Dynamic Imaging of Hepatitis C Virus RNA Localisation and Traffic During Viral Replication

Guillaume Nicolas Fiches Engineer in Biotechnology and Biochemistry (National Institute of Applied Sciences, Lyon, France)

Department of Molecular and Cellular Biology School of Biological Sciences The University of Adelaide

A dissertation submitted to The University of Adelaide in candidature for the degree of Doctor of Philosophy in the Faculty of Science March 2015

Table of Content

Table of Content	i
List of Figures	vii
List of Movies	xiii
List of Tables	xv
Abstract	xvi
Declaration	xviii
Acknowledgements	xix
Presentations Arising From PhD	xx
Publication Arising During PhD	xxi
Awards Received During PhD	xxii
Abbreviations Used	xxiii
Materials Providers	xxix
Chapter 1	1
Introduction	1
1.1 Hepatitis C virus a major worldwide health concern	1
1.1.1 Discovery	1
1.1.2 Epidemiology	2
1.1.3 Treatment	2
1.1.4 HCV transmission	4
1.2 HCV biology	5
1.2.1 HCV genome	5
1.2.2 HCV genotypes	6
1.2.3 HCV viral particles	7
1.2.4 HCV entry	7
1.2.5 Viral translation	9
1.2.6 Viral replication	
1.2.7 Viral assembly and release	
1.3 HCV model systems	

1.3.1 HCV replicon system	17
1.3.2 Retroviral pseudo-particles	18
1.3.3 Infectious HCV genomes	
1.4 Live imaging of viral life cycles	19
1.4.1 Introduction	19
1.4.2 HCV NS5A live imaging	20
1.4.3 MS2 bacteriophage based system for live RNA imaging	23
1.5 Hypothesis and Aims	26
Chapter 2	27
Materials and Methods	27
2.1 General Molecular Biology Methods	27
2.1.1 Synthetic oligonucleotides	27
2.1.2 Bacterial transformation	27
2.1.3 Mini-preparation (small scale) of plasmid DNA	28
2.1.4 Maxi-preparation (large scale) of plasmid DNA	28
2.1.5 Restriction endonuclease digestion	29
2.1.6 Agarose gel electrophoresis	29
2.1.7 DNA Ligation	29
2.1.8 Gel purification	30
2.1.9 DNA sequencing	30
2.1.10 Extraction of total RNA	
2.1.11 Nucleic acid quantification	
2.1.12 cDNA preparation	32
2.1.13 Polymerase Chain Reaction (PCR)	33
2.1.14 MS2 stem loop amplification using Deep Vent _R TM DNA polymerase	33
2.1.15 PCR products for deep sequencing analysis	34
2.1.16 Real-Time Quantitative PCR	35
2.1.17 Extraction of cellular proteins	36
2.1.18 SDS-PAGE and protein transfer	
2.1.19 Western blotting	37
2.1.20 Immunoprecipitation of protein-RNA complexes	37
2.1.21 Renilla Luciferase Assays	39
2.1.22 Small insertions using oligo-duplexes	39
2.2 Tissue Culture Techniques	40

