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Abstract

Rolling element bearings are widely used in rotating machinery across various indus-

tries and their failure is a dominant factor that contributes to machinery breakdown,

consequently causing significant economic losses. Numerous experimental and analyt-

ical studies have been conducted in the past to understand the vibration response of

non-defective and defective rolling element bearings, which have localised, extended,

and distributed defects. Previous models have focused on simulating the defect-related

impulses, which are generally observed in practice in measured vibration signals, and

they implement envelope analysis to predict the significant defect-related frequency

components.

The work presented in this thesis is focused on developing an understanding of

the underlying physical mechanism by which defect-related impulses are generated

in defective rolling element bearings. A novel explicit dynamics finite element (FE)

model of a rolling element bearing having a localised outer raceway defect, line spall,

was developed and solved using a commercially available FE software package, LS-

DYNA. In addition to simulating the vibration response of the bearing, the dynamic

contact interaction between the rolling elements and raceways of the bearing were

modelled. An in-depth investigation of the rolling element-to-raceway contact forces

was undertaken and variations in the forces, as the rolling elements traverse through

the defect, were analysed. The contact force analysis has also led to the development

of an understanding of the physics behind the low- and high-frequency characteristic

vibration signatures generated by the rolling elements as they enter and exit a defect.
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It was found that no impulse-like signals are generated during the gradual de-stressing

or unloading of the rolling elements as they enter into a defect, which explains the

low-frequency characteristics of the de-stressing event. In contrast, a burst of multiple,

short-duration, force impulses is generated as the rolling elements re-stress between

the raceways in the vicinity of the end of a defect, which explains the high-frequency

impulsive characteristics of the re-stressing event. Based on the results of the FE

analysis of the rolling element bearing, a mathematical model was developed to predict

the gradual de-stressing of the rolling elements as they enter into a raceway defect.

Experimental testing on a rolling element bearing, commonly used in the railway

industry, and having a line spall machined on its outer raceway was undertaken. The

numerically modelled vibration response obtained using the FE model of the rolling el-

ement bearing was compared with the experimentally measured data, and a favourable

agreement between the modelled and measured results was achieved. Numerical rolling

element-to-raceway contact forces were compared with corresponding analytical results

calculated using a quasi-static load distribution analytical model presented in this the-

sis.

A parametric study to investigate the effects of varying radial load and rotational

speed on the vibration response of the bearing and rolling element-to-raceway contact

forces was undertaken. It was found that the magnitude of the defect-related vibration

impulses and contact forces generated during the re-stressing of the rolling elements

increases with increasing load and speed.

The modelled contact forces were correlated with bearing vibration signals, and it

was found that the amplitude of the contact forces and acceleration produced during

the re-stressing of the rolling elements is much greater than when the rolling elements

strike the defective surface. In other words, although a rolling element can impact the

surface of a defect and generate a low amplitude acceleration signal, a much higher

acceleration signal is generated when the rolling elements are re-stressed between the

raceways as they exit from the defect. These higher acceleration signals, generated
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during the re-stressing phase, are the ones that are generally observed in practice, and

subsequently used for bearing diagnosis.

The work presented in this thesis has provided definitive physical and quantitative

explanations for the impulsive acceleration signals measured when a bearing element

passes through a defect.
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Chapter 1

Introduction

1.1 Introduction and significance

Rolling element bearings, also referred to as anti-friction bearings [1], are widely used

in rotating machinery across various industries that include aerospace, construction,

mining, steel, paper, textile, railways, and renewable energy [2, 3]. The damage and

failure of rolling element bearings is a dominant factor that contributes to machinery

breakdown, consequently causing significant economic losses and even loss of human

lives in certain situations; for example, when an aircraft engine fails or a train derails

due to a bearing seizure.

The work presented in this thesis is concerned with research to further enhance

automated failure diagnosis of rolling element bearings used in the railway industry —

the wheel or axle bearings in railway vehicles that include locomotives, freight wagons,

and passenger coaches. One of the primary aims of this research is to develop an un-

derstanding of the underlying physical mechanism by which defect-related impulses are

generated in defective rolling element bearings. This has been accomplished by devel-

oping a novel explicit dynamics finite element (FE) model of a rolling element bearing

having a localised outer raceway defect, and analysing the dynamic contact interaction

of the rolling elements and raceways as the rolling elements traverse through the defect.
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1.1. Introduction and significance

Such an analysis has not been previously presented in the literature, although static

analysis that includes investigating static rolling element-to-raceway contact forces and

contact stresses within rolling element bearings has been studied in the past; relevant

literature will be reviewed in Chapter 2. The dynamic rolling element-to-raceway con-

tact interaction as the rolling elements within a bearing traverse through a localised

raceway defect has recently been published [4, 5] by the author of this thesis and in

references [6, 7] based on the work described here.

The ever increasing demand for high speed passenger trains and higher load capac-

ity for freight wagons, for example, in mining applications, mandates efficient mainte-

nance practices if potential losses to the rolling stock and railway infrastructure are to

be avoided. A number of automated condition-based monitoring systems for assessing

the health of rolling stock (wheels, axles, bearings, bogie, couplers, and brake systems)

and railway tracks are currently available [8, 9]. Such systems are generally installed

adjacent to railway tracks, and are commonly known as trackside or wayside detection

systems. A wayside detection system associated with the condition-based (acoustic)

monitoring of wheel or axle rolling element bearings in railway vehicles is known as a

bearing acoustic monitor. Two commercially available bearing acoustic monitoring sys-

tems are Railway Bearing Acoustic Monitor (RailBAM®) [10] by Trackside Intelligence

Pty. Ltd. (Track IQTM) [11] and Trackside Acoustic Detection System (TADS®) [12]

by Transportation Technology Center, Inc. (TTCI®) [13]. Neither of these systems

can distinguish between defects of various sizes. The motivation of this research is to

be able to determine the size of a defect using a bearing acoustic monitoring system.

However, the first step is to understand the vibration characteristics of defects of var-

ious sizes. The explicit dynamics FE model of a rolling element bearing, which is an

outcome of this thesis, can be used as a tool to investigate the differences in the vibra-

tion characteristics of various defect sizes. The work presented here is concerned with

the analysis of rolling element-to-raceway contact interaction and understanding the

fundamental mechanism by which defect-related impulses are generated in bearings.
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Chapter 1. Introduction

Figure 1.1: A photo of the RailBAM® system [10] showing the wayside cabinets along
with a few sensors (courtesy: Track IQTM [11]).

Figure 1.2: A photo of the TADS® system [12] showing the wayside cabinets (courtesy:
TTCI® [13]).

1.1.1 A wayside bearing acoustic monitor

A wayside bearing acoustic monitor operates on the principle of acquiring and analysing

the vibro-acoustic signals of axle bearings of a passing train. The signals are acquired

using an array of microphones located at a suitable distance, typically about three

metres, from the centreline of a railway track [8, 14–16]. The microphone arrays are

generally housed in protective cabinets. Photos of the wayside cabinets of RailBAM®

[10] and TADS® [12] systems are shown in Figures 1.1 and 1.2, respectively. All the

components of the systems, such as sensors, cables, conduits, and protective enclosures,

are appropriately located so they do not interfere with the components of a travelling

train.
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1.1. Introduction and significance

It is well-known that when a defective (spalled) component, either a rolling element,

an outer raceway or inner raceway, within an operating bearing interacts with its cor-

responding mating components, either defective or non-defective, abrupt changes in

the contact stresses occur [17]. These changes excite the bearing structure and encom-

passing structural components connected to the bearing, resulting in the generation

of vibrations and consequently acoustic signals, which can be monitored to detect the

presence of a defect using appropriate condition-based (vibration and acoustic) diag-

nostic techniques [17–31].

In the case of a typical railway freight wagon or bogie, the structural components

may include an adapter, a side-frame, a wheel, and an axle [32, Chapter 3, pages 67–71]

(refer to Figure 1.6; the features and components of a typical railway freight bogie will

be discussed in Section 1.1.3). The vibrations induced by a bearing defect propagate

through the structural components, and subsequently radiate as sound that may be

detected by the microphone arrays of a wayside bearing acoustic monitor [10, 12].

In addition to the vibro-acoustic signals originating from the axle bearings of a

railway vehicle, acoustic signals are also generated due to the interaction of the rotating

wheels on the supporting rails (commonly referred to as wheel–rail rolling noise) [33–

50], and other mechanical and structural sources, such as traction motors, brakes,

couplers, and bogie components [51]. Suitable signal processing techniques can be

used to extract the bearing signals from the extraneous noise, and the diagnostics can

be carried out to detect defective bearings [17–31]. The diagnostic data are generally

stored in a database [52, 53] that can be queried to compare the condition of a bearing

over repeated passes; that is, the database enables the trending of parameters related

to the progression of a defect [8, 14–16].
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1.1.2 A typical railway axle bearing

The most common bearing configuration used in the railway industry is referred to

as a package bearing unit, and a representation is shown in Figure 1.3a. It comprises

an outer ring (commonly known as a cup), a pair of inner rings (commonly known as

cones), a pair of multiple tapered rolling elements retained in respective cages, and a

spacer separating the inner rings. All these components are assembled and held intact

by pressing sealing caps (also known as grease seals) on both ends. The components

of a package bearing unit in a disassembled condition are shown in Figure 1.3b.

The location of bearings on axle–wheelsets can be either external or internal to a

wheel with respect to the field side of a rail — it is the face of the rail that points away

from the track; refer to Figure 1.4 for a clear representation of the field and gauge sides.

The external and internal bearing locations are more commonly known as outboard and

inboard , respectively. Figure 1.4 shows a schematic of railway axle–wheelsets depicting

outboard and inboard bearings, both indicated by circular markers.

The current study will focus exclusively on the fault diagnosis of outboard package

bearing units used in railway vehicles.

1.1.3 Outboard bearings for freight and passenger vehicles

Figure 1.5a shows a photo of an outboard package bearing unit mounted onto an axle

of a typical three-piece bogie [32, Chapter 3, page 70] of a railway freight wagon; a

sectional view of the bearing is shown in Figure 1.5b.

Generically, a three-piece bogie comprises two side-frames and a bolster. A schematic

of a three-piece bogie is shown in Figure 1.6. The side-frames rest on the axle bearings

of the wheelsets through the adapters that interface with the bearings: the adapters

are sandwiched between the side-frames and bearings. The bolster is supported by the

side-frames, and contains a centre pivot that couples the bogie to the vehicle body.

The schematic of a three-piece bogie in Figure 1.6 highlights the side-frames, bolster,
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Outer ring

(cup)

Cage with

rolling elements;

inner ring (cone)

under the cage

Sealing cap

Spacer

(a) An assembled package bearing unit showing various compo-
nents.

Outer ring

(cup)

Spacer

Sealing

cap

Backing

ring

Inner ring (cone), cage and

rolling elements assembly

(b) A disassembled package bearing unit.

Figure 1.3: A package bearing unit (courtesy: The Timken Company [54]).

Outboard bearings Inboard bearings

Field side Gauge side
Gauge side Field side

Figure 1.4: Schematics of axle–wheelsets highlighting the location of outboard and
inboard bearings using circular markers [32, Chapter 3, page 41].
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Package bearing unit

WheelAdapter

(a) A package bearing unit mounted onto
the axle of a railway freight wagon.

Cup

Cone, cage and rollers assembly

Spacer

(b) A sectional view of the package bear-
ing unit shown in Figure 1.5a.

Figure 1.5: An outboard configuration of a package bearing unit on a railway freight
vehicle (courtesy: Track IQTM [11]).

Side-frame Package bearing

unit

Bolster

Suspension

springs

Adapter
Centre pivot for coupling

the bogie to vehicle body

Figure 1.6: A three-piece bogie for railway freight vehicles [32, Chapter 3, page 70].
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axle bearings, and adapter. The construction of a three-piece bogie is such that the

majority of the outer ring (cup) of a bearing is visible to a wayside (field side) observer;

refer to Figure 1.4 for the definition of the field side.

As can be seen in Figures 1.5 and 1.6, the axle bearings are not encapsulated in a

housing; however, partial encapsulation may be considered due to the interface of the

adapters with the bearings. Due to their outboard location, a direct line of sight is

achieved between the bearings and an array of microphones within a bearing acoustic

monitor installed next to the railway tracks. Thus, the bearing acoustic monitors can

measure the acoustic signatures from the outboard bearings in a typical railway freight

wagon (bogie) with no physical obstruction, and can provide a reliable detection and

classification of bearing defects [8, 14–16].

In many railway passenger vehicles though, package bearing units can be encap-

sulated in the structural components associated with the suspension systems of the

vehicles. Partial views of two different passenger vehicle bogies highlighting the encap-

sulation of the bearings are shown in Figures 1.7a and 1.7b. The figures, respectively,

show a trailing arm and casing, which incorporate the bearings, are connected to the

vehicle body through coil springs. The construction of passenger coaches is more com-

plicated than freight wagons as they incorporate suspension systems that are directly

connected to the bearings (for the purpose of minimising the transmission of vibra-

tions to on board passengers) [32, Chapter 3, page 66]. Although the bearings in

passenger coaches are outboard, their encapsulation, encompassing structural compo-

nents and their mechanical connections can result in the dissipation of defect-related

vibro-acoustic energy. This can eventually lead to compromising the performance of

the bearing acoustic monitors.
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Bearing clamped within the trailing

arm suspension casing in outboard

bearing configuration

Wheel

(a) A trailing arm suspension system that
incorporates a bearing is connected to a
railway passenger vehicle.

Bearing encapsulated within the casing

connected to the vehicle through the

suspension system

(b) A casing of a suspension system that
encapsulates a bearing is connected to a
railway passenger vehicle.

Figure 1.7: An outboard configuration of a package bearing unit on a railway passenger
vehicle (courtesy: Track IQTM [11]).

1.2 Motivation

Prototype bearing acoustic monitors were tested in the 1980s [55–58]. The technology

underlying the wayside bearing acoustic monitoring systems has improved considerably

since then due to advances across the areas of sensors, signal processing methods, and

condition-based monitoring techniques applicable to rolling element bearings [17–31].

Bearing acoustic monitors not only seek to identify the defective components within a

bearing, but also seek to rank the severity of the defects [8, 14–16].

It is estimated that a total of approximately a hundred wayside bearing acoustic

monitoring systems have been installed throughout the world — sixty RailBAM® [10]

and thirty-eight TADS® [12] systems. Realising the proven and successful detection

and diagnostic capabilities of bearing acoustic monitors, many railways are incorpo-

rating their use into their maintenance and scheduling practices; however, in addition

to the detection of defective bearings, the current focus is to also provide a reliable

prognosis of the bearing defects, which is an evolving subject [23, 29, 31, 59–63]. It

would involve the detection and flagging of those defective bearings within a rolling
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stock that represent a high operational risk, so as to enable railway operators and/or

owners to plan necessary actions in order to prevent potential damages.

Generally, a prognosis involves the use of past and current condition of machinery

to predict its future condition with an ultimate aim to using the machinery within

a safe buffer period; thereby, avoiding catastrophic failures. The useful life of rolling

element bearings can be extended considerably beyond the occurrence of the first spall

[31]; therefore, achieving the maximum life of even defective bearings can result in

substantial operational and maintenance cost reductions.

The considerable interest in accurate and reliable prognosis of defective rolling

element bearings in the railway industry provides motivation for the current study.

1.2.1 Need

Railway operators either develop their own maintenance practices and schedules for

inspecting the axle bearings or follow the industry guidelines; for example, those set by

the Association of American Railroads (AAR) [64]. Due to the progressively increasing

percentage of the wayside bearing acoustic monitors used in the industry, AAR, in year

2009, defined condemnable limits for the removal of defective bearings from service [65].

One of the components of these limits is that a bearing is deemed to represent a high

operational risk if the total spalled area (size of a spall) on either of the two bearing

raceways, outer or inner, is equal to or greater than 1.5 square inches [65]. This limit

has been negotiated as a pragmatic compromise between railroad safety and economic

operation in order to prevent the immediate removal of those bearings whose operation

does not represent an impending risk, and which can be scheduled for inspection at a

later time.

A reliable estimation of the size of a spall from its acoustic signature represents

a considerable technical challenge due to a number of factors that can influence the

defect-related vibro-acoustic signatures of bearings. These factors may be associated
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not only with the wide range of defect types and shapes, such as line and extended

area spalls, but also with the varying train operating conditions, which may include

load, speed, and rotational direction. In addition, the extraneous noise, such as wheel–

rail rolling noise, wheel squealing, and braking [33–51], could further complicate the

problem. In addition, vibro-acoustic signatures of bearings can also be affected by

the geometrical features of railway vehicles that incorporate the bearings, and the

structural arrangement used to connect/couple the bearings to the vehicles. Some of

these features, which may affect the performance of the bearing acoustic monitors,

include:

• the location of axle bearings with respect to the wheel when viewed from the field

side of the rail — outboard or inboard bearings (refer to Figure 1.4 for clarity):

while the former being clearly visible to a wayside observer, the latter being

shielded behind the wheels, and

• the type of railway vehicles that incorporate the bearings — locomotives, freight

wagons, or passenger coaches: depending upon the suspension system in different

railway vehicles, the bearings can be either fully, partially, or not encapsulated.

1.2.2 Scope

When investigating the feasibility of achieving a reliable estimate of an average size of

a bearing defect from its vibro-acoustic signatures, the first step is to understand how

vibrations in defective rolling element bearings are generated. It will be discussed in

Chapter 2 (Literature Survey) that despite a significant amount of research on various

aspects of rolling element bearings having been undertaken in the past, the mecha-

nism by which defect-related vibrations are generated has received much less attention.

Therefore, the work presented in this thesis is focused on understanding the physical

mechanisms by which defect-related force impulses, and consequently vibrations, are

generated in defective rolling element bearings. An in-depth analysis and interpretation
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of the dynamic contact interaction of the rolling elements with raceways, as the rolling

elements traverse through a defect within a bearing, are presented in this thesis. The

parametric effect of varying load and rotational speed on the vibration characteristics

of detective rolling element bearings is also a part of the current research.

As the axle bearings, in the case of a three-piece bogie configuration (Figure 1.6),

are not directly connected to the body of the railway vehicle, defect-related vibro-

acoustic bearing signatures are less likely to be affected by the geometrical features

of a freight bogie compared to a passenger bogie. Therefore, in order to conduct the

aforementioned investigations, it would be desirable for the current research to consider,

for modelling and experimental work, the structural arrangement of a three-piece bogie.

The laboratory testing of package bearing units with a side-frame of a three-piece bogie

was not practical; however, an adapter that is directly connected to the bearing for

interfacing a radial load was used.

The effect of the geometrical features on bearing signatures, which is not considered

in this study, can be investigated in future using and extending the novel explicit

dynamics FE model of a package bearing unit that is a result of the research presented

in this thesis.

1.3 Aims

The aims of this research are to:

• develop a comprehensive non-linear dynamic finite element model of a rolling

element bearing with minimal assumptions and simplifications;

• simulate the vibration response of a defective rolling element bearing having a

line spall on its outer raceway;

• analyse the contact forces between non-defective and defective mating bearing

components (precisely, rolling element-to-raceway contact forces), which are not
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measured in practice;

• gain an understanding of the underlying physical mechanism by which defect-

related impulsive forces and vibrations are generated in defective rolling element

bearings;

• better understand the vibration characteristics of the de-stressing and re-stressing

of the rolling elements as they enter into and exit out of a defect within a bearing,

respectively;

• investigate the parametric effect of varying load and rotational speed on the

vibration response of the rolling element bearing and rolling element-to-raceway

contact forces; and to

• understand the feasibility of the detection of defects from the characteristics of

their vibration signatures.

1.4 New knowledge

The novel work presented in thesis has provided the following new knowledge and

insights:

• the development of an explicit dynamics finite element model of a defective rolling

element bearing: the model can be used to gain an understanding of the com-

plex behaviour of contact interaction between the rolling elements and raceways

of a bearing, and the generation of impulsive forces, and subsequent vibration

response;

• the development of a quasi-static analytical model of a defective rolling element

bearing to predict the rolling element-to-raceway contact forces;

• the development of a mathematical model to predict the gradual decrease in the

rolling element-to-raceway contact forces as a rolling element de-stresses upon its
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entrance into a bearing defect, and subsequently other rolling elements re-stress

between the raceways;

• the development of an understanding of the underlying mechanism by which

impulsive forces are generated as the rolling elements and raceways within a

bearing interact with each other when either components is defective;

• an in-depth investigation and interpretation of the contact forces between the

rolling elements and raceways of a bearing which are not measured in practice;

• the development of an understanding as to why in typically measured bearing

vibration signals, multiple defect-related impulses are generated when a bearing

element passes through a defect;

• the development of an understanding of the de-stressing and re-stressing of the

rolling elements as they traverse through a bearing defect by the analysis of the

rolling element-to-raceway contact forces;

• the development of an understanding of the physics behind the gradual de-

stressing or unloading of rolling elements as they enter into a defect; and

• the development of an understanding of the low-frequency characteristics of the

vibration signatures pertinent to the gradual de-stressing of the rolling elements.

1.5 Structure of the thesis

Chapter 2 presents a review of existing knowledge on the vibration characteristics of

rolling element bearings having localised defects. An overview of contact fatigue and

spalling within rolling element bearings is presented along with a short discussion on

bearing life estimation theories. The knowledge pertinent to the vibration response of

rolling element bearings that has been gained through experimental work, as well as a
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number of analytical and a few finite element models is discussed. The characteristics

of vibration response at the edges of bearing defects are described, and this is followed

by a review of the signal processing techniques and algorithms that can be used to

estimate the average size of a defect. The literature review is summarised and the gaps

in the current knowledge are discussed. Finally, the gaps addressed in this thesis are

described.

A quasi-static analytical model for estimating the load distribution within rolling

element bearings is presented in Chapter 3. The model was used to calculate the

contact forces between the rolling elements and raceways of a rolling element bearing.

As the forces at the rolling element-to-raceway contact interfaces are governed by the

well-known Hertz theory of elasticity, an overview of Hertz theory essential to develop

the analytical model is provided in the beginning of Chapter 3. Static load distribution

within a non-defective rolling element bearing, which forms the basis of the quasi-static

analytical model, is also described. According to previous models in the literature,

incorrect representation of instantaneous step-like decrease and increase in the contact

forces at the edges of a defect is provided. In contrast to the instantaneous variations in

the rolling element-to-raceway contact forces, a new mathematical model is presented

in Chapter 3 to estimate more realistic gradual changes at the edges of a bearing defect

as rolling elements traverse through the defect. This model is based on the findings of

the explicit FE modelling of a defective rolling element bearing presented in Chapter 4.

Results obtained using the new mathematical model are compared with those from the

previous models, and the differences are highlighted. The new model was incorporated

in the quasi-static analytical model to estimate the load distribution within a defective

rolling element bearing. An analysis of the variations in the rolling element-to-raceway

contact forces is presented along with some limitations of the quasi-static model.

An explicit dynamics FE model of a defective rolling element bearing is presented

in Chapter 4. The model was solved using a commercial FE software package, LS-

DYNA. The FE model was used to estimate not only the vibration response of the
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defective rolling element bearing, but also the dynamic rolling element-to-raceway con-

tact forces. Along with descriptions of loads and boundary conditions applied to the

FE model of the bearing, a detailed discussion on the discretisation of the model into

nodes and elements is presented. In order to accurately model the dynamic rolling

element-to-raceway contact interaction, it was found that much smaller mesh size than

the recommended elements-per-wavelength (EPW) criterion was required to achieve a

continuous rolling contact between the rolling elements and bearing raceways, so as to

accurately transmit the loads between them. For the FE model of the rolling element

bearing presented in this thesis, an optimal element mesh size of 0.5mm is used, which

corresponds to 97 EPW at 40 kHz; this is nearly 5 times greater than the 20 EPW

criterion recommended for performing a structural transient dynamic analysis.

Numerical noise, an artefact of the FE model of the bearing, in the simulated re-

sults was observed, and was appropriately filtered. A new hypothesis is developed

in Chapter 4 to explain the cause of the numerical noise, and the noise frequencies

due to the interaction of the rolling elements and raceways were analytically esti-

mated. Favourable agreement between the numerical and analytical noise frequencies

was achieved that justifies the proposed hypothesis. The vibration response of the de-

fective rolling element bearing was analysed using standard signal processing techniques

associated with the vibration-based monitoring of rolling element bearings. Through

time, time–frequency and frequency domain analyses, verification of the modelled vi-

bration time-traces is presented using information, both theoretical and experimental,

previously available in the literature. In addition to accurately acquiring the basic

bearing kinematics, the FE model of the bearing accurately predicts the low- and

high-frequency characteristic vibration signals associated with the de-stressing and re-

stressing of rolling elements as they enter into and exit out of the defect, respectively.

For the purpose of verifying the numerically modelled vibration response of the

defective bearing obtained using the FE model presented in Chapter 4, experimental

work on a defective rolling element bearing was undertaken; this experimental work
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is presented in Chapter 5. A commonly used package bearing unit in the railway

industry was selected for the experimental work. A line spall on its outer raceway was

manufactured using electric spark erosion. The vibration response of the bearing was

measured and compared with the corresponding numerically modelled results estimated

using the FE model of the rolling element bearing. Several favourable comparisons

between the modelled and measured vibration data are presented that indicate the

verification of the FE simulation results.

Analyses of numerical rolling element-to-raceway contact forces obtained using the

FE model of the rolling element bearing are presented in Chapter 6. Contact force

modelling has been implemented in the past; however, the main focus was on present-

ing the vibration response of bearings, such as acceleration, velocity or displacement,

rather than presenting the contact force results. Therefore, the analyses of the rolling

element-to-raceway contact forces presented here provide new insights on the dynamic

interaction between the rolling elements and raceways of a bearing as the rolling ele-

ments traverse through a defect. The numerically modelled rolling element-to-raceway

contact forces were verified using the quasi-static analytical solution presented in Chap-

ter 3.

