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Abstract

Rolling element bearings are widely used in rotating machinery across various indus-

tries and their failure is a dominant factor that contributes to machinery breakdown,

consequently causing significant economic losses. Numerous experimental and analyt-

ical studies have been conducted in the past to understand the vibration response of

non-defective and defective rolling element bearings, which have localised, extended,

and distributed defects. Previous models have focused on simulating the defect-related

impulses, which are generally observed in practice in measured vibration signals, and

they implement envelope analysis to predict the significant defect-related frequency

components.

The work presented in this thesis is focused on developing an understanding of

the underlying physical mechanism by which defect-related impulses are generated

in defective rolling element bearings. A novel explicit dynamics finite element (FE)

model of a rolling element bearing having a localised outer raceway defect, line spall,

was developed and solved using a commercially available FE software package, LS-

DYNA. In addition to simulating the vibration response of the bearing, the dynamic

contact interaction between the rolling elements and raceways of the bearing were

modelled. An in-depth investigation of the rolling element-to-raceway contact forces

was undertaken and variations in the forces, as the rolling elements traverse through

the defect, were analysed. The contact force analysis has also led to the development

of an understanding of the physics behind the low- and high-frequency characteristic

vibration signatures generated by the rolling elements as they enter and exit a defect.
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It was found that no impulse-like signals are generated during the gradual de-stressing

or unloading of the rolling elements as they enter into a defect, which explains the

low-frequency characteristics of the de-stressing event. In contrast, a burst of multiple,

short-duration, force impulses is generated as the rolling elements re-stress between

the raceways in the vicinity of the end of a defect, which explains the high-frequency

impulsive characteristics of the re-stressing event. Based on the results of the FE

analysis of the rolling element bearing, a mathematical model was developed to predict

the gradual de-stressing of the rolling elements as they enter into a raceway defect.

Experimental testing on a rolling element bearing, commonly used in the railway

industry, and having a line spall machined on its outer raceway was undertaken. The

numerically modelled vibration response obtained using the FE model of the rolling el-

ement bearing was compared with the experimentally measured data, and a favourable

agreement between the modelled and measured results was achieved. Numerical rolling

element-to-raceway contact forces were compared with corresponding analytical results

calculated using a quasi-static load distribution analytical model presented in this the-

sis.

A parametric study to investigate the effects of varying radial load and rotational

speed on the vibration response of the bearing and rolling element-to-raceway contact

forces was undertaken. It was found that the magnitude of the defect-related vibration

impulses and contact forces generated during the re-stressing of the rolling elements

increases with increasing load and speed.

The modelled contact forces were correlated with bearing vibration signals, and it

was found that the amplitude of the contact forces and acceleration produced during

the re-stressing of the rolling elements is much greater than when the rolling elements

strike the defective surface. In other words, although a rolling element can impact the

surface of a defect and generate a low amplitude acceleration signal, a much higher

acceleration signal is generated when the rolling elements are re-stressed between the

raceways as they exit from the defect. These higher acceleration signals, generated

iv



during the re-stressing phase, are the ones that are generally observed in practice, and

subsequently used for bearing diagnosis.

The work presented in this thesis has provided definitive physical and quantitative

explanations for the impulsive acceleration signals measured when a bearing element

passes through a defect.
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Nomenclature

Roman Symbols

ay acceleration of a node within the FE model of the rolling element bearing
in the global cartesian y-direction

b half-contact width at the interface of two contacting isotropic elastic
solid bodies

b
′ , b′′ extremeties of contact width 2b at the rolling element-to-raceway con-

tact interfaces within a rolling element bearing

bx, by half-contact width at the rolling element-to-outer raceway contact in-
terfaces within a rolling element bearing in the global cartesian x- and
y-directions, respectively

B bending stiffness of a plate / the outer ring of the FE model of the
rolling element bearing

c local material sound speed

cb velocity of bending waves

Dc outer diameter of the cage within the FE model of the rolling element
bearing

Di diameter of the inner raceway of a rolling element bearing

Do diameter of the outer raceway of a rolling element bearing

Dp bearing pitch diameter

Dr diameter of the rolling elements within a rolling element bearing

E
′ equivalent modulus of elasticity of two contacting isotropic elastic solid

bodies

E1, E2 modulus of elasticity of isotropic elastic solid bodies ‘1’ and ‘2’