	2.2.1 Tissue Culture Medium	. 40
	2.2.2 Cell maintenance	. 41
	2.2.3 Trypan blue exclusion	. 41
	2.2.4 Cryopreservation of cells	. 42
	2.2.5 Resuscitation of frozen cells	. 42
	2.2.6 Transient transfection	. 43
	2.2.8 Generation of stable cell lines	. 43
	2.2.9 FACS	. 45
	2.2.10 Colony formation efficiency assay	. 46
2	.3 Cell lines	47
	2.3.1 Huh-7.5	. 47
	2.3.2 Huh-7.5 + MS2.Coat-mCherry	. 47
	2.3.3 Huh-7.5 expressing NLS-MS2.Coat-mCherry	. 47
	2.3.4 Huh-7.5 expressing Rab18-GFP	. 48
	2.3.6 HCV subgenomic replicon cell lines SGR/5A-TCM+3'UTR:MS2	. 48
2	.4 HCVcc Infectious System	49
	2.4.1 In vitro RNA transcription	. 49
	2.4.2 HCV RNA transfection	. 50
	2.4.3 Titration of infectious virus – Focus Forming Assay (FFA)	. 51
	2.4.4 Generation of stable cell lines harbouring autonomous HCV subgenomic replicon	
	replication	. 52
2	2.5 Fluorescence Microscopy	53
	2.5.1 Coverslip preparation	. 53
	2.5.2 Fixation	. 53
	2.5.3 Immunofluorescence labelling	. 55
	2.5.4 BODIPY® 493/503: lipid droplet staining	. 55
	2.5.5 DAPI nuclear staining	. 56
	2.5.6 Slide mounting	. 56
	2.5.7 Microscope specification	. 57
	2.5.8 Deconvolution	. 57
2	.6 Live cell microscopy	58
	2.6.1 Glassware	. 58
	2.6.2 Tetracysteine tag labelling using FlAsH or ReAsH biarsenical dyes	. 58
	2.6.3 Lipid Droplet labelling using BODIPY 493/503 staining for live cell imaging	. 61

2.6.4 Labelling of SNAP-tagged NS5A using SNAP-Cell® TMR-STAR	61
2.6.5 Live cell imaging	62
2.6.6 Movie formatting	62
Chapter 3	63
An in vitro Cell Culture Model to Study HCV RNA in Live Cells	63
3.1 Introduction	63
3.1.1 Generation of a HCV (Jc1)-based cell culture model carrying MS2 stem loop cassettes	, 65
3.1.2 Generation of a replicon based research model	67
3.2 Subgenomic replicon cell culture models	68
3.2.1 Insertion of stem loop arrays within the 3'UTR does not abolish replication	68
3.2.2 Generation of stable clones	70
3.2.3 Stability of the loop insertions	71
3.2.4 Deep sequencing analysis of adaptive mutations	73
3.3 Full-length HCV cell culture models	76
3.3.1 Replication efficiency of the MS2 stem loop tagged Jc1 derivatives.	
3.3.2 Long term culture	78
3.3.3 Long term presence of the loops within the 3'UTR	79
3.3.4 The loss of the MS2 stem loop repeats restores infectivity	81
3.4 Discussion	83
Chapter 4:	89
HCV RNA Localisation and Traffic in Living Cells	89
4.1 Introduction	89
4.2 Generation of an MS2.Coat–mCherry fusion protein as a reporter for	
tagged-HCV RNA	91
4.2.1 Stable expression of MS2.Coat-mCherry fluorescent fusion protein	91
4.2.2 Expression of MS2.Coat-mCherry does not affect the susceptibility of cells to (Jc1) infection.	o HCV 94
4.2.3 MS2.Coat – mCherry fluorescent fusion protein binds to HCV RNA containi stem loops	ng MS2 95
4.2.4 MS2.Coat – mCherry fluorescent fusion protein does not interfere with HCV replication	
4.3 NS5A as a marker for HCV replication	99
4.3.1 TCM insertion into NS5A enables its imaging with minimal impact on viral	fitness.
	100