Correlation of the numerical contact forces and bearing vibration response is pre-

sented in Chapter 6, and the fundamental mechanism by which defect-related impulses

are generated in defective rolling element bearings is explained. The analysis of the nu-

merical rolling element-to-raceway contact forces shows that no impulse-like signatures

are generated during the entrance of the rolling elements into a raceway defect, whereas

their exit out of the defect produces a burst of multiple, short-duration, force impulses;

the entry and exit of rolling elements into and out of a bearing defect are referred to as

de-stressing and re-stressing, respectively. This explains the low- and high-frequency

characteristics of the de-stressing and re-stressing events, respectively. Novel outcomes

from the results of the explicit dynamics FE model of the rolling element bearing are

also described in Chapter 6.
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A parametric study to investigate the effects of varying radial load and rotational

speed on both measured and modelled vibration response of the bearing was under-

taken, and this is presented in Chapter 5. Similar effects on the numerically modelled

rolling element-to-raceway contact forces were investigated, and this is presented in

Chapter 6. It was observed that the magnitude of the defect-related vibration impulses

and contact forces generated during the re-stressing of the rolling elements increases

with increasing radial load and rotational speed.

Conclusions of the work presented in this thesis are presented in Chapter 7 along

with some recommendations for future work.
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Chapter 2

Literature Survey

2.1 Introduction

This chapter presents a review of research on the vibration characteristics of rolling ele-

ment bearings having localised defects. Localised defects represent one of the two main

classes of bearing defects for which the vibration response of rolling element bearings

has been extensively investigated in the past. The other class of bearing defects in the

literature is known as distributed defects, and similar to the case of localised defects, a

number of analytical models related to distributed defects are available for predicting

the vibration response of rolling element bearings. While the former class of defects

is an ultimate failure mode for a correctly installed bearing, the latter class of defects

can result in premature surface fatigue, leading to the development of localised defects,

and ultimately to premature bearing failure.

In addition to the two defect classes, there is another type of a bearing defect, which

has received much less attention in the past, and consequently, has not been discussed

in the literature. This type of defect is called an extended defect.

Since the early 1950s, numerous researchers have contributed, experimentally and

analytically, with the ultimate objective to understand the vibration response of non-

defective (ideal) rolling element bearings [66–89], and defective bearings having lo-

19



2.2. Contact fatigue

calised [90–120], extended [121] and distributed defects [122–160]. As the work pre-

sented in this thesis is concerned with localised [90–120] defects, a detailed review of

the models and knowledge related to the characteristics of the vibration response of

rolling element bearings having localised defects is presented here.

2.1.1 Structure

This chapter begins with a discussion of contact fatigue in rolling element bearings

along with an overview of some typical bearing defects in Section 2.2. A review of

the existing knowledge pertinent to the vibration response of rolling element bearings

due to localised defects obtained through experimental work [105, 161–165], a number

of analytical [90–114], and finite element models [115–120] is presented in Section 2.3.

The characteristics of vibration signatures at the entry and exit of rolling elements into

and out of a defect [105, 114, 161–165], respectively, are discussed in Section 2.5, and

this is followed by the estimation of an average defect size [114, 165] in Section 2.6.

The existing knowledge is summarised in Section 2.7 followed by the identification of

gaps in the current knowledge in Section 2.8. Finally, the gaps addressed in this thesis

are described in Section 2.9.

2.2 Contact fatigue

Contact fatigue is a type of a surface defect or damage [166–168] that is inevitably

related to the operational wear of rolling element bearings. It is generally characterised

by spalling, pitting, or flaking off the metallic particles from the rolling surfaces of a

bearing, namely outer raceway, inner raceway, and rolling elements [23, 169–174]. In

the context of bearings, contact fatigue is also referred to as rolling contact fatigue

because of the rolling and relative sliding movements of the rolling surfaces [172–174].

Loads acting between the rolling elements and raceways within a bearing develop

only small areas of contact [3, Chapter 6, page 185]; the geometry of the contact area
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and corresponding parameters, such as contact force, stiffness, and deformation, follow

the classical Hertz theory of elasticity [175–177]. As a result, the elemental loading may

only be moderate; however, the compressive stresses induced on the rolling surfaces of

a bearing are extremely high — typically of the order of a few giga-pascals (≈ 2–4GPa)

[3, 174].

It is considered that if a rolling element bearing in service is properly installed,

aligned, loaded, lubricated, and kept free from contaminants, then the main mode of

its failure is surface fatigue, which would result after an estimated number of rolling

cycles (usually of the order of millions) [3, 174, 178, 179]. This (bearing) failure mode

is also known as fatigue spalling or pitting, and is characterised by surface spalls or pits

[23, 169–174].

2.2.1 Fatigue spalling

In a properly installed and lubricated rolling element bearing, the onset of micro-

scale subsurface fatigue cracks commences below the highly stressed rolling surfaces.

These cracks typically occur at micro-structural discontinuities, such as inclusions,

inhomogeneity or carbide clusters, as a result of micro-plastic deformation in the region

of maximum stresses [180–190]. Due to the continuous and repetitive load (stress)

cycles during the operation of a bearing, the micro-scale subsurface fatigue cracks

continue to progress towards the surface, eventually causing the material to break loose

or flake off, leading to the formation of macro-scale surface spalls or pits [3, 23, 169–

174]. Although spalls and pits are indiscriminately used in the literature to refer to

the surface defects within rolling element bearings, Littman [169, 170] distinguished

between the micro-scale subsurface and macro-scale surface originated fatigue cracks

as spalls and pits, respectively [171].

Figure 2.1 shows a number of examples of fatigue spalling on various components

of rolling element bearings: a few point spalls on the rollers are shown in Figure 2.1a,
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(a) A few point spalls on the rolling elements. (b) An area spall on the inner raceway.

(c) An area spall on the outer raceway. (d) An area spall on the outer raceway.

Figure 2.1: Fatigue spalls on various elements of rolling element bearings (courtesy:
The Timken Company [54]).

an area spall on the inner raceway is shown in Figure 2.1b, and area spalls of different

characteristic shapes and sizes on the outer raceway are shown in Figures 2.1c and

2.1d.

Other failure modes

In addition to the fatigue spalling, there are a number of other modes of bearing failure

[191]. These failure modes include wear due to foreign material, smearing, etching–

corrosion, brinelling, and burns from electric current discharge [23, 192]. Generally,

these damages are caused by a variety of factors that include poor maintenance prac-

tices, mishandling, incorrect installation, misalignment, and inadequate lubrication.

Often a bearing may commence to fail in one particular mode which then leads on to

other failure modes [23]. These damages can cause premature surface fatigue, which

eventually reduces the life of rolling element bearings.
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(a) Pitting due to hard particle contami-
nation of lubricant.

(b) Bruising due to particle contamina-
tion of lubricant.

(c) Corrosion due to etching. (d) Severe corrosion due to etching.

(e) Race deformation due to excessive
heat generation.

(f) Complete bearing lockup due to inad-
equate lubrication.

(g) Impact damage due to shock loading. (h) True brinelling due to shock loading.

(i) Electric arc fluting . (j) Electric arc pitting.

Figure 2.2: Various types of bearing damage (courtesy: The Timken Company [54]).
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A few examples of various defects in rolling element bearings are shown in Figure 2.2,

and their overview is provided in Appendix B.

2.2.2 Rolling element bearing life

Understanding the cause for the onset of surface fatigue cracks is of significant interest

not only to researchers, but also to bearing manufacturers as it has, historically, been

considered to be a limiting factor for the useful life of rolling element bearings [193]. As

a result, rolling contact fatigue mechanisms in bearings leading to their life estimation

have been investigated by several researchers [194–231]. In the literature, these models

are divided into two categories [174] — probabilistic engineering models [194–219] and

deterministic research models [220–231]. In general, the engineering models are empir-

ical in nature; they attempt to predict fatigue lives using solutions of the elastic stress

field with the scatter in life being incorporated directly using the Weibull probability

distribution function [232–234]. In contrast, the research models are mechanistic in

nature; they assume an initial crack (either surface or subsurface) of a given length

and orientation, and use fracture mechanics [167, 168] to predict the shape of the spall

and fatigue life of the contact.

The Lundberg–Palmgren model

In 1924, Palmgren [178] published a paper outlining his approach to bearing life predic-

tion and an empirical formula based upon the concept of an L10 life, or the time that

90% of a bearing population would equal or exceed without a fatigue failure. Later on,

in 1947, Palmgren along with Lundberg, incorporated his previous work [178] with the

work of Weibull [232] to present the pioneering mathematical formulation for calculat-

ing the fatigue life of rolling element bearings [194, 195]. Their theory is commonly

known as the Lundberg–Palmgren theory. It states that for bearing rings subjected to

Z cycles of repeated (stress) loading, the probability of survival Υ is given by
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ln
1

Υ
= A

Zκεg0V

zq0
(2.1)

where, ε0 is the maximum orthogonal shear stress in the contact, z0 is the corresponding

depth at which this stress occurs, and V is the stressed volume of material. The

parameters A, g, and q are material characteristics that are determined experimentally,

and the parameter κ is the Weibull slope for the experimental life data plotted on a

Weibull probability paper.

Since the development of the Lundberg–Palmgren theory, significant advances have

been made in bearing material quality, fracture mechanics, and in the understand-

ing of the role of lubrication through the development of elasto-hydrodynamic theory

[173, 235–241], in order to increase the fatigue life of rolling element bearings. The

recognition of the limitations of the original Lundberg–Palmgren theory [194, 195] has

led to the development of better and improved bearing fatigue life prediction models.

The current ISO (International Organization for Standardization) [210], ANSI (Amer-

ican National Standards Institute, Inc., and ABMA (American Bearing Manufacturers

Association, Inc.) [242, 243] standards for rolling bearing life are based on a modifi-

cation of the Lundberg–Palmgren equation [194, 195]; the modifications account for

the significant changes in relatively recent material quality, reliability, and operating

conditions.

The bearing life models, which are aimed at predicting the fatigue life of rolling

element bearings and rolling contact fatigue mechanisms, do not incorporate and in-

vestigate the structural vibration response of bearings having fatigue spalls. As the

work presented in this thesis is concerned with the understanding of the vibration char-

acteristics of rolling element bearings having localised defects, the bearing life models

are not reviewed here; excellent reviews of these models can be found in references

[174, 211, 217, 244].

A review of all the models available in the literature for predicting the vibration
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response of defective rolling element bearings having localised defects is presented in

the following sections.

2.3 Localised defects

Localised defects, one of the two main classes of bearing defects, include cracks, pits,

and spalls on various components of a rolling element bearing. The components within

a bearing refer to its rolling surfaces — outer raceway, inner raceway, and rolling

elements. The localised defects are an ultimate failure mode of a correctly installed

and lubricated bearing during its normal operational use. A few examples of surface

fatigue spall, localised defects, are shown in Figures 2.1 and 2.2.

In order present a systematic review of the previous analytical and FE models that

predict the vibration response of rolling element bearings having localised defects, they

are classified into four broad categories. These categories are as follows:

1. Periodic impulse-train models [90–93]

2. Quasi-periodic impulse-train models [94–99]

3. Non-linear multi-body dynamic models [100–114]

4. Finite element models [115–120]

Although the models that are most relevant to the current study are explicit dynamic

FE models [117–120], reviewed in Section 2.3.4.3, it is important to review all the

previous models so as to clearly identify the gaps in the current knowledge.

2.3.1 Periodic impulse-train models

A periodic impulse-train model refers to a model that simulates the generation of

defect-induced impulses at a constant period. Such a model does not include the

characteristics of a bearing, such as masses of bearing components and deformation
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at the rolling element-to-raceway contact interfaces that is governed by the Hertzian

contact theory of elasticity [175–177]. For the case of a stationary outer raceway defect,

the impulses are equally spaced, and their characteristics, such as shape, height, and

width, are similar to each other. On the contrary, for a rotating inner raceway defect

and a rolling element defect, the impulses are generally modulated as per the static

load distribution within a rolling element bearing; that is, the amplitude of the defect-

induced impulses varies as the inner raceway and rolling element defects rotate in and

out of the bearing load zone [3, 245–248].

The first model for simulating the vibration response of a localised single point

defect on the inner race of a rolling element (ball) bearing, under a constant radial

load, was developed by McFadden et al . [90] in 1984. The forces produced by the

point defect were modelled as an infinite series of periodic force impulses of equal

amplitude using the Dirac delta function [249, Chapter 1, pages 9–10] with a period T

as

I (t) =

∞
∑

ξ=−∞

D (t− ξT ) (2.2)

where, I (t) is the impulse force, D is the Dirac delta function, t is the time vector,

and T is time period of the defect-related impulses. The resonance characteristic in the

Fourier domain [250] was sampled at the regular interval of
1

T
. Based on the assumption

that the amplitude of the impulse produced by a defect is directly proportional to the

load on a rolling element when it strikes the defect, the amplitude of the impulses was

multiplied by the actual load on the rolling elements, estimated as per the well-known

Stribeck’s equation [245].

McFadden et al . further extended their defect-induced impulse-train model [90] to

incorporate two point defects located on the inner race of a ball bearing [91]. The ef-

fects of two point defects were simulated by treating the defects as the sum of a number

of localised defects at different phase angles around the inner raceway. Both models

[90, 91] incorporated the effects of bearing geometry, shaft rotational speed, bearing
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load distribution, transfer function between the bearing and accelerometer, and the ex-

ponential decay of vibration. Satisfactory performance of both models was reported on

the basis of their predicted vibration (line) spectra agreement with measured vibration

responses after performing a standard envelope analysis [251, 252]. While McFadden

et al . did not predict the amplitude of the defect-related frequency components, fun-

damental and harmonics, in their first model [90], the predicted amplitudes in their

second model [91] were corrected based on their experimental results. They found that

the demodulated or envelope vibration spectrum was composed of groups of discrete

frequency components, separated by the shaft rotational frequency fs, while the spac-

ing between the successive groups was the inner raceway defect frequency fbpi (also

known as ball pass frequency inner raceway — BPFI; refer to Appendix C for the def-

inition of BPFI and other defect frequencies associated with rolling element bearings).

The aforementioned models provided some early insights into the demodulated (enve-

lope) vibration spectrum of a rolling element bearing obtained through accelerometer

measurements in practice, and partially helped explain the defect-related frequency

components, fundamental, sidebands, and associated harmonics, in an actual vibration

spectrum. The models developed by McFadden et al . [90, 91] are often referred to as

classical or traditional models in the literature.

Su et al . [92] also modelled the vibration frequencies produced by a single point

defect and multiple (two) point defects using periodic (equi-spaced) impulse-trains.

Extending the models developed by McFadden et al . [90, 91], Su et al . [92] modelled

and studied the vibration response of a rolling element bearing subjected to various

types of loading. They proposed periodicities that include fundamental defect frequen-

cies, sidebands and associated harmonics, for the outer raceway, inner raceway, and

rolling element defects due to various loading conditions. These loading distributions

include shaft unbalance and roller errors, in addition to the only case of stationary

loading along the circumference of the inner race as considered by McFadden et al .

[90, 91].
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Su et al . [92] reported that for a fixed outer raceway defect, the vibration signature

of a bearing has periodicities at
1

fs
and

1

fc
due to shaft unbalance and roller errors,

respectively, where, fs is the shaft rotational frequency, and fc is the cage rotational

frequency. However, for an inner raceway defect, the vibration response of a bearing

has no periodicity due to shaft unbalance, but a periodicity of
1

fs − fc
due to roller

errors. The comparison of the predicted defect-related frequencies and sidebands with

the experimental results showed good agreement. The effect of the loading distributions

due to shaft unbalance and roller errors provided further explanation of the spectral

content of the demodulated vibration spectrum of a bearing for cases in addition to

the cases considered by McFadden et al . [90, 91].

In the late 1990s, an analytical model for predicting the vibration frequencies,

fundamental and harmonics, of a rolling element bearing along with the amplitudes

of the frequency components, caused by a single point localised defect on the outer

raceway, inner raceway, and one of the rolling elements, under radial and axial loads,

was proposed by Tandon et al . [93]. Similar to the aforementioned models [90–92],

Tandon et al . [93] also modelled the vibration response using periodic impulse-trains;

however, they considered three different types of typical pulse shapes of finite width —

rectangular, triangular, and half-sine. The results showed that for an outer raceway

defect, a vibration response is generated at the outer raceway defect frequency fbpo

(also known as ball pass frequency outer raceway — BPFO; refer to Appendix C for

the definition of BPFO) and its multiples. For an inner raceway defect, a response is

generated at the inner raceway defect frequency fbpi in the absence of a radial load;

however, in its presence, a response is also generated at equi-spaced sidebands at the

shaft rotational frequency fs in addition to the inner raceway defect frequency fbpi.

Tandon et al . [93] also reported that the vibration amplitude due to the outer raceway

defect was higher compared to that of the inner raceway defect, and the amplitudes

of the vibration frequencies and their harmonics were affected by the different pulse

shapes. Although a fair agreement between the predicted and experimental results
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(obtained from reference [253]) was claimed, the comparison was only illustrated for

the defect on the inner raceway of a bearing. It was also mentioned in their paper that

the amplitudes of the predicted frequency components were normalised (or corrected)

for the comparison with the experimental results; however, the normalisation factor

was neither discussed nor provided. The problem of amplitude mismatch has also been

highlighted by several other authors [103, 104, 109–111] who, later on, developed non-

linear multi-body dynamic models; these models will be discussed later in Section 2.3.3.

In the work presented in this thesis, a novel explicit dynamics FE model of a

rolling element bearing with an outer raceway defect is developed. It will be shown

in Chapter 5 that the acceleration levels predicted by the FE model of the bearing

presented here favourably match with the experimentally measured data.

2.3.2 Quasi-periodic impulse-train models

A quasi-periodic or an aperiodic impulse-train model refers to a model that includes

a certain amount of random fluctuations that occur due to the slip associated with

the rolling elements within a bearing [95, 96]. Due to the incorporation of randomness

in the periodic impulse-train models, the quasi-periodic impulse-train models are also

referred to as stochastic models.

The periodic impulse-train models [90–93] were based on the consideration of equi-

spaced generation of force impulses as the rotating components within a bearing repeti-

tively pass over a defect. However, based on the observations of the experimental results

of a ball bearing having an inner raceway defect, Brie [94] suggested that the defect-

induced excitation cannot be considered as periodic, but quasi-periodic in nature. As

the earlier models [90, 91] could not explain some frequency variations, Brie modelled

the response of a bearing using a single-degree-of-freedom (DOF) lumped mass-spring-

damper system. A slight variation was introduced to the modelled defect-induced

impulse-train, although the cause and amount of the variation were not mentioned.
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Ho et al. [95] and Randall et al. [96] explained that the slippage of the rolling

elements causes slight random variation in the spacing between two consecutive defect-

related impulses observed in practice. They explained that the random variations occur

due to the slip associated with the motion of the rolling elements within a bearing —

the contact angle between rolling elements and raceways varies with the position of

each rolling element. As a result, each rolling element has a different effective rolling

diameter and tries to roll at different speeds. However, the cage limits the deviation

of the rolling elements causing some slip and consequently variations between the time

intervals associated with the defect-related impulses. These slight random variations

lead to smearing in the frequency spectrum of defect-related harmonics at higher fre-

quencies; that is, defect-related frequencies appear as discrete harmonics of negligible

amplitude in the low-frequency range, but smeared in the high-frequency range where

their amplitude is amplified by correspondence with the structural resonance frequen-

cies of a bearing [30].

In order to address the deficiencies in the prior models [90–93], Ho et al. [95] also

modelled the localised defect-induced vibration signals as a series of impulse responses

of a 1-DOF system. However, they introduced random variations in the time between

the impulses so as to gain a close resemblance to the actual vibration signals obtained in

practice. The results showed that the incorporation of the fluctuations in the modelled

signals provided a realistic update to the traditional models proposed by McFadden et

al . [90, 91]. The work presented by Ho et al. [95] was primarily focused at investigating

bearing diagnostic techniques, such as self-adaptive noise cancellation [254] and squared

envelope analysis rather than investigating the vibration characteristics.

Adopting the model of Ho et al . [95], a few more authors have also incorporated

the slippage-related random fluctuations in their proposed defect-induced impulse-train

models [96–98]. The force impulses in these models [96–98] were simulated using a 1-

DOF system [96] and the Dirac delta function D [97, 98]. The authors of the models

[96–98] used the theory of cyclostationarity [255–259], and characterised the bearing
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signals as quasi-cyclostationary; that is, their statistics are quasi-periodic [96] as in-

dicated by Brie [94]. The emphasis of the stochastic models presented in references

[95–98] was focused on the diagnostics of defective rolling element bearings using cyclic

spectral density analysis [30, 257, 258]. The signal processing techniques successfully

detected the defect-related frequencies and associated harmonics.

Unlike the technique followed by previous researchers [90–98] for generating the

defect-induced impulse-trains, Behzad et al. [99] applied the concept of rough elastic

contact between the surfaces of a rolling element bearing. Rough elastic contact me-

chanics has been exploited by several researchers to analytically model rough surfaces

[177, 260–269], and explain the source of high-frequency vibrations in rolling contacts

with attention focused on wheel–rail contact [33, 36–42, 45, 51, 270] and rolling bearings

[271, 272]. Behzad et al. [99] presented a stochastic model for estimating the vibra-

tion response of defective rolling element bearings. They considered two measures of

roughness to represent non-defective and defective surface areas using the Gaussian

probability distribution [273, Chapter 3, pages 59–66]; the localised outer raceway

defect had a rougher surface than the non-defective bearing surfaces. Assuming the

applicability of the Hertz theory of elasticity [175–177], variations in the contact forces

between the rolling elements and raceways contact interfaces were estimated on the ba-

sis of the roughness-related profiles of the rolling surfaces. As the defective surface was

modelled as rougher compared to the non-defective surfaces, high magnitudes of con-

tact forces, and consequently vibrations, were generated at the interaction of the rolling

elements and the summits of the asperities at the localised defective area, compared

to rolling elements and non-defective areas. It was shown that the predicted vibration

response agreed well the experimental measurements. Behzad et al. [99] also reported

that the performance of their stochastic model was better than the traditional peri-

odic impulse-train models [90, 91]; however, the performance was not compared with

previous stochastic models [95–98].

It is important to note that the randomness or stochasticity in the model proposed
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by Behzad et al. [99] was due to the roughness profile of the surfaces, and not due to

the slippage of the rolling elements [95, 96]. Therefore, their model effectively generates

periodic force impulses.

A brief recapitulation of the impulse-train models

The aforementioned periodic [90–93] and quasi-periodic (stochastic) impulse-train mod-

els [94–99] assume that defect-induced vibrations are generated by a single force im-

pulse as the rolling elements interact with the raceways within a bearing, and that

the impulse decays exponentially with time. The models do not include the physical

characteristics of a bearing, such as the masses of the components (outer ring, inner

ring, and rolling elements) and the raceway-to-rolling element contact interaction. The

generation of impulse trains can be used to understand the defect-related bearing vibra-

tion frequencies, harmonics, and associated sidebands; however, they are not suitable

if one has to understand the vibration characteristics of various types of defects, such

as line, area, and extended spalls. It was also mentioned that the predicted amplitudes

of the frequency components were corrected for comparison with experimental results;

however, the correction factor has not been provided. Nevertheless, the impulse-train

models provide an excellent understanding of the defect-related (vibration) frequency

components (fundamental, harmonics, and sidebands) due to the presence of localised

defects on the outer raceway, inner raceway, and one of the rolling elements within a

bearing for various loading conditions.

The valuable insights into the vibration spectra of defective rolling element bear-

ings, gained through the impulse-train models [90–99], provided motivation for later

researchers to incorporate various components of a bearing and bearing–housing in

rotor–bearing systems in their models, which led to the development of non-linear,

multi-body dynamic models [100–114]. These models are reviewed in the following

section.
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2.3.3 Non-linear multi-body dynamic models

The non-linear multi-body dynamic models for rolling element bearings and associated

systems are lumped parameter models. In the context of mechanical systems, a lumped

parameter model (also called a lumped element or lumped component model), represents

a model in which various elements or components of a system are simplified into rigid

masses connected by a series of springs (to model linear or non-linear contact interfaces)

and dampers (to account for energy losses). The non-linear multi-body dynamic models

for predicting the vibration response of a bearing, bearing–pedestal (housing), and

rotor–bearing systems, due to the presence of localised bearing defects [100–114] have

been developed by several researchers. The localised defects not only include point

spalls [100, 103, 106, 108, 109] (as considered for the impulse-train models [90–98]),

but also line spalls [101, 102, 104, 105, 110, 112, 114] as a function of width and

depth, circular spalls [107, 111], and area spalls (as ellipsoids for ball bearings) [113]

as a function of the Hertzian contact deformation [175–177]. The non-linear multi-

body dynamic models use lumped parameters to represent the bearing systems as

simplified mass-spring-damper systems, and generally consider the outer and inner

rings as lumped (rigid) masses and the rolling elements-to-raceways contact interfaces

as non-linear springs.

Depending on the components of a system considered, the translational degrees-of-

freedom in the multi-body models range from two [109, 111] to thirty-three [112]. The

common feature of all models in references [100–114], except the model in reference

[113, 114], is that they neglect the bending (flexural) deformation of the outer and

inner rings, and rolling elements; however, all models consider the localised non-linear

Hertzian contact deformation at the rolling element-to-raceway contact interfaces. In

order to simplify the analysis, the majority of the multi-body models available in the

literature assume the following:

1. The outer and inner rings are rigidly connected to the housing [100–112] and

34



Chapter 2. Literature Survey

shaft [100–114], respectively.

2. The rolling elements are excluded or considered massless [100–103, 105–107, 109–

111, 114].

3. The inertial and centrifugal effects of the rolling elements are ignored [100–111,

113, 114].