F Hertzian contact force at the interface of two isotropic elastic solid bod-
ies

fbpi inner raceway defect frequency or ball pass frequency inner raceway
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Nomenclature

fbpo outer raceway defect frequency or ball pass frequency outer raceway

fc cage (rotational) frequency

Fdj(grad) gradual variation in the contact forces at the rolling element-to-raceway
contact interfaces within a defective rolling element bearing

Fdj contact force at a jth rolling element-to-raceway contact interface within
a defective rolling element bearing

Fdx horizontal rolling element-to-raceway contact force for a defective rolling
element bearing in the global cartesian x-direction

Fdy vertical rolling element-to-raceway contact force for a defective rolling
element bearing in the global cartesian y-direction

f inoise rolling element-to-inner raceway rolling contact noise frequency

f i−onoise beating noise frequency

Fj contact force at a jth rolling element-to-raceway contact interface within
a non-defective rolling element bearing

Fmax maximum force at a rolling element-to-raceway contact interface within
a rolling element bearing along the load line (y-axis)

f onoise rolling element-to-outer raceway rolling contact noise frequency

frc ring frequency of a cylindrical shell

fs shaft rotational (run speed) frequency

Fx horizontal rolling element-to-raceway contact force for a non-defective
rolling element bearing in the global cartesian x-direction

Fy vertical rolling element-to-raceway contact force for a non-defective rolling
element bearing in the global cartesian y-direction

Ha height of the adapter within the FE model of the rolling element bearing

hc thickness of the cage within the FE model of the rolling element bearing

Hd depth (height) of the outer raceway defect within a rolling element bear-
ing

hi thickness of the inner ring within the FE model of the rolling element
bearing

ho thickness of the outer ring within the FE model of the rolling element
bearing

I impulsive force
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Nomenclature

i imaginary unit (=
√
−1)

j rolling element

K contact stiffness at the interface of two isotropic elastic solid bodies

kzm modal wavenumbers

kcs contact or spring stiffness at the interface of two contacting segments
in an FE model

Kdj stiffness at a jth rolling element-to-raceway contact interface within a
defective rolling element bearing

l length of two contacting isotropic elastic solid bodies

L10 life of a rolling element bearing

Ld length of a localised raceway defect

Le length of an extended defect

lfe smallest characteristic dimension of an element within an FE model

lr length of the rolling elements within a bearing

m axial mode numbers

m1, m2 masses of two segments in contact within an FE model

n circumferential mode numbers

Nr number of rolling elements within a bearing

ns rotational speed of a rolling element bearing

Nw window length

o
′ initial point of contact between two non-conformal isotropic elastic solid

bodies

Pmax maximum pressure at the interface of two contacting isotropic elastic
solid bodies

Q quality factor of a second-order notch filter

rc mean radius of a cylindrical shell

R
′

d curvature difference of two contacting isotropic elastic solid bodies

R
′ curvature sum of two contacting isotropic elastic solid bodies
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Nomenclature

Rx equivalent radius of curvature of two contacting isotropic elastic solid
bodies in the global cartesian x-direction

Rz equivalent radius of curvature of two contacting isotropic elastic solid
bodies in the global cartesian z-direction

Sd profile of the outer raceway defect within a rolling element bearing

T time period of defect-related impulses

t time vector

uy displacement of a node within the FE model of the rolling element
bearing in the global cartesian y-direction

V stressed volume of the bearing material

vy velocity of a node within the FE model of the rolling element bearing
in the global cartesian y-direction

W radial (vertical) load in the global cartesian y-direction

wa width of the adapter within the FE model of the rolling element bearing

x(t) time-varying signal

x̂ (t) analytic signal

Z number of cycles of repeated (stress) loading within a rolling element
bearing

z0 depth at which maximum stress at the rolling element-to-raceway con-
tact interfaces occurs

Greek Symbols

α contact angle within a rolling element bearing

βj a factor for introducing gradual changes at the entry and exit edges of
a defect within a rolling element bearing

δ1, δ2 deformation of isotropic solid elastic bodies ‘1’ and ‘2’

δ total deformation at the contact interface of two isotropic elastic solid
bodies

δdj total contact deformation at a jth rolling element-to-raceway contact
interface within a defective rolling element bearing

δi displacement of the inner ring of a rolling element bearing

δj displacement at a jth rolling element-to-raceway contact interface within
a rolling element bearing
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Nomenclature