4.3.2 Localisation and traffic of NS5A in living cells during a productive infection 10
4.4 HCV RNA imaging in live cells10
4.4.1 Redistribution of mCherry fluorescence
4.4.2 HCV RNA traffic
4.4.3 Analysis of movement
4.5 Signal-to-Noise Ratio (SNR) improvement11
4.5.1 Flow cytometry 110
4.5.2 Incorporation of a nuclear localisation signal into MS2.Coat-mCherry fusion 11.
4.6 Discussion114
Chapter 5
HCV RNA Traffic with Respect to Intracellular Organelles11
5.1 HCV RNA and NS5A localisation and traffic in living cells11
5.1.1 Introduction
5.1.2 HCV RNA and NS5A partially colocalise in fixed Huh-7.5 cells
5.1.3 HCV RNA co-traffic with NS5A 12
5.1.4 Immunoprecipitation of HCV RNA via NS5A
5.2 HCV RNA and Lipid Droplets13
5.2.1 Introduction
5.2.2 HCV RNA localisation with respect to lipid droplets in fixed cells
5.2.3 HCV RNA traffic with respect to lipid droplets
5.3 Rab18130
5.3.1 Introduction
5.3.2 Generating cell lines expressing Rab18-GFP
5.3.3 NS5A traffic with respect to Rab18
5.4 Discussion14
Chapter 6:
Discussion and Future Directions144
Appendix I – Buffers and Solutions150
Appendix II - Antibodies160
Appendix III - Plasmids162
Appendix IV – Full Listing of SNPs Obtained After Deep Sequencing Analysis.16
Appendix V - Primers
Appendix VI – Cloning Strategy for pLenti6[NLS-MS2.Coat-NLS-mCherry]17

Appendix VII – Sequences of the MS2 Stem Loop Repeats	176
Appendix VIII – Digestion of 24xMS2 Plasmids	180
Appendix IX – Sequencing of Long-Term (8 Days) Cultures	181
Appendix X – Related Publication: Dynamic Imaging of the Hepatitis C Virus NS5A Protein During a Productive Infection	; 193
References	195

List of Figures

Figure Number

Follow page:

Chapter 1

Figure 1.1	Worldwide prevalence of HCV infection in 2008.	2
Figure 1.2	Natural progression of HCV infection.	2
Figure 1.3	Liver degeneration associated with HCV chronic	n
	infection.	2
Figure 1.4	Schematic representation of HCV genome organization.	5
Figure 1.5	Worldwide distribution of the HCV genotypes.	6
Figure 1.6	Schematic representation of HCV entry.	7
Figure 1.7	HCV replication.	10
Figure 1.8	Model of HCV particles biogenesis.	14
Figure 1.9	Schematic representation of the different HCV research	16
	models.	10
Figure 1.10	Schematic representation of the MS2 bacteriophage stem	23
	loop system for RNA tagging.	23

Chapter 3

Figure 3.1 Schematic representation of HCV positive strand 3'UTR

65

Figure 3.2	Schematic representation of JC1/5A-	66
	TCM+3'UTR*(EcoRI/BgIII) positive strand 3'UTR.	00
Figure 3.3	Schematic representation of the Jc1/5A-	((
	TCM+3'UTR:MS2 constructs.	00
Figure 3.4	Schematic representation of SGR/5A-TCM+3'UTR:MS2	67
	constructs.	07
Figure 3.5	Insertion of MS2 bacteriophage stem loops impairs but	20
	does not abolish replication.	08
Figure 3.6	Colonies formation assay.	69
Figure 3.7	Immuno-labelling for HCV antigens in Huh-7.5 stable cell	70
	lines harboring SGR.5A-TCM+3'UTR:MS2.	70
Figure 3.8	Sample of Huh-7.5 stable monoclonal cell lines derived	
	from SGR.5A-TCM+3'UTR:MS2 producing conform	70
	NS5A viral proteins.	
Figure 3.9	PCR products generated after amplification of the 3'UTR	
	from the cDNA of a sample of stable cell lines generated in	71
	Huh-7.5 from SGR.5A-TCM+3'UTR:MS2 plasmids.	
Figure 3.10	Schematic of the deep sequencing experiment investigating	74
	MS2 sub-genomic replicon adaptive mutations.	/4
Figure 3.11	Mutation in the 3'UTR does only cause a minor impact on	
	infectivity of the cloning intermediate Jc1/5A-	77
	TCM+3'UTR*.	
Figure 3.12	Immuno-labelling of HCV antigens (Red) in	
	electroporated Huh-7.5 cells.	77