4. The slippage of the rolling elements [96] is ignored [100–104, 106–112, 114]; thus,

eventually resulting in the generation of periodic defect-induced impulses.

5. The elasto-hydrodynamic lubrication (EHL) fluid film [173, 235–241] in rolling

contacts is ignored [103, 105–111, 113, 114].

6. The stiffness of a bearing is considered to be linear [101–103, 106, 107, 109–

111, 113, 114].

In the work presented here, the explicit dynamics FE model of a rolling element bearing

includes all the components within a bearing, namely outer ring, inner ring, rolling

elements, and cage. The components are modelled as flexible bodies. The slippage of

the rolling elements, and their centrifugal effects are also included in the FE model.

The paragraphs to follow immediately after the next provide a systematic, chrono-

logical, review of the non-linear multi-body dynamic models for predicting the vibration

response of rolling element bearings having localised defects. The paragraphs are struc-

tured in such a way so that each paragraph contains a review of a single model: the

paragraphs discuss their features and findings, and conclude with some limitations.

Prior to investigating the vibration response of rolling element bearings (and asso-

ciated bearing–pedestal and rotor–bearing systems) due to the presence of defects, the

research was primarily focused on understanding the characteristics of the vibration

response of non-defective bearings [66–89]. The first systematic investigations were

conducted by Perret [66–69] and Meldau [70–73] in the early 1950s. They concluded
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that rolling element bearings generate cyclic vibrations even in the absence of man-

ufacturing or geometrical imperfections; such vibrations are commonly referred to as

variable compliance vibrations, which were later described by Sunnersjö [133, 134]. A

significant number of experimental and analytical studies on the characteristics of vi-

brations caused by the geometrical imperfections in rolling element bearings, such as

surface roughness, waviness, misaligned raceways, off-sized rolling elements, and out-of-

round components, were carried out by Svenska Kullagerfabriken AB (SKF) Industries,

Inc. [274] under U.S. Navy Contract Number: NObs-78552 between 1960 and 1963,

and seventeen bi-monthly reports were issued. A few special reports can be found in

references [122–127], and the summary of the overall work in reference [129]. Later

on, several researchers reported on the development of analytical models to predict the

vibration response of rolling element bearings due to various distributed defects with

attention focused on the waviness of raceways and rolling elements [128, 130–160].

However, from the review of the literature conducted during the course of the current

study, it appears that the first non-linear multi-body dynamic model for predicting the

vibration response of a rolling element bearing (in a bearing–pedestal system), due to

a localised (point) defect, was reported in 2002 by Feng et al. [100]. Their model was

an extension to the model developed by Fukata et al. [87] that describes the vibration

response of an ideal (non-defective) ball bearing. Fukata et al. [87] modelled a rotor–

bearing system as a simplified 2-DOF system; while the outer ring was modelled to be

stationary, the inner ring was assumed to translationally move in the radial plane (of

the model) with two degrees of freedom (global cartesian x- and y-directions).

Building on the 2-DOF model of Fukata et al. [87], Feng et al. [100] presented

a 4-DOF model corresponding to the two translational degrees of freedom, in the ra-

dial plane, each for the two lumped masses: the rotor and pedestal masses. No other

component was included in the model except the outer ring, which was assumed to be

stationary and rigidly connected to the pedestal. As the primary aim of their model

was to demonstrate the working capability of the in-house transient analysis software
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[275] to simulate the vibration signals due to localised bearing defects, the characteristic

dimensions and parameters of the rotor–bearing system model were fictitiously chosen.

The 4-DOF model was solved using the fourth-order Runge-Kutta integration scheme

[276, Chapter 5], which was incorporated in the developed software [275]. The results

of the numerical simulations were not compared with any kind of experimental results,

but were simply validated by comparing the values of the defect-related frequency com-

ponents, fbpo and fbpi for outer and inner raceway defects, respectively (obtained from

an envelope analysis [251, 252] of the modelled signals), using the existing knowledge

on the basic bearing kinematic defect frequencies [3, Chapter 25, page 994]. Despite

being the first multi-body model for predicting the vibration response of a rolling el-

ement bearing having a localised defect, the model by Feng et al. [100] has not been

cited, nor discussed, by many researchers who later on developed their own multi-body

models. This is probably because it was not published in a journal, but presented at a

conference. However, the 4-DOF model of Feng et al. [100] was extended by Sawalhi

et al. [105, 121] which is described later in this section.

With the objective of acting as an interface element between the rotor and support-

ing structure, a non-linear multi-body dynamic model of a deep-groove ball bearing was

developed by Sopanen et al. [101, 102]. Their 6-DOF model considered the outer and

inner rings of the bearing as rigidly connected to the housing and shaft, respectively, the

non-linear Hertzian contact deformation [175–177] at the rolling elements-to-raceway

contact interfaces, and the EHL fluid film in the rolling contacts [173, 235–241]. In

addition to modelling the localised defects (line spalls) on the outer and inner race-

ways, surface waviness (one of the distributed defects) of the raceways was also con-

sidered. The model was solved using a commercial multi-body software package, MSC

Adams [277]. While Sopanen et al. [101, 102] did not conduct any experimental work,

they compared their modelling results with those of similar studies available in the

literature; for example, for the localised raceway defects, the predicted results were

compared with the results in reference [93], and for the waviness, the modelling results
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were compared with the results reported in references [138, 139, 144, 148]. Sopanen

et al. [101, 102] observed that the diametral clearance has a significant effect on the

vibration response of the modelled rotor–bearing system, and the amplitude of the

defect-related frequency components for similar defects was higher for the outer race-

way defect in comparison to the inner raceway defect. The former observation was also

reported by Tiwari et al. [146, 147], and the latter by Tandon et al. [93]. Although they

mentioned that the localised line spalls were modelled using two parameters, length

and height, Sopanen et al. [101, 102] did not provide details on the simulation of the

defect-induced impulses. Furthermore, their model ignored the slippage of the rolling

elements (balls) [96] and neglected the centrifugal forces acting on them. Although the

modelled defect-related frequencies agree well with the earlier results published in the

literature [93, 138, 139, 144, 146–148], the model presented by Sopanen et al. [101, 102]

lacks details on the actual modelling process, and therefore, cannot be clearly followed.

A 3-DOF lumped mass-spring-damper model for predicting the vibration response

due to a localised point spall on various elements of a rolling element bearing in a

rotor–bearing system was proposed by Choudhury et al. [103]. Similar to the assump-

tions considered in the aforementioned models [100–102], Choudhury et al. [103] also

considered the outer and inner rings as rigidly connected to the housing and shaft,

respectively. The rolling elements were excluded from the model, and on the basis of

the findings reported in references [278, 279], the stiffness of the bearing was considered

to be linear. The defect-related force impulses were generated as a rectangular-shaped

periodic impulse-train without including the slippage of the rolling elements [96]. For

the outer raceway defect, it was shown that the amplitude of the vibration (veloc-

ity) increased with increasing harmonic order, and for the inner raceway defect, the

sidebands (fs and fbpi ± fs) were asymmetrically distributed about the defect fre-

quency. The modelling results (vibration line spectra) for only the inner raceway and

rolling element defects were compared with the experimental results. Similar to the

findings reported in previous references [93, 101, 102], Choudhury et al. [103] also
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reported that the amplitude of the frequency components for the outer raceway de-

fect was much higher than that for the inner raceway and rolling element defects.

Although a fair agreement between the predicted and experimentally measured defect-

related frequency components was shown, their amplitudes did not match well with

each other. However, despite their earlier findings reported in reference [93] related

to the effect of different pulse shapes (rectangular, triangular, and half-sine) on the

amplitudes of defect-related frequencies, Choudhury et al. [103] restricted the usage of

the pulse shape to rectangular in their proposed multi-body model [103]. The signif-

icant mismatch between the amplitude of the frequency components could be due to

the (assumed) rectangular shape of the modelled impulses and unknown characteristics

of the actual defect-induced impulses. Choudhury et al. [103] also mentioned that the

predicted results were normalised for the comparison purposes; however, they did not

provide the normalisation factor, which was the same limitation found in their previous

work [93].

Sassi et al. [104] presented a numerical model to predict the vibration response

of a deep-groove ball bearing having a localised point spall on the outer and inner

raceways, and one of the rolling elements within the bearing. Although the majority

of the simplifications considered during the modelling were similar to the aforemen-

tioned models [100–103], Sassi et al. [104] included the rolling elements (balls) as rigid

bodies (lumped point masses), and this was excluded in previous work [100–103]. The

defect-related impulses were mathematically modelled as periodic impact forces, and

the empirical expression for estimating the impact force was taken from reference [280].

The equations of motion for the coupled 3-DOF system representing the rotor–bearing

system were solved using Simulink® [281], and compiled as a toolbox, BEAT (BEAr-

ing Toolbox) in the MATLAB® software [282]. Time and frequency domain analyses

were conducted on the simulated data, and the predicted results from the model were

compared with the experimental results obtained from the bearing data centre at Case

Western Reserve University (CWRU) [283]. Similar to the problem encountered by
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previous researchers [91, 93, 103], Sassi et al. [104] also reported the amplitude mis-

match between the predicted and experimental defect-related frequency components;

fundamental, sidebands, and harmonics. They mentioned that the amplitude of the

predicted frequencies was corrected in order to simply match them with the corre-

sponding experimental results; however, similar to the approach taken by previous

researchers [93, 103], the amplitude-correction factor was not discussed.

Extending the work of Fukata et al. [87] and Feng et al. [100], a detailed analytical

model to simulate the vibration response of a defective ball bearing in a gearbox having

localised defects (line spalls) was presented by Sawalhi et al. [105]. In contrast to the

2- and 4-DOF models presented in references [87] and [100], respectively, the model

developed by Sawalhi et al. [105] comprised 5-DOF (translations in global cartesian

x- and y-directions) — 2-DOF for the inner ring, 2-DOF for the pedestal, and one for

measuring the high-frequency response of the pedestal. Unlike the multi-body models

reviewed so far [100–104], the lumped mass-spring-damper bearing–pedestal model by

Sawalhi et al. [105] incorporated the slippage of the rolling elements [96] as a percentage

variation (1% to 2%) of the defect-related frequencies in order to gain close resemblance

to actual bearing vibration signals measured in practice. Localised line spalls on the

outer raceway, inner raceway, and a rolling element of a bearing were modelled by

developing mathematical expressions based on the assumed path (trajectory) of the

rolling elements as they traverse through the defect. Although the shape of the defects

was modelled as rectangular, the definition of the path was based on the hypothesis

that the rolling elements gradually enter into and exit out of the defect. However,

inertial and centrifugal effects of the rolling elements were ignored. Furthermore, no

mathematics behind the gradual entry and exit of the rolling elements into and out of

the defect, respectively, was discussed. In the work presented here, a new mathematical

model to predict the gradual entrance of the rolling elements into a defect is developed

and is described in Chapter 3. In the model by Sawalhi et al. [105], a set of relevant

ordinary differential equations of motion for the coupled bearing–pedestal system to
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simulate its vibration response was solved using Simulink® [281]. A unique feature of

the model presented by Sawalhi et al. [105] is that the pedestal was modelled using an

additional mass-spring system, referred to as a resonance-changer, attached to it. With

the aim to simulate a typical high-frequency resonant response of a bearing, the values

of the mass (1 kg) and the stiffness of the resonance-changer (8.89N/m) were selected

to excite the bearing at 15 kHz (with a damping of 5%). As the resonant mode of the

bearing structure was deliberately chosen to be 15 kHz, the magnitude of the simulated

vibration response due to the introduction of localised defects was higher around that

frequency compared to the response of a non-defective bearing. Due to the mismatch

between the modelled and actual resonant modes of the structure, different frequency

bands were used to optimally demodulate the simulated and experimentally measured

vibration signals using spectral kurtosis [25, 26] and a kurtogram [27]. Nevertheless,

good agreement between the simulated and experimental results, analysed using time

and frequency domain techniques [23–27], was observed.

Sawalhi et al. [105] also observed that both measured and simulated defect-related

transient signals were composed of two impulses: the first was related to the entry of

the rolling elements into the defect, and the second, to the exit of the rolling elements

out of the defect. They named the phenomenon related to the occurrence of the

two impulses as the double-impulse phenomenon. Although, the results were reported

to have the theoretical background that agrees and supports the findings reported

in references [161, 162, 164], a detailed investigation of the entry- and exit-related

vibration signals was not carried out. However, later on, Sawalhi et al. [165] discussed

the characteristics of the vibration signals associated with the entry and exit events in

a separate publication [165], and subsequently found the double-impulse phenomenon

as invalid. These will be described later in Section 2.5.2 of this chapter.

Defect-induced periodic impulse-trains were generated using the Dirac delta func-

tion [249, Chapter 1, pages 9–10] in the earlier models in references [90–93] to primarily

understand the vibration-related spectral content of rolling element bearings that have
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a localised defect. Ashtekar et al . [107] presented a new technique to model the lo-

calised defects on the raceways of deep-groove and angular contact ball bearings, and

studied their effect on the bearing dynamics. They simulated the defect-related im-

pulses by developing a mathematical expression to modify the deflection exponent n in

the well-known Hertzian contact force-deflection (also referred to as load-displacement)

relationship [175–177], F = Kδn, where F is the force, K is the contact stiffness, δ is

the deflection, and n is the exponent — 3/2 for point, circular, and elliptical contacts

in ball bearings, and 10/9 for line and rectangular contacts in roller bearings. The

expression in reference [107] is a function of the load, ellipticity ratio, and the dimen-

sions of the circular defect (diameter and height). It was used to estimate the modified

contact forces at the interaction of the rolling elements and the defect in order to pe-

riodically simulate the force impulses. The modelling results were not validated with

experimental measurements.

For a coupled shaft–bearing system, a 3-DOF lumped parameter model was pro-

posed by Arslan et al. [108]. In contrast to the previous models [100–106], which

presented the vibration response of either the bearing or housing, the model by Arslan

et al. [108] presented displacement of the rolling elements (balls) within the bearing.

Although the point mass of rolling elements was included in the model, their inertial

and centrifugal effects were ignored as was done in reference [104]. Arslan et al. [108]

neither reported on the conduct of the experimental work nor carried out the com-

parison of their modelling results with the results from the literature. The modelling

results did not present new findings compared to the understanding provided by earlier

researchers [100–106].

With the aim of studying the stability of a rotor–bearing system having a localised

point spall on various elements of a ball bearing, Rafsanjani et al. [109] presented

a 2-DOF numerical model. The model was based on the work of Sunnersjö [134]

who also presented a 2-DOF model to demonstrate a method for the estimation of

the variable compliance vibration frequencies [129]. The two translational degrees of
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freedom were related to the displacement of the inner ring in the radial plane (global

cartesian x- and y-directions). In a similar way to previous models [101–105], the outer

and inner rings were rigidly connected to the housing and shaft, respectively, the non-

linear Hertzian contact deformation [175–177] was considered at the rolling element-

to-raceway contact interfaces, the inertial and centrifugal effects of the rolling elements

were ignored, and the stiffness of the bearing was considered to be linear [278, 279]. The

effect of the localised defects was modelled as periodic impulses ignoring the slippage

[96] of the rolling elements. Rafsanjani et al. [109] did not conduct any experimental

work; however, in a similar way to reference [104], they used the experimental data

available at the bearing data centre at CWRU [283] for the comparison of their modelled

results. Similar to the problem encountered by previous researchers [91, 93, 103, 104],

a substantial amplitude mismatch between the predicted and experimental results for

the defect-related frequency components was also reported by Rafsanjani et al. [109].

The multi-body models reviewed so far [101–109] only considered the inclusion of

a single localised defect within a rolling element bearing. Patel et al. [110] included

multiple (two) localised defects (line spalls) on both inner and outer raceways in their

proposed model for predicting the vibration response of a deep-groove ball bearing.

For two raceway defects, two pulses were generated and separated proportionally to

the angular separation of the defects. Patel et al. [110] presented a 3-DOF shaft-

bearing-housing model using lumped masses and springs. The assumptions considered

during the development of their model were similar to those mentioned in references

[109]. For the no defect case, in addition to the peaks predicted at the cage frequency

fc, shaft rotational frequency fs and its harmonics, other peaks were present in the

modelled results, which were not discussed. It was shown that for two defects on the

outer raceway, the vibration amplitudes of the defect-related frequency components

were larger than those obtained for a single defect. However, the amplitudes of the

predicted vibration spectra (velocity) of the housing did not match with those obtained

experimentally. This highlights the amplitude mismatch reported earlier by several
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researchers [91, 93, 103, 104, 109].

Based on the earlier models in references [87, 109], Patil et al. [111] reported on

the development of a 2-DOF lumped parameter model in order to study the effect of

the size of localised raceway defects on the vibration response of a deep-groove ball

bearing. The shape of the defects was modelled as a half-sine wave, and three defect

sizes were considered (diameters as 0.5mm, 1mm and 1.5mm). The modelling results

showed that the amplitude of the vibration spectra increased with increasing defect

size for both inner and outer raceway defects. The experimental results were only

shown for the outer raceway defect. The comparison of the modelled and experimental

results shows that neither the outer raceway defect frequency component fbpo and

associated harmonics nor their amplitudes match with each other. While the percentage

error of approximately 6% was reported between the modelled and measured frequency

components, the percentage error between their amplitudes, shown as an acceleration

power spectrum (linear), was approximately 60,000%. The mismatch between the

modelled and measured frequencies could be due to the ignorance of the slippage [96]

of the rolling elements, whereas the amplitude mismatch problem has also been reported

by others [91, 93, 103, 104, 109, 110].

A unique approach was presented by Nakhaeinejad et al. [112] for modelling the

vibration response of a deep-groove ball bearing due to localised line spalls using vector

bond graphs [284]. They developed a 33-DOF multi-body dynamic model of a bearing

with nine balls and two rings (outer and inner) considering the translations in the radial

(global cartesian x- and y-directions) and axial (global cartesian z-direction) planes.

Unlike the majority of the multi-body models, the model by Nakhaeinejad et al. [112]

incorporated the slippage of the rolling elements [96], and their inertial and centrifugal

effects. Various widths and heights of the localised defects were modelled on the outer

raceway, inner raceway, and one of the rolling elements. The validation of the modelled

results was reportedly achieved by comparing them with experimental measurements.

Nakhaeinejad et al. [112] reported that higher amplitudes are generated for larger
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defects.

Based on the previous 2-DOF models reported in references [87, 109, 111], a nu-

merical model was proposed by Tadina et al. [113] to simulate the vibration signatures

of a ball bearing having localised defects during run-up. In contrast to all the multi-

body models reviewed so far [100–112], Tadina et al. [113] modelled the outer ring as

deformable, using finite elements (two-noded locking-free shear, curved beam elements

[285]). Although it was mentioned that the slippage or sliding between the compo-

nents of the bearing was given by a prescribed function within the model, from the

set of equations provided in the text, the slippage-related function could not be found.

The localised defects on the raceways were modelled as impressed ellipsoids, which are

formed due to the application of a radial load between the raceways and rolling ele-

ments of a bearing. On the contrary, the defect on a ball was modelled as a flattened

region. The simulated results were subjected to envelope analysis [251, 252]. Tadina et

al. [113] neither conducted the experimental work to measure the vibration response

of defective rolling element bearings nor did they used the results from the literature

to compare their modelled results.

Zhao et al. [114] used a commercial multi-body dynamics software package, Re-

curDyn [286], to model a rolling element bearing having localised line spalls. As their

objective was to present a technique for estimating the size of a localised defect, they

did not provide sufficient details to fully understand the modelling work. Although it

was shown that the simulated results agreed well with those of the experimentally mea-

sured data taken from the bearing data centre at CWRU [283], the actual modelling

process could not be followed due to insufficient details provided in the paper.

2.3.3.1 Rolling element–raceway contact force

For simulating the vibration response of defective rolling element bearings, authors

of the aforementioned multi-body dynamic models [100–102, 104–106, 109–113] have

included an analytical solution for estimating the rolling element-to-raceway contact

45



2.3. Localised defects

forces as non-linear Hertzian contact springs [175–177]. In these models [100–102, 104–

106, 109–113], for the extent or length of a rectangular-shaped bearing defect with

sharp, step-like entry and exit edges (refer to Figure 2.3 to see a rectangular-shaped

defect), the magnitude of the contact forces instantly decreases to zero and increases

to its static load value [3, Chapter 7, pages 234–237] as the rolling elements enter into

and exit out of the defect, respectively. This is largely due to assuming that the rolling

elements traversing through the defect follow its geometry (or profile); for example,

in the model by Sawalhi et al. [105], the path of a rolling element was modelled such

that its centre follows the geometry of the defect. As a result, this produces very large,

erroneous, impulsive forces in a system at the entry and exit points of a defect due to an

instantaneous change in the system acceleration in order to maintain its equilibrium. It

will be discussed later in Section 2.5 that an impulsive response, mainly characterised

by energy in high-frequency range, at the exit point of a defect is realistic; however,

similar high-frequency impulsive response at the entry point is unrealistic and not

observed in practice [4, 5, 161, 162, 165].

To prevent the occurrence of unrealistically large impulsive forces and to achieve

the simulated vibration response comparable to measured data, the sharp step-like

variations were modified to occur gradually [101, 102, 105, 112]. This was achieved by

modifying the shape of the defect so it resembles an assumed path of a rolling element

while traversing the defect. However, apart from the suggestions that a gradual re-

sponse should be used to reflect a realistic scenario [105], no analysis has been presented

nor has the mathematics behind the modification been discussed in the literature. It is

also interesting to note that despite the incorporation of the rolling element-to-raceway

contact modelling by previous researchers [100–102, 104–106, 109–113], their main fo-

cus was on the presentation of the vibration response of rolling element bearings, such

as acceleration, velocity or displacement, rather than the presentation of the contact

force results. Based on the work presented here, the author of this thesis has recently

published [4, 5] an analysis of the dynamic rolling element-to-raceway contact interac-
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tion as the rolling elements traverse through a localised defect within a bearing.

In the work presented here, a new mathematical model has been developed to

accurately predict the gradual decrease in the contact forces as the rolling elements

enter into a raceway defect within a bearing. This will be presented in Chapter 3, and

several comparisons between the results estimated using the new model and previous

models will be shown.

A brief recapitulation of the non-linear multi-body dynamic models

The non-linear multi-body dynamic lumped parameter models were developed includ-

ing various components of a rolling element bearing and associated rotor–bearing sys-

tems. The outer and inner rings were generally modelled as rigid (lumped) masses

and the contacts between the raceways and rolling elements were modelled as non-

linear springs. The problem of amplitude-mismatch discussed during the review of the

impulse-train models [91, 93] was also highlighted during the discussion of the multi-

body models [103, 104, 109–111]. Amplitude-correction factors were applied to the

predicted results; however, they were neither discussed nor provided [93, 103, 104].

The well-known envelope analysis technique [30, 251, 252] was implemented on the

simulated time-traces of the vibration signals (acceleration and velocity) generated as

a result of localised defects on the components of a rolling element bearing in order

to demonstrate the significant defect-related frequency components; fundamental, har-

monics, and associated sidebands.

2.3.4 Finite element models

This section is concerned with those numerical models that use either commercial FE

codes or a combination of analytical and FE codes in order to simulate the response

of a rolling element bearing or associated bearing structure due to the localised bear-

ing defects. Commercially available FE codes can be classified on the basis of their
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solver time integration schemes. These schemes include implicit [287–294] and explicit

[292, 295–305] time integration methods. Based on the implementation of the time

integration methods, FE models available in the literature for studying various aspects

of rolling element bearings, can be broadly categorised into implicit static and explicit

dynamic models. An explanation of the difference between implicit and explicit time

integration schemes is provided in Appendix D.

Although the explicit dynamic FE models are most relevant to the work presented

in this thesis, implicit FE models are also briefly reviewed here.

2.3.4.1 Combination of analytical and implicit FE models

Kiral et al. [115, 116] simulated the vibration response of a bearing structure (pedestal —

a plummer block), which houses a ball bearing with and without a defect. Although the

concept of mathematically generating the periodic defect-induced impulse-train forc-

ing model to simulate the impulsive force as a result of ball–defect interaction was not

new, the output of the model was provided as an input to a commercial FE software

package, I-DEAS [306]. The outer ring of the bearing and structure were modelled as a

rigid assembly using I-DEAS. A localised defect on the outer raceway was modelled by

simply amplifying the magnitudes of the radial forces at two adjacent nodes considered

to represent the edges of the defect; the depth of the defect was not considered. The

mathematical logic behind the values of the amplification factors was not discussed;

however, they were chosen to be 6 [115] and 10 [116]. The width of the localised defect

was chosen to be the width of two neighbouring nodes as a result of the discretisation

of the assembly structure into finite elements. While a single defect was simulated

in their former model [115], Kiral et al. simulated multiple defects (two, three, and

four) on the outer raceway, located at the angular separation of 90◦, in their latter

model [116]. Standard condition-based monitoring techniques, time (root mean square

(RMS) value and kurtosis [23]) and frequency domain (envelope analysis [251, 252]),

were applied to the FE modelling results for verification purposes. They reported that
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the envelope analysis technique can efficiently detect outer and inner raceway defects,

but not the rolling element defects.

2.3.4.2 Implicit static models

In the context of the present study, implicit static FE models refer to those models that

use a certain type of commercial FE software package or code to analyse, generally, the

static stress and/or load distribution within rolling element bearings. A few examples

of the FE software packages, which are primarily used for their implicit solving capa-

bilities, are ANSYS [307], Abaqus [308], ADINA [309], ALGOR [310], I-DEAS [306]

and NASTRAN [311].

