Figure S1.3: Alignment of sequences of <i>wri2_F/R</i> amplicons from Excalibur, Kukri and 10
other cultivars
Figure S2.1: Phylogeny of <i>Psy1</i> alleles of wheat and close relatives
Figure S2.2: Sequence alignment of 13 <i>Psy1</i> alleles in the 'Mixed clade'

Figure S3.1 High-resolution melting curves for markers wri6 (A), wri7 (B), wri8 (C) and	
<i>wri9</i> (D)	. 278
Figure S3.2: End-point genotyping clusters for markers wri10 (A), wri11 (B), wri12 (C)	
and <i>wri13</i> (D)	. 280
Figure S3.3: Agarose gel electrophoresis of amplicons of markers wri14 (A), and wri15	
(B) and end-point genotyping scatter plot of amplicons of marker wril6 (C)	. 281
Figure S3.4: Trident/Molineux linkage map	. 288
Figure S3.5 Distributions of <i>Heterodera avenae</i> nematode counts among 38	
Trident/Molineux doubled haploid lines evaluated in pot tests	. 289
Figure S4.1: Cereal cyst nematode development in wheat roots	. 294
Figure S4.2: Nematode count per seminal root in TMDH006 and TMDH082 at 11, 18, 21	
and 25 days after inoculation.	. 296
Figure S4.3: Development of syncytia in TMDH006 and TMDH082 in longitudinal root	
sections from 4, 7, 11 and 18 days after inoculation (DAI) with H. avenae	. 297

List of Appendices

Appendix 1: Supplementary material of Chapter 3	199
Additional file S1.1	199
Additional file S1.2	200
Additional file S1.3	212
Additional file S1.4	218
Additional file S1.5	220
Appendix 2: Supplementary material of Chapter 4	232
Additional file S2.1	232
Additional file S2.2	242
Additional file S2.3	248
Additional file S2.4	252
Additional file S2.5	
Appendix 3: Supplementary material of Chapter 5	264
Online Resource S3.1	264
Online Resource S3.2	
Online Resource S3.3	
Online Resource S3.4	

Appendix 4: A first look at the infection of cereal cyst nematode (Heterodera avenae

Woll.) and establishment of syncytia in wheat carrying the Cre8 resistance
allele

Abstract

The root lesion nematode *Pratylenchus neglectus* and the cereal cyst nematode *Heterodera avenae* cause significant yield damage to wheat (*Triticum aestivum* L.) and crops that are grown in rotation with wheat. The focus of this thesis is on two loci in wheat, *Rlnn1* and *Cre8*, which confer resistance against *P. neglectus* and *H. avenae*, respectively, with an overall scientific goal of characterizing these two resistance loci as an initiative towards isolation of the causal gene(s) and identification of diagnostic molecular markers for the use in marker-assisted selection in wheat breeding programmes.

The thesis presents improvements to an existing Excalibur/Kukri linkage map of chromosome 7A by adding *Lr20* (a gene for resistance against leaf rust caused by *Puccinia triticina*), *Sr15* (a gene for resistance against stem rust caused by *P. graminis*), *Psy-A1* (a phytoene synthase gene), *Cat3-A1* (a catalase gene) and 59 new molecular markers. The genomic location of the *Rlnn1* quantitative trait locus (QTL) was confirmed as the distal end of long arm of chromosome 7A (7AL). It coincides with the position of *Lr20/Sr15*, *Psy-A1*, *Cat3-A1* and 34 molecular markers.