viii

Figure 3.13	Counting of HCV antigen-positive cells 3 days post-	78
	electroporation.	70
Figure 3.14	Jc1.24xMS2 present a reduced replication efficiency.	78
Figure 3.15	Platinium Taq® amplification over the 3'UTR of virus	80
	cDNA from long term culture (Day 8).	80
Figure 3.16	After 8 days of culture of electroporated Huh-7.5 with	
	Jc1/5A-TCM:MS2x24, the viral population present a wide	80
	range of MS2 insert sizes within the 3'UTR.	
Figure 3.17	Long-term passage of Jc1/5A-GFP+24xMS2 virus.	81
Figure 3.18	Loss of the MS2 stem loop insertion restores infectivity of	87
	the cell culture model.	02

Figure 4.1	Generation of Huh-7.5 cell lines expressing MS2.Coat-	02
	mCherry.	92
Figure 4.2	Detection of mCherry and MS2.Coat-mCherry expression	03
	through Western blotting in the stable cell lines produced.	93
Figure 4.3	Over-expression of MS2.Coat-mCherry does not alter the	04
	susceptibility of Huh-7.5 cells to Jc1 infection.	94
Figure 4.4	Association of MS2 stem loop-tagged HCV RNA with	
	MS2.Coat-mCherry as determined by	
	immunoprecipitation and RT-PCR.	97

Figure 4.5	Stable expression of MS2.Coat-mCherry in Huh-7.5 cells	
	does not impair replication of the SGR/5A-	
	TCM+3'UTR:MS2 sub genomic replicons:	97
	(A) in Huh-7.5 cells expressing MS2.Coat-mCherry.	
	(B) in Huh-7.5 cells expressing mCherry.	
Figure 4.6	Intracellular HCV RNA levels.	100
Figure 4.7	Specificity of tetracysteine-tagged NS5A protein labelling	101
	with biarsenical dye FlAsH-EDT.	101
Figure 4.8	FlAsH labelled NS5A-TCM traffic in living cells (Movie	102
	4.1).	102
Figure 4.9	NS5A-positive motile structures traffic analysis.	102
Figure 4.10	FlAsH labelled NS5A-TCM traffic in living cells (Movie	103
	4.2).	105
Figure 4.11	NS5A GFP traffic in living cells (Movie 4.3).	104
Figure 4.12	Jc1/5A-TCM+24xMS2:3'UTR replication in Huh-7.5+	
	MS2.Coat-mCherry cells induces a specific reorganisation	106
	of mCherry fluorescence to cytoplasmic foci.	
Figure 4.13	HCV RNA traffic in living cells during viral replication	108
	(Movie 4.4).	108
Figure 4.14	HCV RNA traffic in living cells during viral replication	108
	(Movie 4.5).	108
Figure 4.15	HCV RNA traffic in living cells during viral replication	109
	(Movie 4.6).	108
Figure 4.16	Small and motile RNA structure traffic analysis.	109
Figure 4.17	FACS sorting of Huh-7.5 + MS2.Coat-mCherry.	111

Figure 5.1	Schematic of the Replication Complex.	119
Figure 5.2	Immuno-labelling of NS5A and NS3 in infected Huh-7.5.	122
Figure 5.3	Immuno-labelling of NS5A and dsRNA in infected Huh-	100
	7.5.	122
Figure 5.4	3D-Model of relative position of dsRNA with respect to	102
	NS5A-Flag (Movie 5.1).	123
Figure 5.5	Immuno-labelling of core and dsRNA in infected Huh-7.5.	123
Figure 5.6	Co-imaging of HCV RNA and NS5A in living Huh-7.5	126
	+MS2.Coat-mCherry cells (Movie 5.2).	120
Figure 5.7	Figure 5.7: HCV RNA immunoprecipitation via GFP-	100
	tagged NS5A during viral replication.	128
Figure 5.8	Labelling of core and lipid droplets in infected Huh-7.5.	132
Figure 5.9	Labelling of NS5A and lipid droplets in infected Huh-7.5.	132
Figure 5.10	Labelling of dsRNA and lipid droplets in infected Huh-7.5.	133
Figure 5.11	Co-imaging of HCV RNA and lipid droplets in living Huh-	124
	7.5 +MS2.Coat-mCherry cells (Movie 5.3).	154
Figure 5.12	Live fluorescence of Huh-7.5 + Rab18-GFP cell line	138
Figure 5.13	Movement of Rab18-GFP coated lipid droplets (Movie	
	5.4).	120
		139