For the case of non-defective rolling element bearings, a number of researchers

[312–328] have conducted FE modelling studies using the aforementioned software

packages to primarily investigate the following static parameters — stresses at the

rolling element-to-raceway contact interfaces, rolling element-to-raceway contact forces,

load-deflection relationships, load carrying capacity of rolling elements, stiffness matrix

calculation, and fatigue life. As the models in references [312–328] do not include a

defect within the bearing models, they are not directly relevant to the current study,

and therefore, are not reviewed here. However, from the title of one of the publications

[317], it appears that the author had carried out an FE modelling study to predict the

vibration response due to a defect located at the outer raceway of a bearing. It is im-

portant to clarify that the work presented in reference [317] was related to the transient

dynamic analysis conducted using ANSYS [307]. In a transient analysis, loads have

to be manually defined as a function of time, and the load-versus-time curve has to

be divided into suitable load steps. The force-versus-time curve presented in reference

[317] simply hypothesied and simulated the change in the contact force, similar to that

of a square wave pattern with vertical step responses at the edges of the defect, repre-

senting a step decrease and increase in the contact force. The FE model in reference

[317] did not included any other component of a bearing except half of the outer ring
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structure. As the change in the dynamic forces between the rolling elements and a de-

fect within a bearing is primarily responsible for generating impulsive vibration signals,

the force cannot be simply simulated using a square wave-like function. Therefore, the

work presented in reference [317] does not represent an accurate simulation of bearing

dynamics.

The explicit dynamic FE models that are most relevant to the work presented in

this thesis are reviewed in the following section.

2.3.4.3 Explicit dynamic models

In the context of the present study, explicit dynamic models refer to those models that

were developed using explicit dynamic FE software packages; for example, LS-DYNA

[329], ANSYS Autodyn [330], Abaqus/Explicit [308], and NASTRAN Explicit [311].

These are commercial FE codes that use an explicit time integration scheme [292, 295–

305] during the solution phase to solve for time-varying acceleration, velocity, and

displacement results.

As for the case of implicit models [312–328], explicit FE models for non-defective

rolling element bearings have been developed [331–334]. These models simulate deep-

groove ball bearings, and compare the numerically estimated stress distribution results,

obtained using LS-DYNA [329], at the rolling element-to-raceway contact interfaces,

with the analytical results obtained using the classical Hertz theory of elasticity [175–

177].

Only four publications [117–120] have been found during the survey of the litera-

ture that are concerned with the modelling of localised defects within rolling element

bearings using an explicit FE software package. It should be noted that all four publi-

cations have appeared very recently in the literature and after the current study began.

A critical review of these finite element models is provided below.

First publication: In 2010, a dynamic FE model of a deep-groove ball bearing was

presented by Shao et al. [117]: the three-dimensional (3-D) model was solved using
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LS-DYNA [329]. The bearing was installed in a bearing structure (pedestal); the model

of the bearing pedestal was similar to the one presented by Kiral et al. [115, 116] as

discussed above. Shao et al. [117] modelled the same-sized defect on the outer raceway,

inner raceway, and one of the rolling elements; however, the size of the defect was not

mentioned. The numerically obtained time-varying acceleration results at two nodes,

located on the bearing structure, were shown for four simulations: 1) no-defect, 2)

an outer raceway defect, 3) an inner raceway defect, and 4) a rolling element defect.

While one of the nodes (referred to as P1 ) was located at the 6 o’clock position in close

proximity to the outer ring of the bearing, the other (referred to as P2 ) was located in

a mounting hole of the pedestal, at a horizontal distance of approximately 60mm from

P1. The results showed that the magnitude of the acceleration was highest for the

outer raceway defect followed by the inner raceway defect, and lowest for the rolling

element defect. It was also found that, for the outer raceway defect simulation results,

the magnitude of the acceleration signal was significantly lower at P2 in comparison

to P1. Because the node at P1 was in close proximity to the outer raceway defect,

the low level of the acceleration signal at P2 showed that the defect-related impulsive

energy attenuates as the output location is moved away from the defect location. Stan-

dard time domain statistical parameters, such as RMS, peak value, and kurtosis [23]

were compared for the four numerical simulations. As the paper was presented at a

conference, no further details were provided, such as loads and boundary conditions.

Second publication: In 2012, Guochao et al. [118] presented a 3-D FE model of a

deep-groove ball bearing having a localised defect on its outer raceway. The model was

solved using LS-DYNA [329], and the time-varying acceleration, velocity, and displace-

ment results at three nodes located on the outer ring were shown. The nodal locations

were: 1) either at the defect or in close proximity to the defect — neither the nodal

location nor the defect was shown in the model, 2) 90◦ to nodal location ‘1 ’, and 3)

180◦ to nodal location ‘1 ’. As the modelling results were not compared with experi-

mental results, Guochao et al. [118] validated the modelled results by comparing the
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numerical outer raceway defect frequency (BPFO) fbpo, (obtained after implementing

the Fast Fourier transform (FFT) [250] on the time domain acceleration results) with

that of the analytically estimated kinematic defect frequency [3, Chapter 25, page 994].

Although it was shown that the numerical and analytical fbpo estimates matched rea-

sonably well with each other, the FE model and results have significant ambiguities

and/or potential errors. These are discussed below in the following paragraphs along

with appropriate reasoning.

On the one hand, it was mentioned that the outer ring was modelled as rigid and

all the degrees of freedom, translations in the global cartesian x-, y-, and z-directions,

of the nodes located on the outer ring were translationally constrained; that is, fixed.

On the other hand, the nodal acceleration, velocity, and displacement results at the

aforementioned three nodes located on the outer ring were shown to be varying with

time. These two results are contradictory because the response at nodes that are

translationally constrained in all the three directions cannot vary with time; that is,

the nodal results should be zero throughout the solution.

The magnitude of the numerically estimated time-varying nodal acceleration results

for the nodes located at the outer ring were of the order of 107 g, which is unrealistically

high. One of the reasons for such high acceleration magnitudes is due to modelling

the outer ring as a rigid body, which may have resulted in the over-stiffening of the

bearing model; in the context of FE models, rigid bodies cannot undergo bending

or flexural deformation as is the case for the majority of the multi-body models in

references [100–112], except for the models in references [113, 114], reviewed earlier

in this chapter. The other reason for such high acceleration magnitudes is that the

model did not include structural damping. Furthermore, as described in the preceding

paragraph, it is unclear how the time-varying nodal results could be achieved, despite

translationally constraining the outer ring.

Guochao et al. [118] mentioned that no axial and radial clearances were built into

the bearing model. Although not discussed, the pictorial presentation of the stress

52



Chapter 2. Literature Survey

distribution at the rolling element-to-raceway contact interfaces, Figure 2 in reference

[118], does not seem to provide realistic information. This is because, in the case of zero

radial clearance, the extent of the load zone is typically 180◦ around the circumference

of the outer and inner rings; that is, ±90◦ from the point where the radial load is applied

[3, Chapter 7, pages 235, 239]. This implies that the rolling elements located within

the 180◦ radial load zone extent should have the applied radial load distributed as per

the well-developed analytical static solution [3, Chapter 7, pages 234–237]. However,

from the pictorial presentation, the number of rolling elements shown to be loaded or

(mechanically) stressed were three, whereas the correct number should have been at

least four as per the static load distribution solution [3, Chapter 7, pages 234–237].

In addition to the aforementioned ambiguities and/or errors, Guochao et al. [118]

did not provide several details, which are necessary to clearly understand the modelling

work. These include the following:

• Modelled defect — neither the shape of the modelled defect nor the precise lo-

cation of node ‘1 ’ was clearly mentioned; node ‘1 ’ was mentioned to be either

located at the defect or in close proximity of the defect.

• Material model and behaviour — except mentioning that the outer ring was

modelled as a rigid body, it was not mentioned whether the remaining components

within the model of the bearing, such as inner ring, rolling elements and cage,

were modelled as rigid or flexible bodies.

• Friction — it was not mentioned whether friction between the rolling elements

and the raceways was applied.

Third publication: With the aim of studying the effect of the shape of a localised defect

on the vibration signatures, Liu et al. [119], in 2013, presented a 3-D FE model of a

deep-groove ball bearing. The localised defects were modelled on the outer raceway

of the bearing, and three different shapes of the defects were modelled — rectangular,
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hexagonal, and circular. The model was solved using LS-DYNA [329], and the effects

of various defects were studied using standard time domain statistical parameters, such

as RMS, crest factor, and kurtosis [23]. It was mentioned that while the numerically

modelled vibration, displacement, response of the inner ring was mainly influenced by

the shape of the localised defects, it was also slightly affected by the radial load, axial

load, and shaft speed. Although the model presented by Liu et al. [119] is better than

that of the previous model in reference [118], a few limitations of the model in reference

[119] are critiqued in the following paragraphs.

The outer surface of the outer ring was modelled as a rigid surface, and all the six

degrees of freedom, translational and rotational, for all the nodes located on the outer

surface of the outer ring were constrained. Although not mentioned by Liu et al. [119],

according to the understanding of the author of this thesis, one of the reasons for mod-

elling the outer surface as rigid was to simulate a rigid support along its circumference,

such as a bearing mounted in a housing or pedestal. It is also understood that the

purpose of translationally constraining the outer ring was to prevent it from rotation

during the simulation, as its (frictional) contact interaction with the rolling elements

can cause the outer ring to rotate, which is fundamentally incorrect for the simulated

rotating-inner-race-fixed-outer-race configuration. While modelling the outer surface

as rigid may cause over-stiffening of the outer ring, constraining the outer ring causes

incorrect load distribution on the rolling elements [3, 245–248], which consequently can

affect the vibration response, as the (loaded or stressed) rolling elements interact with

the defective surface.

Liu et al. [119] presented two types of validation for the numerical modelling results:

1. The first validation was related to simply comparing the numerical estimate of

the BPFO (obtained after the implementation of the FFT on the modelled ve-

locity time-traces) with the analytically estimated kinematic defect frequency [3,

Chapter 25, page 994]: this type of validation has not only been followed for
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previous FE models [117, 118], but also for the aforementioned multi-body mod-

els [100–114]. However, prior to demodulating the numerical velocity time-traces

using the envelope analysis technique [251, 252], they were low-pass filtered, with

a cut-off frequency of 500Hz. It is interesting to note that the value of the cut-

off frequency was mentioned as 500Hz in the main text; however, in one of the

figures (Figure 2 in reference [119]), it was mentioned as 800 Hz. Nevertheless, it

is fundamentally incorrect to low-pass filter the modelling results as it eliminates

the characteristics of the defect-related impacts, which are essentially impulses of

short-duration; that is, the defect-related impulsive signals contain a significant

amount of energy in the high-frequency range.

2. The second validation was related to comparing the shape of the numerically

obtained acceleration waveform with the experimental results. While the simu-

lated acceleration results were low-pass filtered, with a cut-off frequency of either

500Hz or 800Hz, the experimentally measured acceleration results were low-pass

filtered, with a cut-off frequency of 2000Hz. Although the comparison of the

shapes of the waveforms for the numerical and experimental results shows some

resemblance, their amplitudes were significantly different — the amplitude of the

experimentally measured acceleration data (after low-pass filtering) was less than

100 g compared to approximately 4,000 g for the numerically modelled results (af-

ter low-pass filtering). One of the reasons for such a high magnitude could be the

over-stiffening of the outer ring, as transforming its outer surface to rigid prevents

the ring from flexurally deforming. It should be noted that the amplitudes of the

numerically modelled acceleration time-traces shown in reference [118] were of

the order of 107 g. Such high values of the acceleration magnitude are unrealistic.

As mentioned earlier, the amplitude mismatch problem has also been reported

for several multi-body modelling results [91, 93, 103, 104, 109–111].

In addition to the above-listed concerns, Liu et al. [119] did not provide the following
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details:

• Nodal location of the numerical results — for various cases of the numerical

simulations, the time-varying displacement, in the global cartesian y-direction

(the displacement in global x-direction was constrained), at the centre of the

inner ring was shown. As there was no mention of a shaft in the FE model and

the centre of the bearing model was hollow, the location of the displacement

results is unclear.

• Application of the low-pass filter to the numerical results — it is unclear whether

the numerically modelled displacement results were low-pass filtered before esti-

mating the time domain statistical parameters; RMS, crest factor, and kurtosis.

• Noise in the simulation results — on the one hand, it was mentioned that the

surfaces within the bearing model were smooth and no noise was generated dur-

ing the numerical simulations. On the other hand, it was mentioned that the

reason for applying the low-pass filter was to remove undesired high-frequency

noise. These are contradictory statements. It will be demonstrated later in this

thesis, Chapter 4, that a numerical solution estimated using LS-DYNA generates

a significant amount of numerical noise, which is an inherent feature of its solu-

tion phase [335, page 1110]. As part of the current study, an explicit dynamics

FE model of a rolling element bearing was generated and solved using LS-DYNA.

This model is presented in Chapter 4. In Section 4.5, Chapter 4, the cause of the

numerical noise is explained by developing a novel hypothesis and analytically

estimating the rolling contact noise frequencies.

• Application of damping — it is not clear whether damping was applied to the

FE model.

• Radial and axial clearances — it was not mentioned whether the clearances were

built within the model.
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Fourth publication: A 3-D FE model of a deep-groove ball bearing with localised defects

on the outer and inner rings was presented by Utpat [120] in 2013. He discussed

the effects of various sizes of defects on the magnitudes of the numerically modelled

acceleration at a node located on the outer surface of the outer ring. The FE model

was solved using LS-DYNA, and it was shown that the vibration levels increased with

increasing defect size and shaft rotational speed. Although the numerical results were

shown to be in close agreement with experimental results, Utpat [120] did not provide

important details necessary to verify the presented modelling results. The following

paragraphs describe some of the potential issues with the work presented in reference

[120].

The inclusion of the cage within the FE model of the bearing was neither mentioned

nor shown in the image of the FE model (Figure 2a in reference [120]). The function

of a cage in a bearing is to retain the rolling elements, and that is why, it is often

referred to as a retainer. Without the presence of a cage, the rolling elements will

interact with each other causing bearing lockup — in summary, a rolling element

bearing cannot work without a cage in a real bearing. Despite the absence of the

cage from the bearing model, the numerically modelled acceleration results presented

in reference [120] resemble a typical vibration time-trace of a defective bearing, which

is puzzling considering the omission of a critical bearing component. It is, however,

possible that the centre of the rolling elements could have been connected and rotated,

thereby, constraining their centrifugal and inertial effects, but it was not mentioned in

the publication.

Utpat [120] described the discretisation of the bearing model (outer ring, inner ring,

and rolling elements) into nodes and elements (Figures 2a and 2b in reference [120]).

Although the element mesh size was not mentioned, the meshing of the components

is coarse, especially, the tetrahedral mesh of the outer ring. To the experience of the

author of the thesis, it is impossible to achieve smooth rotation of the rolling elements

about their own axes with such a coarse meshing. It will be shown later in this thesis,
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Chapter 4, that for an explicit dynamics FE modelling of a rolling element bearing,

the meshing at the rolling element-to-raceway contact interfaces within the load zone

must be fine enough so that the contact between the rolling elements and raceways of

the bearing can be maintained at all times. This is because if the rolling element-to-

raceway contact is lost, the transmission of the forces (load) between the components

will be incorrect, which can affect the vibration response of the bearing. It is generally

recommended to use at least 20 EPW for a transient dynamic structural analysis [336,

chapter 5]; however, the element mesh size that was found to be necessary to discretise

the FE model of the bearing for the current study corresponds to 97 EPW, which is

nearly 5 times the recommended EPW criterion [336, chapter 5]. This will be further

discussed in details in Section 4.2.2, Chapter 4.

It was mentioned in reference [120] that the numerical acceleration time-traces were

estimated at a node located at the outer surface of the outer ring. On the one hand, for

the case of the simulated outer raceway defect, no units of the acceleration levels were

shown (Figure 4 in reference [120]); the limits of the instantaneous acceleration levels

were approximately ±20 × 104. On the other hand, for the case of the modelled inner

raceway defect, the limits of the instantaneous acceleration levels were approximately

±15× 104 (approximately 25% less than the outer raceway modelling acceleration lev-

els), and the units were shown as m/s2 (Figure 6 in reference [120]). The frequency

domain representation of acceleration results for both outer and inner raceway defects

were shown on a linear scale, and the amplitudes at the fundamental outer and in-

ner defect frequencies, fbpo and fbpi, respectively, were mentioned as 905mm/s2 and

693mm/s2, respectively. Given that these amplitudes are approximately 25% different

from each other, it is highly likely that the units for the numerically modelled acceler-

ation time-traces related to the outer raceway defect simulation (which are not shown

in Figure 4 in reference [120]) could also be m/s2. Nevertheless, even for the case of the

modelled inner raceway defect, the instantaneous levels of the acceleration time-traces,

±15×104m/s2 (approximately ±15, 000 g), are unrealistically high. It is interesting to
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note the instantaneous amplitudes of the experimentally measured acceleration data

were between ±100m/s2 (approximately ±10 g). The excellent match between the nu-

merical and experimental results shown in Figure 11 in reference [120] is surprising.

It should also be noted that unrealistically high acceleration levels of 107 g [118] and

4,000 g [119] were also reported in the previous modelling results discussed above.

In addition to the aforementioned concerns, the following details were not provided

by Utpat [120], which are necessary to understand the modelling work:

• Material behaviour — it was not mentioned whether the components of the bear-

ing model, outer ring, inner ring and balls, were modelled as rigid or flexible

bodies.

• Loads and boundary conditions — the boundary conditions applied to the model

were not described. It is especially, important to know how the outer ring was

kept stationary, because in the event of rotation of the inner ring and rolling

elements, the outer ring would also rotate, if not constrained. However, in the

experience of the author of this thesis, the outer ring cannot be translationally

constrained in either global cartesian x-, y- or z-directions, as it will cause an

incorrect load distribution, and consequently affect its vibration response. It

should be noted that Liu et al. [119] modelled the outer surface of the outer

ring as rigid so it can be fixed in its position. However, this resulted in the over-

stiffening of the outer ring, which might have resulted in the very high numerical

acceleration levels of 4,000 g compared to the experimental acceleration levels of

less than 100 g.

• Friction — it was not mentioned whether friction between the rolling elements

and the raceways was applied.

• Clearance — it was not mentioned whether any clearance between the rolling

elements and raceways was built into the model.
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• Defect size — despite the model being 3-D, the defect sizes were mentioned as

0.25mm, 0.5mm, 1mm and 2mm. It is not clear whether these figures represent

length, width, or height.

A brief recapitulation of the explicit dynamic FE models

From the aforementioned review of the explicit dynamic FE models [117–120], it ap-

pears that the modelling of rolling element bearings having localised defects did not

provide information additional to the useful insights gained through the multi-body

models [100–114]. The authors of the explicit FE models [117–120] have compromised

performance by modelling either the whole outer ring as rigid or its outer surface as

rigid. This has caused over-stiffening of the bearing structures leading to unrealisti-

cally high acceleration levels. Therefore, the performance of the FE models can be

considered on a par with that of the multi-body models. The problem of significant

mismatch between the predicted and measured amplitude levels reported for the multi-

body models [91, 93, 103, 104, 109, 110] remains a problem with existing FE models.

2.4 Extended defects

Although the work presented in this thesis is concerned with localised defects, a brief

review of the models for predicting the vibration response of bearings with extended

defects is provided in this section.

An extended defect can be characterised as a defect that is larger than a localised

defect (for example, its size can be greater than the spacing between two rolling ele-

ments), but smaller than a distributed defect (for example, waviness is generally along

full raceways). Once a localised defect (a spall) is created on either raceway of a bear-

ing due to surface fatigue [23, 169–174], the continuous and repetitive passage of the

rolling elements over the spall results in the generation of impulsive (contact) forces.

This cyclic operation wears the edges, especially the trailing edge, of the spall causing
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it to gradually grow or expand in size, and results in the generation of an extended

defect [337].

It was mentioned at the beginning of this chapter that extended defects have re-

ceived much less attention compared to localised [90–120] and distributed defects [122–

160]. Only one publication [121] could be found in the literature that discusses the

vibration modelling of a rolling element bearing having an extended defect. This is

discussed in the following paragraphs.

Extending their previous work on the vibration modelling of a rolling element bear-

ing due to a localised defect [105] (discussed in Section 2.3.3), Sawalhi et al. [121]

presented a combined non-linear multi-body dynamic model for gears and bearings in

which an extended defect on either of the two raceways can be studied in the presence of

gear interaction. They characterised the extended defects as faults that extend beyond

the spacing between two rolling elements, and have been smoothened by the succes-

sive passage of the rolling elements, so that no sharp impulses are generated, and no

defect-related frequencies are detected in the envelope (demodulated) spectrum. They

referred to the extended defects as rough surfaces.

Similar to the considerations in their previous model [105], Sawalhi et al. [121]

modelled the inner and outer rings as rigid bodies, and the rolling element-to-raceway

interfaces as non-linear contact springs. The mass of the rolling elements, and their

inertial and centrifugal effects were not considered due to the low run speeds used in the

experiments. Slippage of the rolling elements [96] was included in their model to obtain

a closer resemblance between the predicted and measured vibration spectra. Damping

was included via a grounded damper attached to the inner raceway. An additional

mass-spring-damper system, resonant-changer, representing a typical high-frequency

bearing resonance (15 kHz) was attached to the outer raceway.

The objective of the work presented by Sawalhi et al. [121] was the differential

diagnosis of gear and bearing defects [96–98], which was achieved by utilising the dif-

ference in the cyclostationary properties of the gear and bearing signals [255, 256, 259].
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The simulated results included acceleration signals for inner and outer raceway ex-

tended spalls, and their corresponding squared envelope [95] and cyclic spectral densi-

ties [30, 257, 258]. The modelled results were compared with the experimental data for

a bearing where extended faults were etched on both of its raceways, and good simi-

larity between the two results was achieved. Due to the rough surface characteristics

of the extended defect, the ineffectiveness of the envelope spectrum to detect the inner

race defect frequency fbpi was also demonstrated. It was found that use of the spectral

correlation function enabled detection of the defect frequencies.

2.5 Defect-related vibration characteristics

The main objective of the models, impulse-train [90–99], multi-body [100–114], and

FE models [115–120], reviewed so far was to predict the significant vibration frequency

components; fundamental, harmonics, and associated sidebands, related to the localised

surface defects in rolling element bearings. The emphasis on investigating the change

in the characteristics of bearing vibration signals at the edges of a defect, leading and

trailing, has been far less compared to the efforts expended on the development of

the aforementioned models. On the one hand, as point spalls were considered by the

majority of researchers [90–98, 100, 103, 106–111], it is logical to say that the change

in the characteristics of vibrations at the two edges of point spalls could not possibly

be studied. On the other hand, a few researchers have modelled localised defects

as line spalls [99, 101, 102, 104, 105, 112–114, 116, 119] as a function of width and

depth; however, the change in the vibration characteristics was only briefly mentioned

in references [105, 112, 114] in the context of estimating the average size of bearing

defects.

It is the aim of this section to present a review of existing knowledge corresponding

to the characteristics of the vibration response at the leading and trailing edges of a

bearing defect.
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2.5.1 Entry- and exit-related transient features

Epps, in his doctoral thesis [161] and a conference paper co-authored by McCallion

[162], provided a detailed insight into the characteristics of the vibration response at

the two edges of a bearing defect. They measured the acceleration waveforms (time-

traces) of ball bearings with three different sizes of localised defects. The defects were

artificially etched on the outer and inner raceways, and their sizes ranged from 0.2mm

to 3.0mm. On the basis of the experimental observations, they hypothesised that the

defect-related (vibration) transient, as a result of the traverse of a rolling element over

the defect, was essentially composed of two parts or events — first, the entry of the

rolling element into the defect, and second, its exit out of the defect. For the ease of

relating the entry and exit of the rolling elements into and out of a bearing defect,

the leading and trailing edges of a defect are referred to as the starting and ending

positions, respectively, throughout this thesis.

Figure 2.3 shows a schematic of a two-dimensional (2-D) model of a rolling element

bearing comprising an outer ring, an inner ring, a few rolling elements, and a geometric

rectangular defect located on the outer raceway of the bearing. The starting and

ending positions of the defect are illustrated in the figure. For discussion purposes,

one of the figures from Epps’s thesis [161] is shown in Figure 2.4. It represents the

experimentally measured acceleration of the ball bearing having an outer raceway defect

of width 3.0mm. The two annotations in the figure, ‘Point of Entry ’, and ‘Point of

Impact ’, correspond to the entry and exit of a rolling element into and out of the defect,

respectively. The change in the defect-related transient between the two points, shown

in Figure 2.4, is clearly evident.

Epps et al. [161, 162] suggested that the entry of the rolling elements into a defect

can be considered as a low-frequency event with no evidence of impulsiveness, and in

contrast, their exit out of the defect can be considered as a high-frequency impulsive

event that can lead to the excitation of a broad range of frequencies, and consequently,
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Figure 2.3: A 2-D schematic of a rolling element bearing comprising an outer ring,
an inner ring, a few rolling elements, and a geometric rectangular defect on the outer
raceway.

resonant bearing modes. Epps et al. [161, 162] found that the time difference between

the entry and exit points in the measured acceleration signals approximately correlate

with the size of the defects. The correlation, therefore, successfully supported the

distinction of the entry- and exit-related events, and also transients, as the rolling

elements traverse through the defects.

Previous experimental studies [21, 338] have suggested that as the width of a bearing

defect increases, the magnitude of the defect-related vibration impulses increases, but

the characteristic shape of the impulsive signals is not affected. Similarly, for increasing

rotational speed, the magnitude of the impulses increases, but their shape does not

change. However, Epps [161] found that not only the magnitude of the impulses, but

also their characteristic shapes were influenced by the radial load, rotational speed,

and the position of a defect with respect to the bearing load zone [3, 245–248].

For condition-based monitoring of machinery, Dowling [164] highlighted the po-

tential need for the application of non-stationary analysis, such as wavelet transform
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Figure 2.4: Experimentally measured acceleration response of a rolling element (ball)
bearing having an outer raceway defect of 3.0mm, taken from references [161, 162].