δmax maximum displacement at the rolling element-to-raceway contact inter-
face within a rolling element bearing along the load line (y-axis)

δo displacement of the outer ring of a rolling element bearing

δx, δy deformation at the rolling element-to-outer raceway contact interfaces
within a rolling element bearing in the global cartesian x- and y-directions,
respectively

ε load distribution factor for a rolling element bearing

γj a factor that zeros the load distribution outside the load zone within a
rolling element bearing

κ Weibull slope for the experimental life of a rolling element bearing

λb bending wavelength

µ coefficient of friction between mating bearing components in the FE
model of the bearing

ωmn natural frequencies of the outer ring of the FE model of the rolling
element bearing

ν1, ν2 Poisson’s ratio of isotropic elastic solid bodies ‘1’ and ‘2’

∆Ω band width of a second-order notch filter

ωc angular velocity of the cage or rolling elements within a bearing

Ωo notch frequency of a second-order notch filter

ωs angular velocity of the shaft on which a rolling element bearing is in-
stalled

ψ0 initial angular position of the cage within a rolling element bearing

ψc angular position of the cage within a rolling element bearing

∆ψcw angular extent of contact width 2b at the rolling element-to-raceway
contact interfaces within a rolling element bearing

∆ψd angular extent of the outer raceway defect within a rolling element bear-
ing

ψd centre of the outer raceway defect within a rolling element bearing

ψj angular position of a jth rolling element

ψ
′

l half-angular extent of the bearing load zone centred at ψlc

ψlc centre of the bearing load zone
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Nomenclature

ρ material density

∆tcritical critical time step for the explicit time integration scheme used in LS-
DYNA

∆tevent time difference between the consecutive de-stressing or re-stressing events

∆tstable stable time step used in LS-DYNA

θr angular spacing between the rolling elements within a bearing

Υ probability of survival of a rolling element bearing

ε0 maximum orthogonal shear stress in the rolling element-to-raceway con-
tact interfaces

ς diametral clearance within a rolling element bearing

ζ damping ratio

Miscellaneous Symbols

D Dirac delta function

F Fourier transform

H Hilbert transform

K spectral kurtosis

S short-time Fourier transform

Superscripts

i inner raceway

i− o inner-to-outer raceway

n exponent — n = 3/2 for point, circular and elliptical contacts, and
n = 10/9 for line and rectangular contacts

o outer raceway

Subscripts

1, 2 isotropic elastic solid bodies ‘1’ and ‘2’

b bending waves

bpi ball pass inner raceway

bpo ball pass outer raceway

c cage for retaining the rolling elements within a bearing
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Nomenclature

cw contact width

d defective rolling element bearing

e extended defect

fe finite element

i inner raceway

j rolling element

lc centre of the load zone

max maximum

o outer raceway

p bearing pitch

rc cylindrical shell

s shaft

x global cartesian x-direction

y global cartesian y-direction

z global cartesian z-direction

Abbreviations

2-D two-dimensional

3-D three-dimensional

AAR Association of American Railroads

ABMA American Bearing Manufacturers Association, Inc.

ADINA Automatic Dynamic Incremental Nonlinear Analysis

ADORE Advanced Dynamics of Rolling Elements

ANSI American National Standards Institute, Inc.

BEAST Bearing Simulation Tool

BEAT BEAring Toolbox

BPFI ball pass frequency inner raceway

BPFO ball pass frequency outer raceway
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Nomenclature

COBRA Computer Optimized Ball and Roller Bearing Analysis software

CW clockwise

CWRU Case Western Reserve University

DOF degree-of-freedom

EHL elasto-hydrodynamic lubrication

EPW elements-per-wavelength

FE finite element

FFT Fast Fourier Transform

IBDAS Integrated Bearing Dynamic Analysis System

ISO International Organization for Standardization

PSD Power Spectral Density

RailBAM® Railway Bearing Acoustic Monitor

RMS root mean square

RPM revolutions per minute

SFM scale factor on default master penalty stiffness

SFS scale factor on default slave penalty stiffness

SK spectral kurtosis

SLSFAC scale factor for sliding interface penalties

STFT short-time Fourier transform

TADS® Trackside Acoustic Detection System

Track IQTM Trackside Intelligence Pty. Ltd.

TTCI® Transportation Technology Center, Inc.
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