Figure 5.14 Co-imaging of NS5A and Rab18-GFP in living Huh-

Chapter 6

Figure 6.1Schematic model of HCV replication and assembly.155

List of Movies

Table Number

Chapter 4

- Movie 4.1 FlAsH labelled NS5A-TCM traffic in living cells (Figure 4.9).
- Movie 4.2 FlAsH labelled NS5A-TCM traffic in living cells (Figure 4.10).
- Movie 4.3 NS5A GFP traffic in living cells (Figure 4.11).
- Movie 4.4 HCV RNA traffic in living cells during viral replication (Figure 4.13).
- Movie 4.5 HCV RNA traffic in living cells during viral replication (Figure 4.14).
- Movie 4.6 HCV RNA traffic in living cells during viral replication (Figure 4.15).

Movie 5.1	3D-Model of relative position of dsRNA with respect to	
	NS5A-Flag (Figure 5.4).	
Movie 5.2	Co-imaging of HCV RNA and NS5A in living Huh-7.5	
	+MS2.Coat-mCherry cells (Figure 5.5).	

- Movie 5.3 **Co-imaging of HCV RNA and lipid droplets in living Huh-**7.5 +MS2.Coat-mCherry cells (Figure 5.10).
- Movie 5.4 Movement of Rab18-GFP coated lipid droplets (Figure 5.12).
- Movie 5.5 **Co-imaging of NS5A and Rab18-GFP in living Huh-7.5+Rab18-GFP (Figure 5.13).**

Dear reader,

Please find on this DVD the movies relevant to my thesis. If you are experiencing any problems to play the files, please try installing the free multimedia player VLC, available for either windows (http://www.videolan.org/vlc/download-windows.html) and Mac OS (http://www.videolan.org/vlc/download-macosx.html) or contact Associate Professor Michael Beard (Michael.beard@adelaide.edu.au).

Thanks you for your time.

Best regards,

Guillaume Fiches

List of Tables

Table Number

Follow page:

Chapter 3

	SGR/5A-TCM+MS2:3'UTR in Huh-7.5.	70
Table 3.3	Summarized listing of the stable cell lines generated from	70
Table 3.2	775 (G>C) site-directed mutagenesis primer.	67
	(EcoRI/BgIII).	00
Table 3.1	Primers used to generate Jc1/5ATCM+3'UTR*	

Table 4.1	Primers used for pL6[MS2.Coat-mCherry].	91
Table 4.2	Oligo duplex strategy for pL6[NLS-MS2.Coat-mCherry].	112

Abstract

Much of our understanding of the HCV life cycle and host-viral interactions has evolved from the visualisation of fixed images of infected cells. However, the recent development of live cell imaging techniques now allows viral life cycles to be visualised in live cell cultures. We have tagged the NS5A protein of the infectious Jc1 chimera (J6/JFH-1) with fluorescent tags and shown that NS5A segregates into two distinct populations: one relatively static and one highly motile, although the role and composition of these structures is not well understood. To investigate HCV RNA dynamics throughout the viral life cycle and examine whether either or both sub-classes of NS5A-positive structures are enriched with HCV RNA we developed a system to simultaneously track HCV RNA and NS5A in living cells.