[23, 339, 340] and Wigner-Ville distribution [339, 341–343]. He discussed the non-

stationary characteristics of machinery-based vibration signatures, generally measured

in practice, with attention focused on the stochastic nature of signatures associated

with defective bearings. He presented a recorded waveform from a helicopter gearbox

bearing, having an outer raceway defect, from an earlier reference [163], and briefly

described the nature of the defect-related transient signal. The waveform is shown in

Figure 2.5 for discussion purposes.

With regards to the results in Figure 2.5, it was mentioned that a rolling element

took approximately 0.3milli-seconds (ms) to traverse through the outer raceway spall.

The time separation of 0.3ms is shown in the figure: the two ends of the time sepa-

ration marker correspond to the aforementioned entry- and exit-related events. It was

described that the transient vibration commenced as the rolling element entered the

defect, and upon its exit from the defect, an impact was generated that interfered with

the transient that occurred at the beginning, resulting in a 180◦ phase shift. Thus,

Dowling [164] related the change in the characteristics of the defect-related vibration

signatures associated with the entry and exit of the rolling element into and out of the

defect, respectively, by a 180◦ phase reversal. However, no further discussion pertinent

to the charactersitics of the transient vibration response was provided.
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Figure 2.5: Band-pass filtered accelerometer time-trace from a helicopter gearbox bear-
ing having an outer raceway spall, taken from references [163, 164].

Although the results in Figure 2.5 [164] are not as clear as those presented by

Epps et al. [161, 162] (Figure 2.4), both represent similar findings — no evidence

of impulsiveness at the entry of the rolling element into the defect, and impulse-like

signatures at its exit out of the defect.

A careful observation of Figure 2.5 shows an additional peak after the exit-related

impulse; however, the occurrence of the multiple impulses was not discussed. Sawalhi et

al. [105] initially considered that the occurrence of the two impulses was associated with

the entry and exit of the rolling elements into and out of a bearing defect, respectively;

however, later on, they invalidated their claim [165]. This double-impulse phenomenon

described in the next section.

2.5.2 Double-impulse phenomenon

Sawalhi et al. [105] observed double impulses in the results simulated using their

proposed non-linear multi-body dynamic model for predicting the vibration response
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Figure 2.6: Band-pass filtered signals (one complete rotation of the shaft) with a spall
in the outer race, taken from reference [105]: (a) measured, (b) simulated.

of a rolling element bearing having a localised raceway defect: the review of their

analytical model [105] is provided in Section 2.3.3. Interestingly, they also found the

presence of double impulses in the experimentally measured results. For discussion

purposes, a figure that compares the measured and simulated results from their work

[105], illustrating the presence of double impulses is shown in Figure 2.6.

It was reported that the time separation of 0.0013 seconds between the two im-

pulses, highlighted in the subplots of Figure 2.6, corresponds approximately to time

that a rolling element takes to traverse the width of the outer raceway defect. The

close match between the simulated and measured results not only helped Sawalhi et al.

[105] validate their model, but also provided their results with a firm theoretical back-

ground, which appeared to be in agreement with the findings reported earlier by Epps
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et al. [161, 162] and Dowling [164]. On the basis of the agreement, Sawalhi et al. [105]

considered the two impulses to be associated with the entry and exit of the rolling ele-

ments into and out of the defect, respectively. They coined the phrase, ‘double-impulse

phenomenon’, to represent the occurrence of two defect-related vibration impulses.

From the results presented in Figure 2.6 [105], it appears that the entry- and exit-

related impulses have similar characteristics in terms of their frequency content. In

other words, the results in Figure 2.6 implies that both entry- and exit-related events

appear to be high-frequency events. This represents a stark contrast to previous results

reported by Epps et al. [161, 162] and Dowling [164], who suggested that the entry of

the rolling elements into a defect is a low-frequency event with no impulse-like charac-

teristics. Although Sawalhi et al. [105] did not discuss the characteristics (frequency

content) of the double impulses, the results presented in Figure 2.6 [105] imply that

the entry of the rolling elements into a defect may not be a low-frequency event. As

will be discussed in the next section, it is possible that there is an error associated with

the results shown in Figure 2.6.

2.5.2.1 Problems associated with the double-impulse phenomenon

In 2011, Sawalhi et al. [165] reported results from a series of laboratory tests conducted

on self-aligning double-row rolling element bearings with inner and outer raceway de-

fects. Line spalls of width 0.6mm and 1.2mm were artificially manufactured on the

raceways, and the tests were conducted at various shaft rotational speeds, ranging from

800 to 2400 revolutions per minute (RPM).

In their earlier findings, as discussed in the preceding section (refer to Figure 2.6),

Sawalhi et al. [105] mentioned that the time separation of 0.0013 seconds between the

two impulses corresponds approximately to the time it takes for a rolling element to

traverse the width of the manufactured outer raceway defect of 0.8mm. However, later

on, they mentioned that the time separation actually corresponds to the time it takes

for a rolling element to traverse the half the size of the defect [165]. Furthermore, when
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they repeated the experiments, pertinent to the results in Figure 2.6, at various shaft

rotational speeds, they found that the time separation between the two impulses did

not change [165]. Therefore, unlike their earlier findings [105] that implied that the

entry of the rolling elements into a defect may not be a low-frequency event, the recent

experimental findings by Sawalhi et al. [165] correlate with those observed by Epps et

al. [161, 162] and Dowling [164]; thereby, confirming the entry of the rolling elements

into a defect as a low-frequency event.

Invalidating the double-impulse phenomenon, Sawalhi et al . [165] suspected that

the two impulses could be due to a beating effect related to a small difference in the

resonance frequencies of a bearing possibly due to stiffness non-linearity.

From the survey of the literature conducted during the course of the current re-

search, the reason for the occurrence of multiple impulses in typically measured bearing

vibration signals is not clearly known. However, the explicit dynamics FE modelling of

defective rolling element bearings presented in this thesis will be shown to provide an

insightful explanation for the occurrence of the defect-related multiple impulses; this

will be discussed in Section 6.4.2, Chapter 6.

2.6 Defect size estimation

This section discusses existing knowledge on the estimation of the average size of a

defect in rolling element bearings. Similar to the literature on the vibration character-

istics of defective bearings, the extent of knowledge for estimating the average size of

a bearing defect is also limited.

It has previously been mentioned that a defect-related transient is composed of two

parts. While the entry-related event was considered to be a low-frequency event, the

exit of the rolling elements from a defect was found to be a high-frequency impulsive

event. Based on the distinct vibration signatures, Epps et al. [161, 162] suggested

correlating the time difference between the two events as a measure of an average
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defect size.

In order to estimate the average size of a bearing defect, Sawalhi et al. [165]

proposed two algorithms to enhance the vibration signals related to the entry and exit of

the rolling elements into and out of a defect, respectively. The first algorithm comprised

a joint treatment of the entry- and exit-related transient signals. The signals were first

pre-whitened using an autoregressive model [344, 345] in order to balance the low- and

high-frequency energies. The pre-whitened signals were then subjected to a complex

octave band wavelet analysis (using Morlet wavelets [346, 347]) to allow selection of

the best band (or scale) to balance the two events with similar frequency content.

The squared envelope [95, 96] was generated next using Hilbert transform methods

[348, 349], and finally, a real cepstrum [350–352] was used to estimate the average

separation of the entry- and exit-related signatures. The second algorithm treated

the entry- and exit-related signatures separately; all the steps mentioned above were

separately applied to the vibration responses, so that they could be equally represented

in the signal.

A mathematical expression for estimating half the actual width of a bearing defect

was presented by Sawalhi et al. [165]. It was reported to be limited in its capacity to

estimate the smallest size of 0.6mm. It was proposed that the results would perhaps

be more reliable for larger defects.

Zhao et al. [114] utilised the combination of empirical mode decomposition [345]

and approximate entropy method [353–356] to separate the entry- and exit-related tran-

sients. The vibration signals were decomposed into finite components, called as intrinsic

mode functions, using the empirical mode decomposition method. The complexity in

choosing the appropriate intrinsic mode functions that contain the defect-related entry-

and exit-related vibration signatures was demonstrated. Zhao et al. [114] compared

their signal processing algorithms with those presented by Sawalhi et al. [165], and

reported to be better in representing the separation of the signals.
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2.6.1 Limitations of using time separation between entry- and

exit-related vibration signatures as a parameter for defect

size estimation

It should be noted that the mathematical expressions, for estimating the average size

of a bearing defect, developed by Sawalhi et al. [165] and followed by Zhao et al. [114],

are applicable to those defects whose lengths are smaller than the angular spacing

between the rolling elements of a bearing. In other words, the expressions that use time

separation between the entry- and exit-related vibration signatures will produce reliable

defect size estimates if a rolling element that enters a defect must exit the defect prior to

any other rolling element entering and exiting the defect. In the case of extended defects

whose lengths extend beyond the spacing between two consecutive rolling elements

[121], the consecutive entry- and exit-related events pair will correspond to different

rolling elements. In other words, a rolling element may enter a defect, but prior to its

exit, other rolling elements will exit out of the defect, resulting in a smaller than actual

time separation between the events, and thereby, leading to incorrect estimation of the

defect size.

For further clarification of the explanation provided in the preceding paragraph,

refer to Figure 2.7. It shows two schematics of a partial defective bearing raceway and

a few rolling elements, labelled as ‘1’, ‘2’, and ‘3’. In Figure 2.7a, the length Ld of the

localised defect is smaller than the angular spacing θr between two consecutive rolling

elements, whereas in Figure 2.7b, the length Le of the extended defect is greater than

the angular spacing θr between two consecutive rolling elements. Consider that the

rolling elements are travelling from the left to right hand side in both schematics.

In Figure 2.7a, the rolling element, labelled as ‘2’, will enter into the defect and exit

out of the defect, prior to the entry and exit of rolling element ‘3’ into and out of the

defect, respectively. In other words, for the case of a localised defect whose length is

smaller than the angular spacing between two consecutive rolling elements, the entry-
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(a) A localised defect whose length Ld is
smaller than the angular spacing θr between
two consecutive rolling elements.

(b) An extended defect whose length Le is
greater than the angular spacing θr between
two consecutive rolling elements.

Figure 2.7: Schematics of a partial defective raceway of a rolling element bearing and
a few rolling elements.

and exit-related vibration signatures are generated due to the entry and exit of a single

rolling element into and out of the defect, respectively. In such a scenario, using the

time separation between the two distinct vibration signatures, low- and high-frequency,

will enable a reliable estimation of the size of a defect.

In Figure 2.7b, rolling element ‘1’ is already in the defective region. Following the

entrance of rolling element ‘2’ into the defect, rolling element ‘1’ will exit out of the

defect, prior to the exit of rolling element ‘2’. In other words, a low-frequency vibration

signature is generated due to the entry of rolling element ‘2’ into the defect, whereas

a high-frequency signal is generated due to the exit of rolling element ‘1’ out of the

defect. Therefore, in contrast to a localised defect, for the case of an extended defect

whose length typically extends beyond the angular spacing between two consecutive

rolling elements, the entry- and exit-related vibration signatures are generated due to

the entry and exit of different rolling elements. In such a scenario, it is not practical

to use the time separation between the two signals as it will result in an incorrect

estimation of a defect size, which would be smaller than the actual defect size.

2.6.2 Entry- and exit-related vibration models

On the basis of the experimental findings, Sawalhi et al. [165] suggested that the

low-frequency entry of the rolling elements into a defect and the high-frequency exit

of the rolling elements out of a defect can be described as a step response and an
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impulse response, respectively. They developed two analytical models in order to rep-

resent the two responses [165]. Sawalhi et al. [165] tested the performance of their

proposed algorithms [165], discussed above, on the simulated entry- and exit-related

responses for estimating the average size of a bearing defect. They mentioned that

simulations were beneficial in highlighting the importance of selecting suitable wavelet

filter characteristics. While the resonance frequency of 6500Hz used for the impulse

response analytical model was selected on the basis of the experimental results, no

explanation was provided on the selection of the 1084Hz resonance frequency for the

step response analytical model, which was one-sixth of the resonance frequency of the

impulse response.

Zhao et al. [114] also used the step and impulse response analytical models as

proposed by Sawalhi et al. [165] to test the performance of their proposed methods for

estimating the average size of a bearing defect. However, similar to Sawalhi et al. [165],

Zhao et al. [114] also did not provide a clear explanation for choosing the resonance

frequencies for the step and impulse response models.

It should be noted that the entry of rolling elements into a defect was modelled as

a vertical step response representing a sudden drop of the rolling element-to-raceway

contact force [114, 165]. It will be shown in this thesis, Chapters 3 and 6, that it is not a

vertical step response, but a gradual decrease. Based on the results from the FE analy-

sis of a rolling element bearing having a localised raceway defect, a novel mathematical

model that explains the physics behind the gradual decrease in the rolling element-

to-raceway contact force has been formulated in this thesis, and will be discussed in

Section 3.5, Chapter 3.

2.7 Summary of literature

The existing models for predicting the vibration response of rolling element bearings

with localised defects have provided an excellent understanding of the defect-related
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vibration frequency components. Several authors have used analytical, numerical, finite

element, and a combination of analytical/numerical and FE methods to predict the

vibration response of rolling element bearings and associated rotor–bearing systems.

The characteristics of vibrations at the starting and ending positions of a defect have

also been established.

This section aims to summarise the review of the literature presented in this Chap-

ter. The gaps in the current knowledge are identified in the next section, and this is

followed by the gaps addressed in this thesis.

Impulse-train models The periodic impulse-train models [90–93] to simulate point

defects on the rolling surfaces of a bearing, outer and inner raceways, and a rolling

element, provide useful insights into understanding the presence of various discrete

frequency components in typically measured bearing acceleration signals. The defect-

induced force impulses were generated using the Dirac delta function D and a 1-DOF

system response. Three typical pulse shapes, rectangular, triangular and half-sine, of

finite widths were considered, and their effects on the vibration (line) spectra, including

frequencies and amplitudes, were investigated under radial and axial loads [93]. The

equi-spaced force impulses of equal amplitude were modelled for the case of a stationary

outer raceway bearing defect, whereas for rotating inner raceway and rolling element

defects, the amplitude of the impulses was modulated as per the static load distribution

[3, 245–248] within a rolling element bearing. The periodic impulse-train models were

extended with the inclusion of the slippage of the rolling elements [95, 96], so as to gain

close agreement with typical vibration measurements obtained in practice [94–98].

The impulse-train models successfully predict the significant defect-related frequen-

cies (fundamental, sidebands, and harmonics); however, they could not provide a rea-

sonable prediction of their amplitudes. The problem was specifically highlighted by

Tandon et al. [93] who showed the comparison of the predicted vibration (line) spectra

with experimentally measured results; other authors only provided defect periodicities
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[90, 92]. The problem of amplitude mismatch is largely due to the following factors:

• the mismatch between the mathematically modelled defect-related impulses (rect-

angular, triangular, and half-sine) and unknown characteristics of actual defect-

induced impulses,

• the exclusion of basic bearing components, such as the outer ring, inner ring and

rolling elements, and structure from the analytical models compared to measuring

the vibration response of a bearing, which is generally installed in some kind of

housing, such as a pedestal, and

• the consideration of several assumptions and simplifications during the develop-

ment of the models.

The amplitudes of the frequency components were also normalised or corrected; how-

ever, neither the normalisation factor was provided nor the mathematics behind the

normalisation factor were discussed [93].

Non-linear multi-body dynamic models Unlike the impulse-train models, the

non-linear multi-body dynamic models [100–114] include various components of a

rolling element bearing, and predict the vibration response of bearings, bearing–pedestal

and rotor–bearing systems, due to the presence of localised bearing defects. The lo-

calised defects not only include point spalls [100, 103, 106, 108, 109] (as was inadver-

tently the case for the impulse-train models [90–93]), but also line spalls [101, 102,

104, 105, 110, 112, 114] (as a function of width and depth), circular spalls [107, 111],

and area spalls (ellipsoids) [113] (as a function of Hertzian contact deformation). The

multi-body models simplify the bearing systems as lumped mass-spring-damper sys-

tems. They neglect the bending deformation of the outer and inner rings [100–112],

except in references [113, 114], and model the rolling element-to-raceway contacts as

non-linear springs. The majority of the models that consider displacements in the radial
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plane were 2-D [100–105, 107, 109–111, 113, 114]; however, some also consider displace-

ments in the axial plane [106, 108, 112]. While the rolling elements were excluded in

many models [100–103, 105–107, 109–111, 114], they were included in a few models

[104, 108, 112, 113] as point masses; however, their inertial and centrifugal effects were

mostly ignored [104, 108]. The slippage of the rolling elements was only considered by

a few authors [105, 112, 113] in order to gain close resemblance with a typical vibration

response measured in practice, and ignored by the rest. While localised damping at

the contact interfaces between the rolling elements and raceways was included in a

few models [103, 104, 106], global (structural) damping [100–102, 105, 108–114] was

included in majority of the models by grounding a linear viscous damper to either the

inner raceway (shaft) [108–111] or outer raceway (pedestal) [100–102, 105, 110]; no

damping was include in reference [107]. All the models predicted the time-domain vi-

bration response of the outer ring/housing and inner ring [100–107, 109–114]; however,

one model predicted the time-domain displacement of the rolling elements [108].

The main emphasis of the multi-body models was to demonstrate the generation

of vibration time-traces, and subsequently perform an envelope analysis [251, 252]

on the simulated signals to primarily predict the defect-related frequency compo-

nents and corresponding sidebands for model validation purposes. The problem of

amplitude-mismatch between modelled and measured vibration frequencies observed

in the impulse-train models [91, 93] was also reported by the authors of the multi-

body models [103, 104, 109–111]. While in some cases, the predicted amplitudes have

simply been corrected based on experimental results without providing an explanation

[103, 104], some did not compare the modelling results with experimental measurements

[100–102, 106–108, 113]; they instead compared the results with previous studies in the

literature.

Explicit dynamic FE models Explicit dynamic FE modelling of deep-groove ball

bearings, using a commercial FE software package, LS-DYNA [329], has been pre-
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sented by four authors [117–120]. One of the advantages of using such a code is that

one can minimise the number of assumptions that are generally considered in analyt-

ical methods. For example, the outer and inner rings, and rolling elements can be

modelled as flexible bodies, the inertial and centrifugal effects of the rolling elements

can be modelled, the dynamic contact interaction between the rolling elements and

raceways can be studied, and above all, the interaction of defective and non-defective

bearing components can be investigated. Existing FE models [117–120], however, did

not fully exploit the benefits of the explicit FE methods. The performance of the mod-

els was compromised because either the whole outer ring of the bearing [118] or its

outer surface [119] was modelled as rigid. The material behaviour, rigid or flexible, of

the bearing components was not mentioned in references [117, 120]. Very high instan-

taneous acceleration levels of magnitudes 107 g, 4,000 g, and 15,000 g were reported in

references [118], [119], and [120], respectively, which are unrealistic. While no exper-

imental results were shown in references [117, 118], the measured acceleration levels

were shown as 100 g and 10 g in references [119] and [120] compared to the simulated

levels of 4,000 g and 15,000 g, respectively. Furthermore, the numerically modelled re-

sults were low-pass filtered with a cut-off frequency of either 500Hz or 800Hz resulting

in the elimination of all high-frequency characteristics of the defect-related impulses

[119]. As the FE modelling results were not validated against the experimental results

due to the significant mismatch between their acceleration levels [119, 120], they were

validated on the basis of the comparison of their predicted frequency components with

those of the basic kinematic bearing frequencies [3, Chapter 25, page 994].

It can be concluded that the amplitude mismatch between the modelled and mea-

sured vibration results is not limited to the impulse-train [90–98] and non-linear multi-

body dynamic models, but is also evident in the case of FE models [100–114]. In sum-

mary, existing FE models [117–120] do not provide additional information compared

to the understanding provided by the impulse-train [90–98] and multi-body models

[100–114].
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Defect-related vibration characteristics It was found that a defect-related tran-

sient vibration signal is composed of two parts; 1) the entry of rolling elements into a

defect, and 2) the exit of the rolling elements out of the defect [161, 162]. The charac-

teristics of the vibration signatures at the entry and exit of rolling elements into and

out of a localised bearing defect, respectively, were investigated by a few researchers

[161, 162, 165]. While the entry-related event was considered to be a low-frequency

event with no indication of impulse-like characteristics, the exit-related event was con-

sidered to be a high-frequency event responsible for generating an impact and exciting

a broad range of frequencies that can cause the ringing of bearing resonant modes

[161, 162, 165]. With the aim of estimating the average size of a defect, a few authors

have proposed algorithms (signal processing techniques) to enhance the separation of

the distinct entry- and exit-related vibration signatures [114, 165].

2.8 Gaps in current knowledge

A number of authors have contributed significantly to a variety of aspects related

to rolling element bearings since the late 1800s [193]. These aspects broadly range

from understanding the onset of subsurface fatigue cracks and their subsequent growth

to surface spalls [169–172, 174], to the development of bearing life prediction models

[194–231], to understanding the science of bearing materials for enhancing the material

quality [180–190] in order to increase bearing life. The kinematics and dynamics [357–

373] of rolling element bearings have been understood, and several commercial codes

and software packages are available to solve the dynamics of rolling element bearings

— ADORE (Advanced Dynamics of Rolling Elements) [374], COBRA (Computer Op-

timized Ball and Roller Bearing Analysis) [375], BEAST (Bearing Simulation Tool)

[376], and IBDAS (Integrated Bearing Dynamic Analysis System) [377]. The vibration

response for non-defective [66–89] and defective rolling element bearings [90–121, 128–

160] along with the diagnosis of rolling element bearing faults [17–31] have also been
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well documented in the literature. Despite a wealth of literature, the identified gaps in

the current knowledge are as follows.

A comprehensive non-linear dynamic model of a rolling element bearing

From the review of the literature presented in this chapter, it is evident that numerous

models are available for predicting the vibration response of rolling element bearings,

having localised, extended and distributed defects, under various loading conditions.

However, due to the incorporation of several assumptions, the majority of the models

could not reasonably predict the amplitudes of significant frequency components. Un-

fortunately, the capability of explicit modelling methods also has not been fully utilised.

In summary, an analytical model of a rolling element bearing requires simplification of

the actual system and this can affect the accuracy of the system dynamics. Therefore,

there is a need to develop a comprehensive dynamic model with minimal assumptions

and simplifications.

In the work presented in this thesis, an explicit dynamics FE analysis of a defective

rolling element bearing has been undertaken using a commercial software package, LS-

DYNA [329]. Although LS-DYNA has its own numerical limitations, it has been used

to accurately model the kinematics and dynamics of rolling element bearings (as a

multi-body system) without requiring any assumptions, except for the material model,

material properties, time integration (time-stepping) scheme, magnitude of damping

and friction forces. This part of the work is presented in Chapter 4 of this thesis.

The dynamic interaction of rolling elements with raceways, when either of

them has a defect On the one hand, the rolling elements were excluded from the

majority of the analytical models to predict the vibration response of rolling element

bearings, so an investigation of the dynamic interaction of the rolling elements with

raceways was not possible. On the other hand, the models that include the rolling

element-to-raceway contact modelling focused on presenting the vibration response of
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bearings, such as acceleration, velocity or displacement, rather than presenting the

contact force results. The FE models reported in the literature did not present the

contact force results either.

In the work presented in this thesis, the dynamic contact interaction between the

rolling elements and raceways of a bearing as the rolling elements traverse through

a localised raceway defect is presented. The investigation of the contact forces in

conjunction with the vibration response provides new insights into how vibration is

generated in defective rolling element bearings. This part of the work is presented in

Chapter 6 of this thesis.

The physical mechanism by which defect-related impulsive forces and vi-

brations are generated It is understood that repetitive passage of mating com-

ponents over a defect within a rolling element bearing causes abrupt changes in the

contact stresses that structurally excite the bearing, resulting in the generation of

defect-related vibration impulses. However, the physical mechanisms by which defect-

related impulses are generated have not been investigated. One of the reasons which

can be attributed to the mismatch of modelled and measured defect-related vibration

amplitudes could be due to varying characteristics of actual vibration impulses and

analytically modelled impulses. Analytical models typically use a single force impulse

with an exponential decay, whereas multiple impulses are generally observed in practice

with a non-uniform decay.

In the work presented in this thesis, the physical mechanism by which defect-related

impulsive forces and vibrations in defective bearings are generated is explained. Fur-

thermore, the work presented here also provides an insightful explanation of the occur-

rence of multiple vibration impulses in practice, which are associated with the traverse

of a single rolling element through a bearing defect. This part of the work is presented

in Chapter 6 of this thesis.
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The gradual de-stressing of rolling elements as they enter into a raceway

defect within a rolling element bearing It is understood that the multi-body

dynamic models include a quasi-static solution for rolling element-to-raceway contact

forces as non-linear Hertzian contact springs. In these models, for the angular extent of

a defect having sharp (step-like entry and exit) edges, the contact forces vary instantly

across the edges of the defect, causing unrealistic impulsive responses in the system

acceleration. Although the instantaneous variations in the contact forces at the edges of

the defect were modified to occur gradually, the mathematics behind the modification

has not been discussed in the literature.

In the work presented in this thesis, a novel mathematical model has been developed

to accurately predict a gradual decrease in the rolling element-to-raceway contact forces

as the rolling elements enter into a raceway defect within a bearing. This model is based

on the results obtained from the explicit FE modelling of a rolling element bearing

having an outer raceway defect. The mathematical model was incorporated in the

quasi-static analytical load distribution model to estimate the contact forces between

the rolling elements and raceways of a bearing. This part of the work is presented in

Chapter 3 of this thesis.