Based on the findings that 1) some markers that collocate with the resistance genes Lr20/Sr15 and Rlnn1 are widely separated in mapping populations that do not segregate for these genes; 2) when anchored to a chromosome 7A syntenic build, these markers spanned a 0.9-Mb region; and 3) no recombinants were found in a large population of recombinant inbred lines, it is suggested that the clustering of molecular markers/genes/QTL at the distal end of 7AL is due to suppressed recombination. The suppressed recombination in Excalibur may be a result of a translocation. This suggestion is based on 1) phylogenetic analysis of *Psy-A1* alleles; 2) marker amplification patterns that suggested that sequences at the distal end of 7AL in Excalibur are very different from those in Kukri and Chinese

Spring; 3) amplicons observed for a normally 7B-specific marker that collocates with *Rlnn1* on 7AL, and 4) FISH images that revealed an unknown putative translocation in Excalibur that is absent in Kukri. It seems likely that the *Rlnn1*-containing segment of 7AL may have been translocated from a 7B-like chromosome arm with an unknown ancestry. Such a translocation could have pre-dated hexaploidisation and occurred in a tetraploid or diploid ancestor.

The thesis also presents a high-resolution genetic linkage map for a Trident/Molineux population. This map was used to confirm the locations of three previously reported QTL for *H. avenae*, including the *Cre8* locus mapped as a large-effect QTL at the distal end of the long arm of chromosome 6B (6BL), with an estimated position 0.9 cM from the closest markers. A cross was designed and made to develop a population for future use in fine mapping. With these materials and with the closely-linked molecular markers developed here, *Cre8* seems amenable to positional cloning.

In the research conducted for this thesis, the *Rlnn1* and *Cre8* resistance loci were mapped at the distal ends of 7AL and 6BL, respectively and diagnostic markers were identified for the use in marker-assisted selection. A suppressed recombination at the end of 7AL impedes the prospects of cloning *Rlnn1*, while the research reported here have identified suitable markers and genetic resources for cloning the *Cre8* gene with a forward genetics approach.

Thesis declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

.....

.....

Signature

Date

Acknowledgements

I extend my sincere gratitude to my supervisors Prof Diane Mather and Associate Prof Ken Chalmers for their guidance, support and encouragement throughout my PhD candidature. I am extremely grateful for their advice, lengthy discussions and 'open door' policy which allowed me to meet them whenever I needed guidance. I especially thank Prof Diane Mather for her comments and suggestions on thesis and manuscripts and for the fast turnaround time between drafts despite her busy schedule. I thank my postgraduate coordinator Dr Matthew Denton and my external advisor Dr Klaus Oldach for their support. With much appreciation, I thank collaborators: Ms Elise Tucker, Dr Harbans Bariana, Dr Peng Zhang, Dr Melissa Garcia, Mr John Toubia, Mr John Lewis, Dr Alan McKay, Dr James Edwards, Dr Haydn Kuchel, Mr Paul Eckermann, Dr Julia Brueggemann, Dr Susanne Dreisigacker, Dr Matthew Hayden, Mr Gabriel Keeble-Gagnère and Dr Simen Rød Sandve for their contribution and valuable advice. I also wish to thank Prof Peter Langridge for providing the plasmid DNA for the AWBMA20 clone. A big thank you goes to Ms Danuta Pounsett for helping out with the P. neglectus phenotyping, Dr Matthew Tucker, Ms Jessika Aditya and Dr Marilyn Henderson for helping me with the microscopy work, Ms Margaret Pallotta for providing primers and for valuable advice, Dr Julian Taylor for providing custom scripts in R for statistical work. I am very thankful to Dr Kelvin Khoo, Mr Greg Lott, Dr Ming Li and Dr Beata Sznajder for their valuable advice and support given to me though out my research. A special thank you to Mr Andreas Stahl and Mr James Lee for helping me out in DNA extraction and marker assays. I thank the other members of the molecular marker lab, past lab members and colleagues from ACPFG for their support and encouragement. I wish to acknowledge the Grains Research and Development Corporation, Australia for funding the research project and the University of

xix

Adelaide, Australia for the Adelaide Scholarship International. I thank the Australian Grain Technologies and the Australian Centre for Plant Functional Genomics for development of the Excalibur/Kukri populations and providing seeds. Last but not least, to my husband Kanishka Ukuwela for helping me with the phylogenetics analysis and for being there for me at all times. I thank my family and friends for supporting and encouraging me in all I do.