MS2 bacteriophage RNA stem loop sequences (6x /8x /12x /24x repeats) were inserted into the 3'UTR of the Jc1/5A-TCM virus (Jc1/5A-TCM+3'UTR:MS2) to allow indirect tracking of HCV RNA in Huh-7.5 cells via MS2.Coat-mCherry fusion protein that interacts specifically with MS2 stem loops. Jc1/5A-TCM+3'UTR:MS2 viruses replicated to significantly lower levels than the parent Jc1 as assessed by immunofluorescence analysis. However, long-term culture resulted in emergence of more efficient viral replication, with PCR and sequence analysis indicating at least partial retention of MS2 stem loops at 8 days post electroporation of HCV RNA. To further characterize and overcome the replication handicap induced by the insertion of the MS2 stem loop sequences we also generated Huh-7.5 cells that harbour the HCV subgenomic replicon featuring these MS2 stem loops insertions. Deep sequencing analysis was conducted to identify emerging adaptive mutations. However none was found to be particularly predominant.

Most importantly, redistribution of the mCherry tagged-MS2 coat protein from a homogenous cytoplasmic distribution to a more punctate localisation was observed in the context of the full-length viral cultures indicating specific binding to HCV RNA. Using this approach we have simultaneously visualised HCV RNA (MS2.coatmCherry) and NS5A traffic (FlAsH) in real-time during HCV replication. Both HCV RNA-positive small motile and larger static structures were enriched with NS5A. In contrast, a subset of the trafficking NS5A-positive structures was devoid of HCV RNA. We also investigated viral RNA traffic with respect to lipid droplets (LDs) and show that two sub-types of static HCV RNA-positive structures existed: one was closely juxtaposed to LDs while the second sub-class was localised away from LDs. Moreover the system enabled visualization of putative RNA delivery at the LD surface with examples of motile HCV RNA-enriched structures dynamically interacting with LDs. Finally performing co-imaging of HCV NS5A and Rab18, an NS5A-interacting host factor located at the LD surface, we were able to illustrate the often transient nature of NS5A interaction with the LD and putative sampling of the LD that may precede interaction with core and initiation of assembly steps of the viral life cycle. These studies reveal new insights into the dynamics of HCV RNA traffic and the interactions at play in the context of the HCV life cycle.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time

Guillaume Nicolas Fiches

March 2015

Acknowledgements

I first would like to thank my supervisor Associate Professor Michael R. Beard to give me the opportunity to conduct my PhD in his laboratory and for the continued mentoring and support he provided me throughout the years.

I also would like to sincerely thank my co-supervisor Dr Nicholas Eyre for his excellent teaching, encouragements and technical assistance during these years.

I would like to extend my sincere gratitude to all the other members past and present of the Hepatitis C Virus research laboratory and especially Dr Amanda Aloia and Dr Kylie Van Der Hoek for their assistance and friendship.

I would also like to thank Dr Fabio Luciani and Dr Brigit Betz-Stablein (UNSW, Sydney) for their assistance in interpretating the deep sequencing data.

I would also like to thank The University of Adelaide for providing me with an ASI scholarship enabling me to conduct my PhD here in Adelaide.

Finally I would like to thank my family and especially my parents Marie-Christine and Bernard and my brother Anthony for their continued encouragements and support from afar. I would also like to thank my grand-pa Georges for his encouragements but who sadly passed away during the last year of my studies.

Presentations Arising From PhD

International:

20th International Symposium on Hepatitis C and related Viruses, Melbourne – October 2013: Dynamic imaging of HCV Viral RNA traffic and localisation (Oral presentation)

19th International Symposium on Hepatitis C and related Viruses, Venice - October (2012). Dynamic imaging of HCV Viral RNA traffic and localisation (*Poster presentation*)

National:

The Australian Society for Microbiology Annual Scientific Meeting, Adelaide, July 2013: Dynamic imaging of HCV Viral RNA traffic and localisation (Oral presentation)