The use of time separation between the entry- and exit-related vibration

signatures as a parameter for defect size estimation It has been established

in the literature that the vibration response of a defective rolling element bearing com-

prises two parts; first, low-frequency signatures associated with the entry of the rolling

elements into a defect, and second, high-frequency impulsive signatures associated with

the exit of the rolling elements out of the defect. Time separation between these dis-

tinct vibration signatures have been used in the past to estimate the size of a bearing

defect. However, the time separation between the entry- and exit-related signatures

can only be used for the case of a localised defect whose length is smaller than the

angular spacing between two consecutive rolling elements, but not for the case of an
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extended defect whose length typically extends beyond the angular spacing between

the rolling elements. There is a need to investigate the vibration response of rolling

element bearings with extended defects and seek additional features that may distin-

guish the vibration response of bearings having extended defects from the vibration

response of bearings having localised defects.

This work is beyond the scope of the work presented in this thesis, and is recom-

mended for future works.

2.9 Gaps addressed in this thesis

Following are the gaps in the literature that are addressed in this thesis:

• the development of a comprehensive non-linear explicit dynamics FE model of a

defective rolling element bearing with minimal assumptions and simplifications —

presented in Chapter 4;

• an in-depth investigation and interpretation of the dynamic contact interaction

of the rolling elements with raceways of a defective rolling element bearing, which

is not measured in practice — presented in Chapter 6;

• the development of an understanding of the physical mechanism by which defect-

related impulses are generated in defective rolling element bearings by correlating

the rolling element-to-raceway contact forces and vibration response — presented

in Chapter 6;

• the development of an understanding of the de-stressing and re-stressing of the

rolling elements as they traverse through a bearing defect by analysing the rolling

element-to-raceway contact forces — presented in Chapters 3 and 4; and

• the development of a mathematical model to predict the gradual decrease in the

rolling element-to-raceway contact forces as a rolling element de-stresses upon its
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entry into a bearing defect, and subsequently other rolling elements re-stress —

presented in Chapter 3.

The next chapter describes a quasi-static analytical model for estimating the load

distribution within rolling element bearings.
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Chapter 3

Quasi-static Load Distribution in

Rolling Element Bearings

3.1 Introduction

This chapter presents an analytical model for estimating the quasi-static load distri-

bution in rolling element bearings, both non-defective and defective. The model was

developed using the static load distribution model for a non-defective bearing, which

has been well-documented in the literature [3, 245–248]. The main objective of the new

analytical model proposed here is to accurately model the rolling element-to-raceway

contact forces along with predicting and explaining the de-stressing of the rolling ele-

ments upon their entrance into a raceway defect.

The static load distribution represents the estimation of load (or force) on the rolling

elements (precisely, rolling element-to-raceway contact interfaces) within a bearing. As

described earlier in Section 2.3.3.1, Chapter 2, previous authors of multi-body dynamic

models [100–102, 104–106, 109–113] have included an analytical solution for estimating

the rolling element-to-raceway contact forces to simulate the vibration response of

bearings. Based on the assumption that the path of a rolling element traversing a

rectangular-shaped defect (having sharp entry and exit edges) follows its profile [105],

85



3.1. Introduction

the magnitude of the contact forces instantly decreases to zero as the rolling element

enters into the defect, it remains zero through the extent of the defect, and then it

instantly increases to its static load value [100–102, 104–106, 109–113]. This produces

very large, erroneous, impulsive forces in a system at the entry and exit points of a

defect due to an instantaneous change in the system acceleration in order to maintain its

equilibrium. Although a high-frequency impulsive response at the exit point of a defect

is realistic, similar impulsive response at the entry point is unrealistic and not observed

in practice [4, 5, 161, 162, 165], as discussed in Section 2.5, Chapter 2. To prevent the

occurrence of unrealistically large impulsive forces, the sharp step-like variations were

modified to occur gradually [101, 102, 105, 112] by modifying the shape of the defect

so it resembles an assumed path of a rolling element traversing the defect. However,

apart from the suggestions that a gradual response should be used to reflect a realistic

scenario [105] so as to achieve comparable simulated and measured results, no analysis

has been presented nor has the mathematics behind the modification been discussed

in the literature. Furthermore, as described earlier, despite the incorporation of the

rolling element-to-raceway contact modelling by previous researchers [100–102, 104–

106, 109–113], their main focus was on the presentation of the vibration response of

bearings, such as acceleration, velocity or displacement, rather than the presentation

of the contact force results.

As a gradual slope for the decrease in the contact force at the entrance of rolling

elements into a bearing defect is necessary to simulate a low-frequency vibration sig-

nature [161, 162, 165], it is important to formulate a mathematical model to develop

an understanding of the gradual de-stressing or unloading of the rolling elements, so

it could be implemented in future multi-body analytical models of defective rolling

element bearings.

In addition to the previous work described above, it should be mentioned that

quasi-static load distribution models have also been developed recently by Petersen et

al. [6] and Moazenahmadi et al. [7], who are collaborating on this Australian Research
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Council funded project, concerned with modelling the vibration response of defective

rolling element bearings. The quasi-static load distribution models in references [6, 7]

use a different (but equally valid) modelling approach to that described in this chapter.

Their approach and its points of difference to the approach described in this chapter

are discussed briefly in the next section.

Relevant work reported recently in references [6, 7] based on the

research presented in this thesis

The work published in references [6, 7], which progressed in parallel with the research

described in this thesis, is concerned with the development of multi-body analytical

models to predict the vibration response of rolling element bearings. Their work was

inspired by the insights gained from the explicit dynamics FE modelling results, pre-

sented in this thesis (Chapters 4 and 6) and published recently [4, 5] by the author of

this thesis, that led to a joint publication [6].

One of the significant findings from the FE simulations [4, 5] is the gradual de-

crease in the rolling element-to-raceway contact forces as the rolling elements enter

into a raceway defect. Despite modelling a rectangular-shaped profile of the defect,

the gradual decrease, in contrast to instantaneous decrease estimated by previous re-

searchers [100–102, 104–106, 109–113], was surprising. This inspired the development

of the proposed mathematical model, presented in this chapter, to predict the gradual

decrease in the rolling element-to-raceway contact forces. The FE modelling results

[4, 5] also inspired the work in references [6, 7], which reported on the estimation of

quasi-static load distribution along with the gradual change in the forces. In con-

trast to earlier models, which calculate the contact deformation and force at a single

point, the model in reference [7] considers a finite number of points on the circumfer-

ence of the rolling elements to estimate the contact-related parameters. As a result

of multiple points sharing the load, the contact force at the edges of a defect can be
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shown to vary gradually. This approach is different from (but equally valid to) the

proposed mathematical model presented in this chapter, which uses the size of the

rolling element-to-raceway contact width to estimate the gradual change in the contact

forces. The proposed model, presented in Section 3.5, is based on the outcomes of the

explicit dynamics FE modelling of a defective rolling element bearing, which have been

published in references [4, 5] and will be presented later in this thesis.

3.1.1 Aims

The aims of the work described in this chapter are to:

• develop a novel mathematical model using the well-known Hertzian contact the-

ory [175–177] for predicting the gradual decrease in the rolling element-to-raceway

contact force as a rolling element de-stresses upon its entry into a raceway defect;

• develop a quasi-static analytical model of a defective rolling element bearing for

estimating the load distribution on various rolling elements within the bearing;

• analyse the analytically modelled rolling element-to-raceway contact forces ob-

tained using the proposed quasi-static analytical model; and to

• provide a clear distinction between the instantaneous response at the edges of a

bearing defect as per earlier models [100–102, 104–106, 109–113] and the gradual

response as per the novel mathematical model developed in this chapter.

3.1.2 New knowledge

The novel work presented in this chapter has provided the following new knowledge

and insights:

• the development of a mathematical model to explain the physics behind the

gradual de-stressing of a rolling element, and subsequent re-stressing of other

rolling elements within a defective rolling element bearing; and
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• the analysis of the contact forces modelled using the quasi-static analytical load

distribution model.

3.1.3 Structure

This chapter commences with an overview of the Hertz contact theory in Section 3.2

along with the key results necessary for the development of the models. The static

load distribution for a non-defective rolling element bearing that forms the basis of the

proposed quasi-static analytical model is presented in Section 3.3. A description of a

defective rolling element bearing is provided in Section 3.4 along with descriptions of

a localised defect, its profile, and an instantaneous change in the contact forces at the

edges of the defect as per the previous models in the literature. A novel mathematical

model to predict the gradual de-stressing of a rolling element is presented in Section 3.5

along with the comparison of new modelling results with those obtained from the

previous models. Incorporating the mathematical model for the de-stressing of rolling

elements, a quasi-static analytical load distribution model is developed in Section 3.6,

followed by the analysis of modelled quasi-static contact forces in Section 3.7. The

limitations of the developed quasi-static model are discussed in Section 3.8, followed

by the conclusions in Section 3.9.

3.2 Hertz theory of elasticity

As the contact interaction between the rolling elements and raceways of a rolling el-

ement bearing is governed by the traditional Hertz theory of elasticity [175–177], a

brief overview of the Hertz theory along with the key results, which are used in the

development of the proposed analytical models, is provided in this section.

Figure 3.1a shows a 3-D schematic of the geometry of two non-conformal isotropic

elastic solid bodies ‘1’ and ‘2’ in contact at point o′ . At this initial state of contact, the

bodies are not loaded; therefore, a point or line contact develops at point o′ depending
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(a) A 3-D representation of the unloaded and
undeformed bodies ‘1’ and ‘2’ during the initial
state of their contact at point o

′

.

(b) A 2-D representation (sectional view in the
x-y plane) of the normally loaded bodies with
a radial force W , showing the corresponding
deformations δ1 and δ2 in the vicinity of their
point of initial contact o

′

, resulting in the gen-
eration of a finite contact area.

Figure 3.1: Schematics of the geometry of two non-conformal isotropic elastic solid
bodies ‘1’ and ‘2’ in contact.

on the geometry or curvature of the bodies; that is, spherical or cylindrical, respectively.

A 2-D representation (sectional view in the x-y plane) of the elastically deformed

bodies due to the application of a normal (radial) load W is shown in Figure 3.1b.

The deformation of the bodies δ1 and δ2 occurs in the vicinity of their initial point

of contact o′ resulting in the generation of a finite contact area, circular, elliptical or

rectangular, which is much smaller than the dimensions of the bodies.

The curvature of bodies in contact can be either positive or negative: it is assumed

throughout this thesis that convex surfaces shown in Figure 3.1 represent positive cur-
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vature, and concave surfaces represent negative curvature. The curvature sum and

curvature difference are two important quantities that are used in analysing contact

stresses and deformations. The curvature sum R
′ and difference R′

d are given by Equa-

tions (3.1) and (3.2), respectively [177, Chapter 4, pages 85–87]

1

R′
=

1

Rx

+
1

Rz

(3.1)

R
′

d = R
′

(

1

Rx

− 1

Rz

)

(3.2)

where,
1

Rx

=
1

r1x
+

1

r2x
and

1

Rz

=
1

r1z
+

1

r2z
(3.3)

In Equation (3.3), Rx and Rz represent equivalent or effective radii of curvature

of the bodies ‘1’ and ‘2’ in x- and z-directions, respectively, and r1x, r2x, r1z and r2z

represent the individual radii of curvature of the bodies in x- and z-directions. For the

case of two spheres (often referred to as solids of revolution), which constitutes a basic

Hertzian contact problem, r1x = r1z and r2x = r2z, whereas r1z = r2z = ∞ for two

contacting cylindrical bodies with their axes parallel to each other.

A simplified 2-D geometry of a rolling element bearing is considered in this thesis for

modelling purposes, which effectively represents a cylindrical roller bearing. Therefore,

the key Hertzian contact-related parameters for a line (or rectangular) contact only are

provided here; a comprehensive analysis of the Hertz theory is provided in reference

[177, Chapter 4].

For two cylindrical bodies in contact over length l with their axes parallel to each

other, the half-contact width b, maximum elastic deformation δmax, and maximum

contact pressure Pmax for the rectangular contact area developed due to the application

of a normal load W are given by Equations (3.4), (3.5), and (3.6), respectively

b =

(

4WR
′

πlE ′

)1/2

(3.4)
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δmax =
2W

πlE ′
ln

(

2πlE
′

R
′

W
− 1

)

(3.5)

Pmax =

(

WE
′

πlR′

)1/2

(3.6)

Here, R′ is the curvature sum of the bodies, given by Equation (3.1), and E
′ is the

equivalent modulus of elasticity of the bodies, given by

1

E ′
=

1− ν21
E1

+
1− ν22
E2

(3.7)

where, E1, E2 and ν1, ν2 represent the modulus of elasticity and Poisson’s ratio, re-

spectively, of the two bodies in contact.

The maximum force developed at the contact interface of the bodies is directly

proportional to their maximum elastic deformation (or displacement) δmax. The contact

force F at the interface, which is generally referred to as the Hertzian contact force, is

given by

F ∝ δn = Kδn (3.8)

where, K is the contact stiffness and the exponent n = 3/2 for point, circular, and

elliptical contacts (for example, in ball bearings), and n = 10/9 for line and rectangular

contacts (for example, in roller bearings).

The aforementioned expressions will be used during the estimation of the static

load distribution in a rolling element bearing, which is presented in the next section.

3.3 Static load distribution

The static load distribution within a non-defective rolling element bearing has been

well-documented in the literature [3, 245–248]. The static load includes the magnitude

of the horizontal (x-direction) and vertical (y-direction) load (force) on the rolling

elements of a bearing as a function of the relative displacement of the outer and in-
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ner raceways, (diametral or radial) bearing clearance, angular location of the rolling

elements, and the curvature of the raceways and rolling elements in addition to their

material properties. The solution for the static load distribution within a non-defective

rolling element bearing forms a basis for the proposed quasi-static analytical load dis-

tribution in a defective bearing. The static load distribution model along with the

importance of key parameters, such as load zone extent, load constant, and bearing

clearance, is described below. The model has been adapted from Harris et al. [3,

Chapter 7, pages 234–237].

Figure 3.2 shows three 2-D schematics of a non-defective rolling element bearing

comprising an outer ring, an inner ring, and rolling elements in different arrangements;

only a few rolling elements are shown in the schematics. The outer and inner rings of the

bearing in a concentric position, separated by a uniform radial clearance ς/2, are shown

in Figure 3.2a. The formation of the initial point contact between the outer raceway

and a few rolling elements due to the displacement of the outer ring by a distance

equivalent to the radial clearance ς/2 is illustrated in Figure 3.2b. The displacement of

the outer ring was a result of the application of a slight radial (normal) load on it along

the y-axis in the downward (−y) direction. The application of a further radial load W

will cause elastic deformation of the rolling elements, and consequently, of the outer

and inner raceways. As a result, the clearance between a limited number of rolling

elements and raceways will be eliminated around an arc of length 2ψ
′

l as illustrated in

Figure 3.2c. The angular extent of 2ψ′

l represents the bearing load zone centred at ψlc

along the y-axis where the radial load was applied (ψlc = 90◦); the estimation of the

load zone will be discussed in the next section. The rolling elements filled using the

solid gray colour correspond to loaded (mechanically stressed or compressed) elements

in the load zone, whereas the others represent non-loaded elements.
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3.3. Static load distribution

(a) A concentric arrangement of the outer and inner rings,
highlighting a uniform radial clearance of ς/2 between the
outer raceway and rolling elements.

(b) An initial contact between the outer race-
way and a certain number of rolling elements
due to the displacement of the outer ring by
the amount of the radial clearance ς/2.

(c) An interference between the raceways and
rolling elements due to the application of a ra-
dial load W along the y-axis, resulting in the
deformation of the rolling elements, and outer
and inner raceways.

Figure 3.2: 2-D schematics of a non-defective rolling element bearing, comprising an
outer ring, an inner ring, and a few rolling elements, in different arrangements.
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3.3.1 Hertzian contact force-displacement model

Referring to Figure 3.2c, the maximum elastic deformation or displacement of the

rolling element and raceways along the load line (y-axis) is represented by δmax. As-

suming that the raceways and rolling elements of a radially loaded rolling element

bearing are rigid except at the rolling element-to-raceway contact interfaces, the radial

elastic deformation at a rolling element angular position ψj , with respect to δmax at

the load line, is given by

δj =
(

δmax +
ς

2

)

sinψj −
ς

2
(3.9)

where,
(

δmax +
ς

2

)

represents the total radial displacement of the raceways occurring

at ψlc = 90◦, which has been denoted by δr in Figure 3.2c. It should be noted that

δmax comprises the deformation of both outer and inner raceways as

δmax = δo + δi (3.10)

where, δo and δi are the contact deformation of the outer and inner raceways, respec-

tively, which can be estimated using Equation (3.5). Equation (3.9) can be re-written

for clarity as

δj = δr sinψj −
ς

2
(3.11)

Introducing a load distribution factor ε and rearranging Equation (3.11) in terms

of maximum deformation δmax gives

δj = δmax

(

1− 1

2ε
(1− sinψj)

)

(3.12)

The load distribution factor ε primarily depends on the clearance ς of a rolling

element bearing in addition to the deformation of the raceways — ε = 0.5 for zero

clearance, 0 < ε < 0.5 for positive clearance, and 0.5 < ε < 1 for negative clear-

ance, more commonly referred to as bearing preload. The load distribution factor ε is
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3.3. Static load distribution

estimated as

ε =
1

2

(

1− ς

2δr

)

(3.13)

The angular extent of the load zone 2ψ
′

l is also a function of the bearing clearance ς

and the load distribution factor ε. By substituting δj = 0 in Equation (3.12), the

half-angular extent ψ′

l , with respect to the load line (ψlc = 90◦), is given by

ψ
′

l = cos−1

(

ς

2δr

)

= cos−1 (1− 2ε) (3.14)

Figure 3.3 shows various 2-D schematics of a rolling element bearing, highlighting

the extent of the load zone for various bearing clearances.

Using the Hertzian contact force-displacement relationship given by Equation (3.8),

the force (load) at a rolling element-to-raceway contact interface and its corresponding

displacement with respect to the maximum load and deformation, respectively, along

the load line can be expressed as

Fj
Fmax

=

(

δj
δmax

)n

(3.15)

where, Fj and δj are the load and displacement, respectively, at a jth rolling element,

Fmax and δmax are the maximum force and displacement, respectively, at the rolling

element along the load line, and n is the exponent (equal to 3/2 for ball bearings and

10/9 for roller bearings). The maximum force Fmax on a rolling element under pure

radial load for zero clearance (ς = 0) within a bearing can be estimated using Stribeck’s

equation (3.16) [245] as

Fmax =















4.37W

Nr cosα
for ball bearings

4.37W

Nr
for cylindrical roller bearings

(3.16)

where, W is the applied radial load, Nr is the number of rolling elements, and α is the
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(a) ε = 0.5, ψ
′

l = ±90◦ for zero clearance. (b) 0 < ε < 0.5, 0◦ < ψ
′

l < 90◦ for positive
clearance.

(c) 0.5 < ε < 1, 90◦ < ψ
′

l < 180◦ for negative
clearance or preload.

Figure 3.3: 2-D schematics illustrating the load distribution in a rolling element bearing
for different clearances.
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3.3. Static load distribution

contact angle. For bearings with positive or negative clearance, the load constant 4.37

must be increased or decreased, respectively.

Substituting Equation (3.12) into Equation (3.15) gives the total force on a rolling

element j within a bearing with respect to the maximum force along the load line. It

is given as [3, Chapter 7, page 236]

Fj = Fmax

[

1− 1

2ε
(1− sinψj)

]n

(3.17)

In order to establish the static equilibrium of the system, the applied radial load W

must be equal to the sum of the horizontal Fx and vertical Fy load components over

the rolling elements within the load zone 2ψ
′

l . Therefore, re-writing Equation (3.17) to

resolve both components gives net horizontal and vertical contact forces as







Fx

Fy






=

±ψ
′

l
∑

ψlc







Fj cosψj

Fj sinψj






= Fmax

±ψ
′

l
∑

ψlc

[

1− 1

2ε
(1− sinψj)

]n







cosψj

sinψj






=







0

W







(3.18)

3.3.2 Modelling results

Model parameters The dimensions of the raceways and rolling elements within

a rolling element bearing considered for the current simulation are as follows: outer

raceway diameter Do = 200mm, inner raceway diameter Di = 163.96mm, rolling

element diameter Dr = 18mm, effective rolling element length lr = 40mm, and the

number of rolling elements Nr = 24. The nominal diametral clearance ς in the bearing

was defined as 0.04mm. These dimensions are representative of a typical package

bearing unit commonly used in the railway industry, which has been experimentally

tested for the current study; the experimental results will be presented in Chapter 5.

A finite element model of the rolling element bearing model with the aforementioned

dimensions was also build and solved using the explicit dynamics FE software package,
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Chapter 3. Quasi-static Load Distribution in Rolling Element Bearings

LS-DYNA [329]; the FE modelling results will be presented in Chapters 4 and 6.

A radial load W of 50 kN was applied to the bearing: this is equivalent to approxi-

mately the half load carrying capacity of a typical railway package bearing unit. As a

package bearing unit is a double-row bearing, for a non-defective rolling element bear-

ing, each row carries half of the load W/2. For the analytical and explicit dynamics

FE modelling of a rolling element bearing presented in this thesis, only a single-row

bearing has been considered due to the 2-D modelling undertaken here. For a rolling

element bearing under pure radial load, which is considered for the current study, the

load distribution on the rolling elements within both rows of the bearing would be

similar. Therefore, the consideration of a single row bearing does not affect an analysis

of the rolling element-to-raceway contact forces, which is a principal aim of this thesis.

Figures 3.4a and 3.4b show the magnitude of the static horizontal Fx and vertical

Fy contact forces on the rolling elements of the non-defective rolling element bearing.

The angular positions of the rolling elements on the x-axis have been shown relative to

the centre of the load zone (ψlc = 90◦) along the y-axis. In Figures 3.4a and 3.4b, the

vertical bars correspond to the magnitude of the contact forces at the rolling element

positions, whereas the red-coloured, dashed lines along with the blue-coloured, circular

markers at the rolling element positions depict the load profiles.

As per the modelled bearing parameters, seven rolling elements, spaced 15◦ apart,

are under the load zone 2ψ
′

l that extends to approximately ±53◦ (refer to Equa-

tion (3.14)) from the load zone centre ψlc. The summation of the x-directional contact

force components for the rolling elements within the load zone equals 0, whereas the

summation of the y-directional contact force components equals 25 kN (half the applied

radial load as a single row of the bearing has been considered here).

The vertical load profile in Figure 3.4b is easy to visualise and correlate with the

schematics in Figure 3.3, whereas the horizontal load profile in Figure 3.4a is compar-

atively difficult to visualise. The equal but inverse horizontal contact forces Fx are due

to the negative and positive horizontal displacement δx of the rolling elements located
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(a) Horizontal contact force (load) distribution.
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(b) Vertical contact force (load) distribution.

Figure 3.4: Analytically estimated static contact force (load) distribution on the rolling
elements of the non-defective rolling element bearing for a radial load W of 50 kN. The
height of the vertical bars corresponds to the magnitude of the contact forces, whereas
the red-coloured, dashed lines depict the load profiles.
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Roller position (◦) Contact width (mm) Displacement (mm) Force (kN)

actual ψj
relative

2bx 2by δx δy Fx Fyψj − ψlc

135 45 -0.045 0.045 -0.0012 0.0012 -1.03 1.03
120 30 -0.083 0.144 -0.0022 0.0039 -1.91 3.31
105 15 -0.060 0.226 -0.0016 0.0061 -1.39 5.19
90 0 0 0.257 0 0.0069 0 5.94
75 -15 0.060 0.226 0.0016 0.0061 1.39 5.19
60 -30 0.083 0.144 0.0022 0.0039 1.91 3.31
45 -45 0.045 0.045 0.0012 0.0012 1.03 1.03

Table 3.1: Analytically estimated contact-related parameters at the rolling element-
to-outer raceway contact interfaces of the non-defective rolling element bearing for a
radial load W of 50 kN.

at the left- and right-hand sides of the load zone, respectively.

Contact width and displacement

In addition to the contact forces, other Hertzian contact-related parameters, displace-

ment δ and contact width 2b, at the loaded rolling element-to-outer raceway interfaces

are shown in Table 3.1. Both horizontal (x-direction) and vertical (y-direction) com-

ponents of the contact width and displacement are included in the table. These results

will be compared with those from the numerical simulations in Chapter 6 estimated

using the explicit dynamics FE model of a rolling element bearing.

The next section illustrates the instantaneous erroneous step-like response, change

in the rolling element-to-raceway contact forces, at the edges of a bearing defect as

implemented by the previous researchers.

3.4 Defective bearing

Prior to developing the proposed mathematical model to predict the gradual change

in the rolling element-to-raceway contact forces related to the de-stressing of a rolling

element, it is useful to describe a defect within a rolling element bearing. Following
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3.4. Defective bearing

the description of a localised bearing defect and its profile, the contact forces modelled

by previous researchers [100–102, 104–106, 109–113] are also presented in this section.

These forces will then be compared with the results obtained using the proposed math-

ematical model in the next section.

A defect profile may range from a simple step-like rectangular-shaped profile to more

sophisticated surface roughness models [99, 121, 177, 261–263, 265–271] that are gen-

erally characterised by a normal Gaussian distribution [273, Chapter 3, pages 59–66].

In previous analytical multi-body dynamic models [100–114], reviewed in Section 2.3.3,

Chapter 2, a simple step-like rectangular (localised) defect profile has been considered

in a majority of models [100–102, 104, 106, 109–113], whereas a rough surface profile of

a defect was considered by a few researchers [6, 99, 121]. Here, a rough surface profile of

a localised defect should not be confused with the overall roughness on the rolling sur-

faces of a bearing, raceways and rolling elements, which is associated with distributed

defects [122–160] (briefly mentioned in Sections 2.1, 2.3.3, and 2.4 of Chapter 2).

Figure 3.5 shows a 2-D schematic of a defective rolling element bearing, which

comprises an outer ring, an inner ring, and rolling elements; out of twenty-four rolling

elements in a single row of the modelled bearing, only a few rolling elements are shown

here. They are numbered in counterclockwise direction, commencing from the rolling

element j = 1, located immediately at the left-hand side of the bearing defect (refer

to Figure 3.5 for clarity); the actual ψj and relative ψj − ψlc positions of the rolling

element j = 1 are 94◦ and 4◦, respectively. The rectangular-shaped localised defect,

having step-like entry (starting defect position) and exit (ending defect position) edges,

is centrally located at the top of the outer raceway; such a defect is generally referred

to as a line spall. The centre of the defect ψd coincides with the centre of the load

zone ψlc along the y-axis (ψd = ψlc = 90◦). The length (angular extent) and height

(or depth) of the defect are represented by ∆ψd and Hd, respectively. Throughout this

thesis, the subscript d symbolises parameters for a defective rolling element bearing;

and therefore, should not be confused with a derivative notation.
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Figure 3.5: A 2-D schematic of a rolling element bearing comprising an outer ring, an
inner ring, a few rolling elements, and a localised rectangular-shaped defect centrally
located at the top of the outer raceway; the angular extent and height of the defect
are denoted by ∆ψd and Hd, respectively. The rolling elements filled using solid gray
colour represent loaded elements, whereas the others represent non-loaded elements.

For convenience, the starting and ending positions of the defect in Figure 3.5 are

defined as per clockwise rotation of the bearing, so that during the traverse of the

rolling elements j = 1, 2, 3 . . . through the defect, they enter into the defect at its

starting position and exit out of the defect at the ending position. In this thesis,

clockwise bearing rotation has been considered for modelling (both analytical and

numerical) and experimental work. In the literature, the starting and ending positions

of a bearing defect are generally referred to as leading and trailing edges, respectively

[105, 121, 161, 162, 165]; however, as mentioned earlier in Section 2.5, Chapter 2, the

extremities of a defect will be referred to as the starting and ending positions in this

study.
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3.4.1 Defect profile

For the defect shown in Figure 3.5, a rectangular-shaped step-like defect profile Sd can

be generated as

Sd (ψj (t)) =















−Hd if ψd −
∆ψd
2

6 ψj (t) 6 ψd +
∆ψd
2

0 otherwise
(3.19)

where, ψd represents the angular position of the centre of the defect, ∆ψd the angular

extent of the defect, and Hd the height of the defect. For ∆ψd = 6◦ and Hd =

0.2mm, Figure 3.6 shows the rectangular-shaped profile of the outer raceway defect,

obtained using Equation (3.19). These dimensions of the defect were selected based

on the inspection of numerous defective bearings, available at Track IQTM [11], from

operational use in the railway industry [378]. For the current bearing model, the

angular extent ∆ψd of 6◦ corresponds to a length Ld of 10mm. No roughness on the

surfaces of the outer raceway, inner raceway, or the rolling elements is considered for

the current study.

3.4.2 Instantaneous response at the edges of a defect

In previous analytical multi-body dynamic models [100–102, 104–106, 109–113], the

quasi-static solution for the rolling element-to-raceway contact forces was estimated

using Hertzian contact theory [175–177]. For the rectangular-shaped profile of a defect

in Figure 3.6, such a solution causes instantaneous variations in the contact force

estimates — instant decrease and increase in the contact forces at the starting and

ending positions of a defect, respectively.

The horizontal and vertical contact forces between a rolling element and the defec-

tive outer raceway within a bearing, obtained using the quasi-static solution as per the

previous models, are shown in Figures 3.7a and 3.7b, respectively; these force estimates
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Figure 3.6: A rectangular-shaped step-like profile of the bearing raceway defect shown
in Figure 3.5.

are represented using the blue-coloured, solid lines. For comparison, the corresponding

contact forces for a non-defective rolling element bearing are also plotted in the figures

using the red-coloured, dashed lines. The gray-coloured shaded area in Figures 3.7a

and 3.7b highlights the angular extent of the localised outer raceway defect ∆ψd.

The instantaneous change in the contact forces from the static load value occurring

in a single instance or time step is evident when compared to the corresponding results

for a non-defective rolling element bearing. As the defect, located at the top of the

outer raceway, is under maximum load due to the application of the radial load W , the

magnitude of the vertical contact force Fy is higher than the corresponding horizontal

force Fx.

In Figure 3.7b, the entry of a rolling element into the defect results in an instant

decrease in the vertical contact force from its static load of approximately 6 kN to

zero. In contrast, it also results in an instant increase in the horizontal contact force

in Figure 3.7a from its static load of approximately −0.3 kN to zero — a difference
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(b) Vertical contact forces.

Figure 3.7: Analytically estimated rolling element-to-outer raceway contact forces for
a non-defective and a defective rolling element bearing for a radial load W of 50 kN,
depicting the instantaneous step-like decrease and subsequent increase in the contact
forces for simulating the entry and exit of a rolling element into and out of the defect,
respectively. The gray-coloured shaded area highlights the angular extent ∆ψd of the
rectangular-shaped defect.
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of 300N compared to 6 kN for the vertical contact force. Similarly, the exit of the

rolling element from the defect is represented by an instant increase of both contact

force estimates from zero to their respective static load values. As a result of the

sharp changes in the contact forces that follow the profile of the rectangular-shaped

defect, a large (high-frequency) impulsive response (time-varying system vibration), is

erroneously generated in order to maintain the equilibrium of the system [105].

The instantaneous change in the contact forces occurs due to the consideration

of a single point contact at the rolling element-to-raceway contact interface. In other

words, instantaneous change can be explained if the rolling element-to-raceway contact

interfaces are considered to have developed point contacts. However, this consideration

violates the contact behaviour at the interfaces that follows Hertzian contact theory

[177, Chapter 4].

3.4.2.1 Unrealistic point contacts at rolling element-to-raceway contact

interfaces

Figure 3.8 shows a partial schematic of a rolling element and the raceways of a bearing;

it is a zoomed version of the defective rolling element bearing shown in Figure 3.5. The

rolling element-to-raceway contact interfaces are depicted as point contacts using solid,

black-coloured, circular markers. The position of the rolling element is such that the

contact point a coincides with the starting angular position of the defect ψd +
∆ψd
2

. Al-

though it is unrealistic for a loaded rolling element, within the load zone of a bearing, to

have developed a point contact with bearing raceways as highlighted in Figure 3.8, the

point contacts are only shown to discuss the erroneous instantaneous step-like mod-

elling of the contact forces implemented by previous researchers as discussed above

(Figure 3.7). An appropriate representation of a loaded rolling element-to-raceway

contact interface is to show an area contact (elliptical for ball bearings and rectangu-

lar for roller bearings); this will be discussed in the next section along with a novel

mathematical model for simulating a gradual response at the defect edges.
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Figure 3.8: A partial and zoomed view of the schematic in Figure 3.5, showing the
outer raceway defect and a rolling element in its vicinity; the consideration of point
contacts between the rolling element and raceways explains the erroneous instantaneous
step-like changes in the rolling element-to-raceway contact forces as implemented by
previous researchers.

Considering the clockwise rotation of the bearing in Figure 3.8, a slight change

in the angular position of the rolling element from the starting position of the defect

would cause the rolling rolling element-to-raceway contact force to instantaneously

plummet to zero (see Figure 3.7). This implies erroneously that the loaded rolling

element fully unloads or de-stresses in a single instance, triggering an instantaneous

system response. In order to prevent the instant changes in the system response, a few

researchers [101, 102, 105] have modified the sharpness of the entry-related event from

instantaneous to gradual by modifying the shape of the defect; however, they did not

incorporate this idea into a mathematical model.

Based on the rolling element-to-raceway contact width, the following section presents

a novel mathematical model to predict the slope for the rolling element-to-raceway con-

tact force as a rolling element enters into a raceway defect within a bearing.
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3.5 Novel mathematical model for a gradual response

at the edges of a defect

A mathematical model for estimating the gradual decrease in the rolling element-to-

raceway contact force upon the entrance of a rolling element into a defect within a

defective rolling element bearing is developed considering the following assumptions:

• the raceways and the rolling elements of a bearing are rigid except for the rolling

element-to-raceway contact interfaces according to the Hertzian contact theory

of elasticity [175–177];

• the deformation at the contact interfaces does not exceed the elastic limit of the

materials;

• the dynamics of the rolling elements, such as their path (trajectory) and centrifu-

gal forces acting on them, are not considered;

• the raceways and rolling elements are perfectly circular and their surfaces are

perfectly smooth; and

• no slippage occurs between the rotating components.

As mentioned earlier, the mathematical model is based on the findings of the explicit

dynamics FE modelling of a defective rolling element bearing, which is a result of thesis

and will be presented in Chapters 4 and 6.

3.5.1 Realistic line contacts at rolling element-to-raceway con-

tact interfaces

In contrast to unrealistic point contacts at the rolling element-to-raceway contact in-

terfaces in Figure 3.8, realistic line contacts at the interfaces are shown in Figure 3.9

using solid, black-coloured, rectangular markers. It shows a schematic, a partial and
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Figure 3.9: A partial and zoomed view of the schematic in Figure 3.5, showing an
outer raceway defect and a rolling element in the vicinity of the defect; the realistic
line contacts (width 2b and angular extent ∆ψcw) between the rolling element and
raceways will result in the gradual loss of contact as the rolling element rolls over the
defect.

zoomed version of the defective rolling element bearing of Figure 3.5, and shows a

loaded rolling element at the verge of the starting position of the outer raceway de-

fect ψd +
∆ψd
2

. For the cylindrical roller bearing being considered in this thesis for

analytical modelling, the length of the line contact at the rolling element-to-raceway

contact interface is denoted by 2b, and its corresponding angular extent is represented

by ∆ψcw. The extreme ends of the contact width 2b are represented by b′ and b′′ , where

b
′ coincides with the starting position of the defect.

3.5.2 Gradual de-stressing of the rolling elements

Referring to Figure 3.9, as the angular position of the loaded rolling element increases

by a small/ single time instance in clockwise direction, the contact width 2b or ∆ψcw

between the rolling element and outer raceway decreases. In other words, as the rolling

element rolls into the defect, the length of the contact patch reduces resulting in a

reduction of the contact area as well as the contact force. The contact width 2b will

continue to decrease until the extreme end b
′′ rolls over the starting position of the

defect. When b′′ has just traversed past the starting position of the defect, it is at that
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instant the rolling element is considered to have completely unloaded or de-stressed.

This hypothesis is based on the results from the explicit dynamics FE modelling of

a defective rolling element bearing, which is presented in Chapters 4 and 6, and has

recently been published in references [4, 5] by the author of this thesis. For validating

the hypothesis, the results from the analytical modelling presented in this chapter will

be compared with the FE modelling results in Chapter 6.

Depending on the clearance within a rolling element bearing and applied radial load,

it has been mentioned earlier that a few rolling elements, located withing the bearing

load zone 2ψ
′

l are loaded. It should be noted that the decrease in the contact force as

a result of the rolling element entering the defect will cause the re-distribution of the

load among the remaining rolling elements in the load zone. This will be demonstrated

and discussed in Section 3.7 during the quasi-static modelling for estimating the load

distribution within a defective bearing.

Mathematical contact force model for a gradual change at the edges of a

defect

Based on the above discussion, a mathematical model to predict the gradual variation

in the contact forces Fdj(grad) across the edges of the bearing defect can be given as
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Fdj(grad) (ψj(t)) =



































































































− Fj
∆ψcw

(

ψj(t)−
(

ψd +
∆ψd
2

))

if ψd −
∆ψd
2

< ψj(t)

< ψd −
∆ψd
2

+ ∆ψcw

0 if ψd −
∆ψd
2

+ ∆ψcw 6 ψj(t)

6 ψd +
∆ψd
2

−∆ψcw

Fj
∆ψcw

(

ψj(t)−
(

ψd −
∆ψd
2

))

if ψd +
∆ψd
2

−∆ψcw < ψj(t)

< ψd +
∆ψd
2

Fj otherwise

(3.20)

The first part of Equation (3.20) which represents the linear decrease in the rolling

element-to-raceway contact force corresponds to the de-stressing of the rolling element

upon its entry into the defect, whereas the third part that is a symmetrical inverse of

the first, representing a linear increase, corresponding to the re-stressing of the rolling

element upon its exit from the defect. The second part of the equation corresponds

to the traverse of the (unloaded or de-stressed) rolling element through the defect

after and before its de-stressing and re-stressing, respectively. Finally, the fourth part

represents the static load on the rolling element corresponding to its contact with the

non-defective sections of the outer raceway.

As mentioned earlier, the models presented in this chapter do not include the dy-

namics of the rolling elements. It should, therefore, be noted that the re-stressing

of the rolling elements, which is highly dependent on the centrifugal forces acting on

them, has not been correctly represented here. It will be shown in Chapter 6 that

the re-stressing of rolling elements upon their exit from a raceway defect results in the

generation of multiple force impulses, one of the significant outcomes of this study.

Neither the instant step-like nor the gradual increase in the rolling element-to-raceway

contact force represent the actual re-stressing event. In order to accurately model the
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re-stressing of the rolling elements, one has to include their trajectories (path) as a

result of centrifugal forces acting on them, as they traverse through the defect. This is

shown in the next chapter where a novel explicit dynamics FE modelling of a defective

rolling element bearing is presented.

Using Equation (3.20), the horizontal and vertical contact forces between a rolling

element and the defective outer raceway of a bearing, as the rolling element traverses

through the defect, are shown in Figures 3.10a and 3.10b, respectively; these force

estimates are plotted using black-coloured, solid, thick lines. For comparison, the

instantaneous changes in the contact forces at the defect edges are also shown using

blue-coloured, solid, thin lines, along with the contact forces for a non-defective bearing

plotted using red-coloured, dashed lines. The difference between the instantaneous

and gradual responses can be seen to vary across the angular extent of the contact

width ∆ψcw.

As contact forces between mating bearing components are generally not measured

in practice, the contact force results from the analytical simulations will be compared

with the explicit dynamics FE modelling results in Chapter 6.

Contact width and area

As the contact width (area) and force are interrelated Hertzian contact parameters,

their corresponding variations can also be estimated using the contact force estimates

in Equation (3.20).

Figure 3.11 compares the instantaneous and gradual variation in the normal rolling

element-to-outer raceway contact width and area as a loaded rolling element traverses

through the raceway defect. The blue-coloured, solid line represents the instantaneous

step-like changes at the defect extremities, whereas the black-coloured, solid, thick line

shows the gradual changes across the edges of the defect. The variation in the contact

width for a non-defective bearing is represented using the red-coloured, dashed line.

The difference between the instantaneous and gradual changes is similar to that of the
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Figure 3.10: Comparison of the analytically estimated rolling element-to-outer raceway
contact forces, highlighting the difference between the erroneous instantaneous step-
like and gradual response at the edges of the defect for simulating the entry and exit
of a rolling element into and out of the defect, respectively. The gray-coloured shaded
area highlights the angular extent ∆ψd of the rectangular-shaped defect.
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Figure 3.11: Comparison of the analytically estimated rolling element-to-outer raceway
contact width and area, highlighting the difference between the erroneous instantaneous
step-like and gradual response at the edges of the defect for simulating the entry and
exit of a rolling element into and out of the defect, respectively. The gray-coloured
shaded area highlights the angular extent ∆ψd of the rectangular-shaped defect.

contact forces shown in Figure 3.10. For the roller length lr = 40mm, the equivalent

rectangular contact area is shown on the right-hand side y-axis of Figure 3.11.

3.6 Quasi-static load distribution

An analytical model for estimating the quasi-static load distribution within a rolling

element bearing can be developed by incorporating the bearing kinematics in the static

load distribution model; that is, modelling the parameters as a function of time or

rotational speed of the bearing.

The load-displacement expressions described in Section 3.3.1 were more focused on

looking at the radial (y-direction) components so as to facilitate the estimation of the

load distribution factor ε, angular extent of the load zone 2ψ
′

l , and the load constant.
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3.6.1 Bearing kinematics

For a shaft rotating at a speed ωs = 2πfs, the nominal angular rotation of the cage (or

rolling elements) ωc is given by

ωc =
ωs
2

(

1− Dr

Dp
cosα

)

(3.21)

where, Dp is the bearing pitch diameter, Dr the rolling element diameter, and α the

contact angle.

The angular position ψj of a jth rolling element is given by

ψj (t) = ψc (t) + (j − 1)
2π

Nr

(3.22)

where, ψc is the cage position, and for its initial position ψ0, it is given by

ψc (t+∆t) = ψ0 (t) + ωc∆t (3.23)

3.6.2 Hertzian contact force-displacement model

It was mentioned in Section 3.3 that the contact deformation δj for a jth rolling element

is a function of the displacement of the raceways relative to each other, the angular

position of the rolling element ψj , and the clearance ς. The total contact deformation

δdj for the jth rolling element within a defective rolling element bearing is given by

[6, 105] (subscript d symbolising the parameters for a defective bearing — not to be

confused with a derivative notation)

δdj (t) = δx (t) cosψj (t) + δy (t) sinψj (t)−
ς

2
− βj (ψj (t))Sd (ψj (t)) (3.24)

where, δx and δy are the relative displacements of the inner and outer raceways, re-
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spectively, and are given by

δx (t) = xi (t)− xo (t) and δy (t) = yi (t)− yo (t) (3.25)

In Equation (3.24), Sd (ψj (t)) represents the rectangular-shaped defect profile given

by Equation (3.19), and βj (ψj (t)) is a factor that introduces the gradual changes at

the entry and exit edges of the defect, as discussed in Section 3.5.2. Based on the new

mathematical model given by Equation (3.20), βj (ψj (t)) can be estimated as

βj (ψj (t)) =



































































































− Hd

∆ψcw

(

ψj(t)−
(

ψd +
∆ψd
2

))

if ψd −
∆ψd
2

< ψj(t)

< ψd −
∆ψd
2

+ ∆ψcw

−Hd if ψd −
∆ψd
2

+ ∆ψcw 6 ψj(t)

6 ψd +
∆ψd
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−∆ψcw

Hd

∆ψcw

(
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ψd −
∆ψd
2

))

if ψd +
∆ψd
2

−∆ψcw < ψj(t)

< ψd +
∆ψd
2

0 otherwise

(3.26)

Applying Hertz’s contact load-displacement model (Equation (3.8)), the total load

Fdj on a jth rolling element of a defective rolling element bearing can be estimated as

Fdj (t) = Kdj (t) δ
n
dj (t) γj (t) for γj (t) =















1 if δdj (t) > 0

0 if δdj (t) 6 0

(3.27)

where, Kdj is the contact stiffness, δdj the displacement (given by Equation (3.24)),

and n is an exponent (= 3/2 for ball bearings and = 10/9 for roller bearings). As the

rolling element-to-raceway contact deformation can only occur at the contact interfaces

117



3.7. Contact force analysis

that are under the load zone, γj is a factor that zeros the load distribution outside the

load zone.

The horizontal and vertical contact forces on the rolling elements of a defective

bearing can be estimated using the following equation [6, 105]
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(3.28)

Setting Sd (ψj (t)) = 0 in Equation (3.28) will yield results for a non-defective rolling

element bearing. The analysis of the modelled quasi-static contact forces for a defective

bearing is presented in the next section.

3.7 Contact force analysis

For the bearing parameters described in Section 3.3.2 along with the dimensions of

the outer raceway defect in Section 3.4.1, Figures 3.12a and 3.12b show three plots

of each of the horizontal and vertical rolling element-to-outer raceway contact forces.

The forces plotted using the black-coloured, solid, thick lines represent the gradual

response at the edges of the defect, whereas the instant response is plotted using the

blue-coloured, solid, thin lines. The contact forces for a non-defective bearing are

plotted using the red-coloured, dashed lines. The plots in Figures 3.12a and 3.12b are
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annotated with four events; their descriptions along with explanations are provided

later in Sections 3.7.1 to 3.7.4.

Although the difference between the instantaneous step-like and gradual response

for the rolling element-to-raceway contact forces across the edges of the defect has

been highlighted in Figure 3.10, it is useful to show the effect of the difference at other

rolling element positions (within the bearing load zone). Figures 3.13a and 3.13b show

the zoomed plots of the contact forces shown in Figures 3.12a and 3.12b, respectively,

highlighting not only the difference between the two responses, but also its effect associ-

ated with the increase in the contact forces at a rolling element position adjacent to the

defect. This increase in the force (load) on the rolling element, annotated as event #3,

will be discussed in Section 3.7.3. Following the pattern of the previous figures, the

gray-coloured shaded area in Figures 3.12 and 3.13 corresponds to the angular extent

of the outer raceway defect ∆ψd.

As mentioned earlier, the re-stressing of the rolling elements presented in this chap-

ter does not provide a realistic representation of the actual re-stressing event. The

numerically modelled contact force results that include the dynamics will be presented

in Chapter 6. The limitations of the developed quasi-static model will be discussed in

Section 3.8.

In order to provide a clear understanding of the changes in the rolling element-

to-raceway contact forces within a defective rolling element bearing, the four events

indicated in Figures 3.12 and 3.13 are described below.

3.7.1 Event #1: Entry of the rolling elements into the defect —

the ‘de-stressing’ phase

The gradual decrease in the rolling element-to-outer raceway contact forces in Fig-

ure 3.12 and 3.13, which has been indicated as event #1, corresponds to the entry of

the rolling element into the defect.
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(b) Vertical contact forces.

Figure 3.12: Analytically estimated rolling element-to-outer raceway contact forces for
a non-defective and a defective rolling element bearing for a radial load W of 50 kN,
obtained using the developed quasi-static analytical model. The difference between
the erroneous instantaneous step-like and gradual response at the edges of the defect,
which is not clearly visible here, is shown in Figure 3.13.
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(b) Vertical contact force.

Figure 3.13: The zoomed version of the quasi-static rolling element-to-outer raceway
contact forces in Figure 3.12, highlighting the difference between the erroneous instan-
taneous and gradual responses.
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As a stressed (loaded) rolling element starts entering the defect, located on the

outer raceway, it gradually starts losing contact with the outer raceway as discussed

in Section 3.5.2. Consequently, the contact force between the rolling element and the

outer raceway starts decreasing gradually (not instantaneously) to zero. The reduction

in the vertical contact force from approximately 6 kN to zero implies that the rolling

element has no mechanical stress in contrast to its location between the raceways where

it was stressed and loaded due to the application of the radial load W .

3.7.2 Event #2: Traverse of the rolling elements through the

defect

The zero-valued contact forces in Figures 3.12 and 3.13, which have been indicated as

event #2, correspond to the traverse of the rolling element through the defect.

As no centrifugal effects of the rolling elements are considered for the current sim-

ulation, the de-stressed rolling element remains unloaded during its traverse through

the defect. In practice though, the rolling elements within a bearing are acted on by

centrifugal forces during its operation. An explicit dynamics FE modelling of a defec-

tive rolling element bearing that includes the centrifugal effects acting on the rolling

elements will be presented in Chapter 6. It will then be shown that during their tra-

verse through a raceway defect, the de-stressed rolling elements at some instance will

strike the defective surface.

3.7.3 Event #3: Re-distribution of a load on the rolling ele-

ments — the load compensation phase

It has been described in the preceding section that a rolling element loses contact with

the defective part of the raceway, as it traverses through the defect. The loss of the load

(force) on the rolling element must be compensated in order to have the equilibrium

of the system maintained at all times. Therefore, as one rolling element loses contact
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(unloads), other rolling elements in the load zone (located at the non-defective sections

of the raceways) take the lost load resulting in a re-distribution of the radial load.

Event #3, indicated in Figures 3.12 and 3.13, highlights the load compensation.

Similar to the gradual decrease in the rolling element-to-raceway contact force, the in-

crease at other rolling element positions occurs gradually. The sum of the vertical force

components at the rolling elements equals 25 kN (half of the applied radial load due

to the consideration of a single bearing row here), while the sum of the corresponding

horizontal force components equals zero.

3.7.4 Event #4: Exit of the rolling elements from the defect —

the ‘re-stressing’ phase

Re-stressing of the rolling elements refers to their exit from a defect within a bearing.

In Figures 3.12 and 3.13, the increase in the contact forces from zero to a certain value,

which is related to the corresponding static load distribution, indicated as event #4,

represents the re-stressing event. Compared to their de-stressing, which is a low-

frequency event, the re-stressing of the rolling elements is generally an impulsive (high-

frequency) event [161, 162, 165].

Without the consideration of the centrifugal forces acting on the rolling elements,

the re-stressing event cannot be accurately modelled using the developed quasi-static

model. The dynamic numerical simulation results in Chapter 6 will show a better

representation of the re-stressing event.

The four events discussed above will be further discussed in the same chronological

order in Chapter 6, and the quasi-static modelling results will be compared with those

of the explicit FE modelling simulation results.
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Contact forces versus time

The contact forces can also be plotted as function of time t. For a rotational speed ns

of 500RPM, Figures 3.14a and 3.14b show the horizontal and vertical rolling element-

to-outer raceway contact forces, corresponding to the results shown in Figure 3.12. For

the rolling element bearing model considered here, the rotation speed ns = 500RPM

corresponds to the train speed of approximately 95 km/hr for a 1m wheel diameter.

Referring to Figure 3.5, the rolling elements j from 1 to 6 correspond to the rolling

elements initially positioned to the left-hand side of the defect, whereas the rolling

elements from 24 to 22 were positioned to the right-hand side of the defect.

3.8 Limitations of the quasi-static model

A limitation of the quasi-static load distribution model developed in this chapter is

the exclusion of the centrifugal forces acting on the rolling elements. As a result, the

quasi-static model cannot accurately predict the following:

• Event #2 — potential impacts of the rolling elements with the defective surface.

In practice, depending on the size (length) of a defect and rotational speed, rolling

elements may or may not strike the surface of the defect. Without incorporating

their centrifugal effects, the de-stressed rolling elements traversing through a

defect cannot freely follow their trajectory that tends to project them outwards

from the centre of the bearing; their trajectory is restricted to what it is when they

are within the non-defective section of the outer and inner raceways. Therefore,

the quasi-static model cannot predict the current location of the rolling elements

once they enter a defect.