Australian Centre for HIV and Hepatitis Virology Research Workshop, Adelaide -June 2012: Dynamics of HCV Viral RNA traffic and localisation (*Oral presentation*)

Australian Centre for HIV and Hepatitis Virology Research Workshop, Maroochydore - June 2011: The influence of Hepatitis C Virus genotype on NS5A protein localisation and traffic (*Oral presentation*)

Publication Arising During PhD

Directly related to thesis:

Fiches, G.N., Eyre, N.S., Aloia, A., Van Der Hoek, K., Betz-Stablein, B., Luciani, F., Chopra, A., Beard. M.R., 2015. Dynamic imaging of HCV RNA traffic in living cells. *(In preparation).*

Eyre, N.S., **Fiches, G.N**., Aloia, A.L., Helbig, K.J., McCartney, E.M., McErlean, C.S., Li, K., Aggarwal, A., Turville, S.G., Beard, M.R., 2014. Dynamic imaging of the hepatitis C virus NS5A protein during a productive infection. Journal of virology 88, 3636-3652.

Unrelated to thesis:

Helbig, K.J., Carr, J.M., Calvert, J.K., Wati, S., Clarke, J.N., Eyre, N.S., Narayana, S.K., **Fiches, G.N.**, McCartney, E.M., Beard, M.R., 2013. Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin. PLoS neglected tropical diseases 7, e2178.

Helbig, K.J., Eyre, N.S., Yip, E., Narayana, S., Li, K., **Fiches, G.**, McCartney, E.M., Jangra, R.K., Lemon, S.M., Beard, M.R., 2011. The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A. Hepatology 54, 1506-1517.

Awards Received During PhD

- 2013 20th International Symposium on Hepatitis C and related Viruses, Melbourne, student Travel grant 450\$
- 2013 The Australian Society for Microbiology Annual Scientific Meeting, Adelaide, Bursary Award – 250\$
- **2012** Australian Centre for HIV and Hepatitis Virology Research Workshop, Adelaide, Robert Dixon award 500\$

Abbreviations Used

Α	adenosine
aa	amino acids
AP2M1	clathrin adaptor protein complex 2, μ 1 sub-unit
ApoE	apolipoprotein E
ATP	adenosine triphosphate
BFP	blue fluorescent protein
bp	base pair
BrUTP	5-bromouridine 5'-triphosphate
BSA	bovine serum albumin
°C	degrees Celsius
C	cytosine
cDNA	complimentary deoxyribosenucleic acid
CHC	chronic hepatitis C
cLD	cytoplasmic lipid droplet
CLDN	claudin
CMV	cytomegalovirus
cPLA	cytosolic phospholipase A2
C _T	threshold cycle
DAPI	4', 6-Diamidino-2-pheylinodole
dH ₂ O	deionised water
DAA	direct acting antiviral
DGAT1	diacylglycerol O-acyltransferase 1

DMEM	Dulbecco's Modified Eagle Medium
DMSO	dimethyl sulfoxide
DMV	double-membrane vesicle
DNA	deoxyribosenucleic acid
dNTP	deoxyribosenucleotide triphosphate
ds	double stranded
dsRNA	double stranded RNA
DTT	dithiothreitol
EASL	European Association for the Study of the Liver
ECMV	encephalomyocarditis virus
EDTA	ethylene diamine tetra acetic acid
ER	endoplasmic reticulum
FACS	fluorescence-activated cell sorting
FCS	foetal calf serum
FDA	Food and Drug Administration
ffu	focus forming units
FISH	fluorescent in situ hybridization
FITC	fluorescein isothiocyanate
g	grams
g	G-force
G	guanosine
GAG	glycosaminoglycan
GFP	green fluorescent protein
HBV	hepatitis B virus
HCC	hepatocellular carcinoma

HCV	hepatitis C virus
HCVcc	cell-culture propagated hepatitis C virus
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HIV	human immunodeficiency virus
HRP	horse radish peroxidase
HuH	human hepatoma
h-VAPA	human vesicle-associated membrane protein-associated protein A
h-VAPB	human vesicle-associated membrane protein-associated protein B
HVR1	hyper variable region 1
IFN-α	interferon alpha
Ig	Immunoglobulin
IRES	internal ribosome entry site
ISH	in situ hybridization
IV	intravenous
kb	kilobase
kDa	kilo Dalton
L-Agar	LB + agar
LB	Luria Bertani broth
LD	lipid droplet
LDL	low density lipoproteins
LDLR	low density lipoprotein receptor
LRA	long-range annealing
Luc	luciferase
LVP	lipoviral particle
μg	micrograms

μL	microlitres
μΜ	micromolar
mA	milliamps
mg	milligrams
mL	millilitres
mM	millimolar
MCL	monoclonal cell line
МСР	MS2 bacteriophage coat protein
MCS	multiple cloning site
min	minute
miR-122	micro RNA 122
MLV	murine leukemia virus
MMV	multi-membrane vesicle
MOI	multiplicity of infection
mRNA	messenger RNA
MW	membranous webs
MW	molecular weight
NANBH	non-A, non-B hepatitis
NCR	non coding region
ng	nanograms
nM	nanomolar
NPC1L1	Niemann-Pick C1 like 1
NS	non-structural
NTR	non translated region
nts	nucleotides

OCLN	occludin
OD	optical density
ORF	open reading frame
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PCL	polyclonal cell line
PCR	polymerase chain reaction
PEG	pegylated
PI4KIIIα	phosphatidylinositol 4-kinase III alpha
PI4P	phosphatidylinositol 4-phosphate
RBV	Ribavirin
RC	replication complex
RdRp	RNA-dependent RNA polymerase
RNA	ribonucleic acid
rpm	revolutions per minute
RT	room temperature
RT-PCR	reverse transcriptase polymerase chain reaction
sd	standard deviation
SDS	sodium dodecyl sulphate
sec	second(s)
SL	stem loop
SMV	single-membrane vesicle
SNR	signal-to-noise ratio
SOC	super optimal broth with catabolite repression
SRB1	scavenger receptor class B1

SS	single stranded
SV40	simian virus 40
Т	thymidine
TAE	tris, acetic acid, EDTA (TAE) buffer
TBEV	tick-borne encephalitis virus
tk	thymidine kinase
Tris	tris(hydroxymethyl)aminomethane
U	unit(s)
UTR	untranslated region
UV	ultraviolet
V	volt(s)
VLDL	very low density lipoprotein
v:v	volume per volume
w:v	weight per volume
WHO	World Health Organization
WT	wild-type

Materials Providers

Abcam	Cambridge, UK
Addgene	Massachusetts, USA
Amersham Pharmacia Biotech	Amersham, UK
Amresco	Ohio, USA
Applied Biosystem	Massachusetts, USA
Beckman Coulter	Miami, FL, USA
Bioline	Sydney, Australia
BioVision	San Francisco Bay, USA
Brand	Wertheim, Germany
BioRad Laboratories	California, USA
Clontech	California, USA
Corning	New York, USA
English and Scientific Conslting Kft.	Szirak, Hungary
Eppendorf	Hamburg, Germany
Geneworks	Adelaide, Australia
Genscript	New Jersey, USA
GraphPad	California, USA
Life Technologies	California, USA
Macherey Nagel	Düren, Germany
Merck	County Cork, Ireland
Nalge Nunc International	New York, USA
Nikon	Tokyo, Japan

New England Biolabs	Massachussets, USA
Okolab	Pozzuoli, Italy
Olympus	Tokyo, Japan
Promega	Wisconsin, USA
QIAgen	Limburg, Netherlands
Roche	Indiana, USA
Santa Cruz Biotechnology	Texas, USA
Sigma Aldrich	Missouri, USA
Stratagene	California, USA
Thermo Scientific	Massachusetts, USA
UVP	California, USA