• Event #4 — re-stressing of the rolling elements. Due to the exclusion of the

centrifugal forces acting on the rolling elements, their re-stressing during their

exit from a raceway defect cannot be predicted by the developed quasi-static
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(b) Vertical contact forces.

Figure 3.14: Analytically estimated rolling element-to-outer raceway contact forces as
the rolling elements traverse through the outer raceway defect for a radial load W of
50 kN and rotational speed ns of 500RPM.
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model.

Incorporating the centrifugal forces acting on the rolling elements and analytically

modelling the trajectory of the de-stressed rolling elements is a considerable task, and

beyond the scope of the analytical model presented in this chapter. Furthermore, the

principal aim of the new mathematical model was to predict the de-stressing of the

rolling elements, which is independent of the centrifugal and inertial effects. Incorpo-

rating these dynamic effects along with the slippage [95] (or randomness) of the rolling

elements will provide a more realistic estimate of the contact forces associated with the

re-stressing event.

A novel explicit dynamics FE model of a defective rolling element bearing has been

developed in this study, and is presented in the next chapter. The FE model, which

incorporates the centrifugal forces acting on the rolling elements and calculates their

path as they traverse through the defect, does not suffer from the aforementioned

limitations. The analytically estimated quasi-static contact force results presented in

this chapter will be compared with the numerically modelled dynamic rolling element-

to-raceway contact forces in Chapter 6.

3.9 Conclusions

A quasi-static model for estimating the load distribution within a rolling element bear-

ing has been developed by extending a well-known static load distribution model [3,

Chapter 7]. The main aim of this chapter was to predict the de-stressing of the rolling

elements as they enter into a raceway defect. A novel mathematical model for estimat-

ing the gradual decrease in the rolling element-to-raceway contact force corresponding

to the de-stressing of a rolling element within a bearing was developed. Considering a

linear slope, the mathematical model was based on the finite contact area developed at

the interface of the rolling elements and raceways of a bearing according to Hertzian

contact theory.
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The gradual change in contact width, area, and force was highlighted and compared

to the instantaneous step-like response at the edges of a bearing defect implemented

by previous researchers. The analysis of the analytically modelled contact forces was

presented and limitations of the developed quasi-static model were discussed. Although

the developed model is not capable of predicting the re-stressing of the rolling elements

due to the exclusion of centrifugal forces acting on the rolling elements, the model can

predict the de-stressing of the rolling elements, which will be compared with the FE

modelling results in Chapter 6. A gradual change in the contact force is necessary for

generating a low-frequency entry event; therefore, the model developed in this chapter

can be incorporated in future multi-body dynamic models for predicting the vibration

response of a defective rolling element bearing.

As contact forces between mating bearing components are generally not measured

in practice during their condition-based monitoring, the analytical modelling results

from the quasi-static model will be compared in Chapter 6 with those from a more

comprehensive explicit dynamics FE model of a defective rolling element bearing.

The next chapter presents the FE modelling of a defective rolling element bearing

solved using a commercial FE software package, LS-DYNA [329].
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Chapter 4

Explicit Finite Element Modelling of

Rolling Element Bearings

4.1 Introduction

This chapter presents an explicit dynamics finite element model of a defective rolling

element bearing solved using a commercial software package, LS-DYNA [329]. It is

a multiphysics simulation package capable of simulating complex dynamics problems,

and is used by numerous industries, such as automotive, aerospace, construction, mil-

itary, manufacturing, and bioengineering. LS-DYNA uses the second-order central

difference method [299, 302], an explicit time integration scheme, for simulating highly

non-linear transient dynamic events of very short-duration. This type of FE code is

different from the implicit FE solvers, such as ANSYS [307], in terms of time integra-

tion methods. Differences between explicit and implicit time integration schemes are

given in Appendix D.

It was mentioned in Chapter 2 (Literature Survey) that numerous researchers have

developed multi-body analytical [90–114] and FE models [115–120] for estimating the

vibration response of defective rolling element bearings: a review of these models was

presented in Sections 2.3.1 to 2.3.4.3. One of the problems reported by several re-
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searchers [91, 93, 103, 104, 109–111] was the mismatch between the instantaneous lev-

els of the modelled and measured defect-related vibration signals, although amplitude-

correction factors were applied by some researchers [93, 103, 104] but without providing

justifications. The use of analytical and theoretical methods often involves several as-

sumptions and simplifications, which for the previous models, were discussed during

their review in Sections 2.3.1, 2.3.2, and 2.3.3, Chapter 2. Unlike the analytical models,

one can minimise the assumptions in FE methods and achieve comparatively better

results; however, one has to still assume values or choices for parameters, such as ma-

terial model, material properties, time integration (time-stepping) scheme, damping,

and friction, in addition to adequately discretising a model into finite elements so as

to accurately model its structural response.

During the survey of the literature, only four publications [117–120] were found,

published between the years 2010 and 2013, which described the modelling of defective

rolling element bearings for predicting their vibration response using an explicit FE

software package [329]. As these FE models are directly relevant to the work presented

in this thesis, a critical review of the models [117–120] along with significant potential

problems associated with the models was provided in Section 2.3.4.3, Chapter 2. It was

found that the authors of the FE models [117–120] have compromised performance by

modelling either the whole outer ring as rigid or its outer surface as rigid. This causes

artificial over-stiffening of the bearing structure that lead to unrealistically high instan-

taneous acceleration levels of approximately 4,000 g [119] and 15,000 g [120] compared

to the corresponding experimental measurements of 100 g and 10 g in references [119]

and [120], respectively. In reference [118], the numerically predicted acceleration levels

of 107 g were not compared with experimental results. The significant mismatch be-

tween the predicted and measured amplitude levels reported for the multi-body models

[91, 93, 103, 104, 109–111] remains a problem with the existing FE models.

In the explicit dynamics finite element model of a defective rolling element bearing

developed in this chapter, the bearing components are modelled as flexible bodies,
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which facilitates a more accurate representation of the bearing stiffness, and hence

the vibration response of the bearing. Furthermore, much emphasis was given to

discretising the model adequately to ensure a smooth and continuous rolling contact

between the rolling elements and bearing raceways, so as to accurately transmit the

load between them during the numerical simulations. Unlike previous FE models [117–

120], which focused on presenting the vibration response of defective rolling element

bearings, the work presented in this thesis not only comprises the numerical modelling

of the dynamic rolling element-to-raceway contact forces as rolling elements traverse

through a defect, but also their analysis and correlation with the bearing vibration

signals. Such an analysis has not been previously presented in the literature except

published recently by the author of this thesis [4, 5] based on the work presented here.

In this chapter, however, only numerically modelled vibration signals are presented;

the analysis of the contact forces along with the aforementioned correlation will be

presented in Chapter 6, following the experimental verification of the FE model of the

bearing in Chapter 5.

It has been established in the literature [4–7, 161, 162, 165] that the entry of the

rolling elements into a bearing defect generates a low-frequency (de-stressing) event,

whereas their exit (re-stressing) from a defect generates highly impulsive signals. In

contrast to previous models [90–111, 113–120], which could not predict the de-stressing

of the rolling elements, the explicit FE model of the bearing developed here accurately

predicts this event, in addition to the re-stressing of the rolling elements. The in-

stantaneous peak acceleration levels of the defect-related impulses predicted by the

explicit FE model of the rolling element bearing here also compare favourably with

corresponding measured data; this comparison will be presented in Chapter 5.
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4.1.1 Aims

The aims of this chapter are to:

• develop a comprehensive non-linear explicit dynamics finite element model of a

defective rolling element bearing with minimal assumptions and simplifications,

which is better than existing FE models [117–120] and more detailed than ana-

lytical multi-body models [90–114];

• present a new hypothesis for explaining the cause of rolling contact noise observed

in the numerical results;

• analytically estimate the numerical rolling contact noise frequencies; thereby,

facilitating the justification of the proposed hypothesis;

• reasonably filter the numerically simulated vibration signals — acceleration, ve-

locity, and displacement time-traces; and to

• analyse the numerical vibration signals using standard signal processing tech-

niques associated with the vibration-based condition monitoring of rolling ele-

ment bearings [25, 26, 30, 251, 252].

4.1.2 New knowledge

The novel work presented in this chapter has provided the following new knowledge

and insights:

• the capability of the model to predict vibration signals, which are characterised by

energy mainly in low-frequency range, associated with the de-stressing of rolling

elements as they enter into a raceway defect;

• the development of a hypothesis to explain the cause of numerical rolling contact

noise observed in the modelled results; and
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• the analytical estimation of the contact noise frequencies along with the demon-

stration of the beating phenomenon to justify the proposed hypothesis.

This chapter is limited to describing the development of the explicit dynamics FE

model of a defective rolling element bearing and presenting its vibration response.

The new knowledge related to the dynamic contact interaction of the rolling elements

and raceways is described in Chapter 6, which presents a detailed analysis of the

rolling element-to-raceway contact forces along with their correlation with the vibration

response of the bearing as the rolling elements traverse through a defect.

4.1.3 Structure

The development of the FE model of a rolling element bearing with an outer raceway

defect is described in Section 4.2 along with an elaborate discussion on the meshing

requirement (recommended and required EPW criterion) in Section 4.2.2. In order

to demonstrate the dynamic structural response of the model, modal analysis was

conducted on the outer ring of the bearing, and the numerically predicted resonance

frequencies are compared with the analytical results in Section 4.3. The numerically

modelled acceleration results are presented in Section 4.4 and the accurate acquisition

of the bearing kinematics is discussed. A new hypothesis is developed in Section 4.5

to explain the cause of numerical rolling contact noise observed in the modelled results

along with the estimation of the noise frequencies and demonstration of the beating

phenomenon to justify the proposed hypothesis. Standard signal processing techniques

associated with the vibration-based monitoring of rolling element bearings were imple-

mented on the numerically predicted vibration results, and the corresponding analyses

are presented in Section 4.6. The capability of the developed FE model to predict the

low-frequency de-stressing of the rolling elements upon their entrance into the defect is

demonstrated within Section 4.6. Following the summary of the numerically modelled

FE results, the conclusions of the chapter are presented in Section 4.7.
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4.2 Numerical FE model of a defective rolling element

bearing

This section describes various steps that are necessary to perform an explicit finite

element analysis of a defective rolling element bearing using LS-DYNA.

4.2.1 Description of the model

A 2-D FE model of a rolling element bearing was built using ANSYS DesignModeler

[379]. The model comprises the following components: an outer ring, an inner ring, a

cage retaining a total of twenty-four rolling elements, and an adapter that distributes a

(radial) load to the outer ring, which is also transmitted to the inner ring through the

rolling elements. The dimensions of the modelled components are shown in Table 4.1,

and are similar to those considered during the quasi-static load distribution analytical

model presented in Section 3.3.2, Chapter 3. There was a nominal diametral clearance

ς = 0.04mm between the rolling elements and outer raceway of the bearing. The

clearance between the rolling elements and their corresponding cage slots was 0.35mm.

These dimensions are representative of a typical package bearing unit used in the

railway industry that has been experimentally tested during the course of this research;

this experimental work will be presented in the next chapter for the comparison of the

modelled and measured results.

The bearing was modelled with a localised rectangular defect that was located

centrally at the top on the outer raceway. The dimensions of the defect were: circum-

ferential length Ld = 10mm and height (or depth) Hd = 0.2mm. These dimensions

were selected based on the inspection of numerous defective bearings, obtained from

operational use in the railway industry [378]. As mentioned earlier, such a defect is

often referred to as a line spall. Figure 4.1a shows a localised line spall of circumferen-

tial length of approximately 15mm on the outer raceway of an axle bearing generated
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Component name Description and dimensions (mm)
Outer ring outer race diameter Do = 200 thickness ho = 10
Inner ring inner race diameter Di = 163.96 thickness hi = 10
Cage outer diameter Dc = 196 thickness hc = 4
Rolling element diameter Dr = 18 total number Nr = 24
Adapter width wa = 160 height (central) Ha = 40

Table 4.1: Dimensions of the components within the finite element model of the rolling
element bearing.

(a) A line spall. (b) An extended spall.

Figure 4.1: Photos of actual defects on the outer raceway of axle rolling element
bearings generated during operational use in the railway industry [378] (courtesy:
Track IQTM [11]).

during operational use in the railway industry. In contrast, a much larger operational

defect, an extended spall of length 230mm, on the outer raceway of an axle bearing

is shown in Figure 4.1b, although such a defect is not considered in this study but is

shown only to highlight the severity of defects in railway bearings.

For the current bearing model, the circumferential length of 10mm corresponds

to an angular extent of approximately 6◦. Similar defect dimensions were considered

during the quasi-static analytical modelling presented in Chapter 3, so that the numer-

ically predicted contact forces could be compared with the analytical results. Analyses

of the contact forces will be presented in Chapter 6.

Element type and material model 2-D shell elements were used to model the

bearing as a solid structure. A 2-D element is defined by four nodes having 2-DOF at
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each node: translations in the nodal x- and y-directions. The shell elements were mod-

elled as plane strain elements [329, Chapter 3, pages 3.25–3.30]. The components of the

bearing were modelled using the material properties of steel of density ρ = 7850 kg/m3,

modulus of elasticity E = 200GPa, and Poisson’s ratio ν = 0.3. The isotropic elas-

tic material model was chosen for the current analysis. Refer to Appendix E, which

describes the isotropic elastic material model used in LS-DYNA [329].

4.2.2 Discretisation of the model

The discretisation of a model into nodes and elements is an important step in a finite

element analysis as the accuracy of the results depends on the quality of the mesh,

and size and aspect ratio of the elements. Elements with poor aspect ratio can lead to

severe (elemental) distortion or hourglassing [329, Chapter 3, 7, pages 3.4–3.16, 7.6–

7.9]. Prior to discussing the discretisation of the bearing model, a few conditions that

are pivotal to accurately simulating the real-time operation of a bearing are emphasised

below.

4.2.2.1 Compliance of conditions

During the operation of a bearing, the rolling elements need to maintain a continuous

rolling contact with the outer and inner raceways of the bearing in order to transmit

the load between the raceways. For meshing the rolling elements and raceways, the

optimal element size was determined based on the compliance of the FE simulation

results with the following two conditions:

1. the surfaces of the bearing raceways and rolling elements, which are under the

influence of load zone, should be in contact at all times during the simulation,

and

2. the rolling elements should predominantly roll and not slide during the simulation.
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It should, however, be noted that in practice, there is a small amount of sliding or

slipping associated with the rolling elements [96]. Fulfilment of the first condition is

necessary to achieve the correct load distribution on the rolling elements as per the

analytical static solution [3, pages 234–237] (presented in the previous chapter). Ac-

complishment of the second condition is necessary to accurately acquire the rotational

speed of the rolling elements (cage) ωc, which would eventually result in the correct

prediction of the bearing kinematics; that is, the outer raceway defect frequency fbpo

for the current simulation.

In a typical operation of a bearing in practice, the rolling elements rotate about the

axis of the bearing and their own axes simultaneously. In order to simulate the real-

scenario of a bearing operation, no boundary conditions were applied to the rolling

elements, and they were rotated due to their contact interaction with the rotating

inner and stationary outer rings. Therefore, satisfactory achievement of the second

condition is significantly important for the reasons mentioned in the preceding para-

graph. It should, however, be noted that the two conditions are interrelated, as the

loss of rolling element-to-raceway contact will affect the rotational speed of the rolling

elements, resulting in their sliding, and thereby, causing incorrect prediction of the

bearing kinematics.

The general EPW criterion is discussed next; however, many more than the recom-

mended EPW were required to accurately model the kinematics of a rolling element

bearing in order to achieve compliance with the aforementioned conditions.

4.2.2.2 Elements-per-wavelength criterion

The determination of an optimal element size not only depends on the size of a model,

but also on the type of an analysis. Having a certain number of EPW is recommended

as a general guideline for various types of analyses [307]; for example, in the case of an

acoustics analysis, at least 12 EPW are sufficient to accurately model the propagation of

sound waves [380], whereas at least 20 EPW are recommended for a transient dynamic
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structural analysis [336, Chapter 5] for (structural) wave propagation studies.

The transmission of bending waves, which are a combination of compressional (lon-

gitudinal) and shear (transverse) waves, is important in solids. Having the tendency

to flex a solid structure, bending waves, often referred to as flexural waves, propagate

parallel to the surface of the structure, resulting in its normal displacement [381, Chap-

ter 8, pages 354–359]. Generally, an EPW value can be estimated on the basis of the

bending wave speed of a structure to be modelled. In the work presented in this thesis,

vibration signals of a defective rolling element bearing were modelled and measured

at the outer surface of the outer ring of the bearing. Therefore, it is useful to ensure

sufficient elements in the outer ring of the bearing so as to model its flexibility or modal

vibration response.

Above the ring frequency of a cylindrical shell, its curvature effects largely disappear

and the shell vibrates like an equivalent flat plate [382]. The ring frequency of a

cylindrical shell is given by [382, Chapter 1, page 32]

frc =
1

2πrc

√

E

ρ (1− ν2)
(4.1)

where, rc is the mean radius of a cylindrical shell, E is the modulus of elasticity, ρ

is the density, and ν is the Poisson’s ratio. For the dimensions of the outer ring of

the bearing model considered here, its ring frequency frc is approximately 8025Hz.

For bearing fault diagnosis that is commonly implemented using envelope analysis

[251, 252], vibration signals are generally demodulated in high-frequency range [30,

31, 59]. Although the vibration signals can be demodulated in the natural frequency

range of a bearing that could include its low-frequency resonant modes, the reason for

implementing the demodulation in high-frequency range is the defect-related impulses

are amplified by high-frequency structural resonant modes of a rolling element bearing

[17]. It is shown in Figure 4.4, which presents results of a modal analysis of the outer

ring of the bearing to be discussed in Section 4.3, that there are numerous natural
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frequencies (modes) of the outer ring above its ring frequency frc. As defect-related

impulses can excite all the natural frequencies, it is reasonable to demodulate the

signals at any frequency. However, as will be shown in Section 4.6.3 through the use of

spectral kurtosis [25] and kurtograms [26], the frequency band with the highest content

of impulsive energy is 18–23 kHz. Therefore, in this case, it is justifiable to consider

that the outer ring of the bearing behaves like a flat plate at high frequencies of interest.

The following discussion describes an estimation of an element size for building the

finite element model of the rolling element bearing. This is based on the vibration

characteristics of the outer ring of the bearing, which would seem as a reasonable crite-

rion, so as to capture the dynamics of the system. However, it will be shown that the

mesh size is actually governed by the need to accurately simulate the rolling element-

to-raceway contact forces and bearing kinematics as mentioned in Section 4.2.2.1.

Above its ring frequency frc, considering the outer ring of the rolling element bearing

model as a flat plate, the velocity cb of bending waves is given by [382, Chapter 1, pages

26–38]

cb =
√
ω

[

Eh2o
12(1− ν2)ρ

]
1

4

(4.2)

where, ho is the thickness of the outer ring and ω is the angular frequency, which cor-

responds to the highest frequency of interest at which results are sought. Considering

that the results are sought at 40 kHz, the bending wave speed at 40 kHz for a 10mm

thick plate (modelled thickness of the outer ring) equates to approximately 1960m/s,

and the corresponding bending wavelength λb, equals 0.049m. A mesh element size

of 2mm would result in approximately 24 EPW which easily meets the recommended

EPW criterion of 20 for a transient dynamic structural analysis [336, Chapter 5].

Mesh element sizes of 2mm, 1mm, 0.75mm, 0.5mm and 0.3mm were tested. For

the FE models of the bearing meshed using the element sizes of 2mm, 1mm, and

0.75mm, it was found that a continuous contact between the rolling elements and

raceways could not be maintained during the simulation. The loss of the contact
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caused incorrect load distribution on the rolling elements. In contrast, for the FE

models meshed using the element sizes of 0.5mm and 0.3mm, the two aforementioned

conditions were fulfilled, which consequently resulted in the accurate acquisition of the

bearing kinematics. The simulation results, rolling element-to-raceway contact forces

and instantaneous acceleration levels, for the FE models meshed using 0.5mm and

0.3mm element sizes, were very similar to each other. Therefore, the mesh element size

of 0.5mm was chosen to reduce the CPU run times without significantly compromising

the accuracy of the numerical solution.

All the components within the rolling element bearing model were meshed using

quadrilateral elements, except for the rolling elements, which due to their geometry,

could not be meshed with the quadrilateral elements. Consequently, they were meshed

with a mixture of quadrilateral and triangular elements. It is interesting to note that the

chosen element mesh size of 0.5mm corresponds to 97 EPW (at 40 kHz), which is nearly

5 times the recommended EPW value for a transient dynamic structural analysis [336,

Chapter 5]. The use of a much smaller than the minimum required mesh element size so

as to ensure continuous rolling contact eliminates the need to assume that the outer ring

of the bearing behaves like a flat plate. In other words, the importance of accurately

modelling the rolling element-to-raceway contact interaction and bearing kinematics

ironically devalues the ring/plate vibration dynamics for estimating an appropriate

mesh element size. However, one should not ignore the aforementioned discussion that

is related to the vibration dynamics of the outer ring because it provides a reasonable

guide to model discretisation if one has to conduct an implicit FE analysis that could

include modal or harmonic analysis [307].

Figure 4.2 shows the meshed FE model of the rolling element bearing annotated

with the names of the components. The geometrical rectangular defect located centrally

at the top of the outer raceway, which cannot be seen in Figure 4.2a, is shown in

Figure 4.2b for clarity. The centre of the rolling element located immediately to the

left-hand side of the defect is offset by 4◦ from the y-axis; the rolling elements within
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(a) The meshed FE model of the bearing along
with the adapter.

(b) A partially zoomed version
of Figure 4.2a, showing the 1-
element deep rectangular defect
on the outer raceway, highlighted
using the ellipse; the centre of the
rolling element to the left-hand
side of the defect is offset by 4◦

from the y-axis.

Figure 4.2: Images of the 2-D finite element model of the defective rolling element
bearing.
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the model are spaced 15◦ apart.

In order to confirm that the chosen element mesh size is adequate for modelling the

structural flexibility of the bearing model, modal analysis was performed on the outer

ring of the bearing. The reason for selecting only the outer ring and not the whole

bearing is the complexity associated with modelling the contact between a few rolling

element-to-raceway interfaces that are under a load, while most of the rolling elements

remain unloaded. For a radial load W of 50 kN on the bearing, it was estimated in

Section 3.3.2, Chapter 3, that only seven rolling elements are loaded; refer to Figure 3.4,

Chapter 3. Another reason for only considering the outer ring is that the resonance

frequencies obtained from the finite element modal analysis can be compared to the

analytical solution [383, Chapter 12]. Although the EPW for the current bearing model

exceeds the recommended criterion by nearly 5 times, the modal analysis of the outer

ring will ensure that the structural response has been appropriately acquired. The

modal analysis will be presented in Section 4.3.

4.2.3 Contact interactions

A frictional contact with a low coefficient of friction µ = 0.005 was defined for the

following contact interfaces within the model: rolling elements–outer ring, rolling

elements–inner ring, and rolling elements–cage. The chosen frictional coefficient is

comparable to that generally recommended for rolling element bearings in practice [3,

Chapter 12].

One of the crucial aspects associated with simulating the operation of a rolling

element bearing using LS-DYNA is understanding the functional capabilities of the

impact–contact algorithm [329, Chapter 26] integrated in LS-DYNA. It is vital to ac-

curately model the non-linear Hertzian contact forces [175–177] between the rolling

elements and bearing raceways. More importantly, the traverse of a rolling element

through a bearing defect often involves its impact with the defective surface and race-
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ways. During the analyses of the numerically modelled rolling element-to-raceway

contact forces, it will be shown in Chapter 6 that the re-stressing of rolling elements

generates multiple force impulses that cause the bearing structure to vibrate. There-

fore, in order to understand the usage of various parameters associated with the in-built

contact algorithm, a simple test case involving the impact of a sphere with a plate was

numerically solved using LS-DYNA. A detailed report on the validation of the test case

is presented in Appendix F. It investigates the effects of altering element mesh sizes,

contact stiffness, and contact penalty factor on the numerical results. In summary,

it was found that in the vicinity of the sphere–plate contact interface, a fine mesh

was required to accurately model the impact force and contact duration. The stiffness

penalty factor was also altered from its default value in order to achieve the contact

displacement comparable to that of the analytical solution.

4.2.3.1 Contact–impact algorithm

For modelling the contact interaction between the mating components of a rolling

element bearing, the segment-based contact algorithm [329, Chapter 26], built within

LS-DYNA, was implemented. It detects the penetration of one segment into another

and applies a force, proportional to the penetrating depth, to the segment nodes, as

opposed to the penetrating nodes only, for the standard node-to-surface penalty-based

contact technology often used in numerous implicit FE solvers including ANSYS [307],

Abaqus [308], and NASTRAN [311]. As an example, when two 4-noded segments

come into contact, a penalty force is applied to the eight nodes to resist the segment

penetration in the case of the surface-to-surface segment-based contact, rather than to

the penetrating nodes only for the node-to-surface penalty-based contact.

The contact stiffness between contacting bodies, also referred to as spring stiffness,

is calculated as [329, Chapter 26, page 26.10]
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kcs(t) =
1

2
(SLSFAC)× (SFS or SFM)

(

m1m2

m1 +m2

)(

1

∆tcritical

)

(4.3)

where, SLSFAC is the default penalty scale factor, SFS or SFM are the default slave

and master penalty stiffness factors, respectively, m1 and m2 are segment masses of

the bodies in contact, and ∆tcritical is critical time step that advances the numerical

solution. This time step will be discussed in more details in Section 4.2.5.1. The default

value of SLSFAC defined in the contact–impact algorithm built within LS-DYNA is 0.1,

and for SFS and SFM, it is 1. The effective penalty factor is the product of SLSFAC and

SFS or SFM. The effects of altering the penalty factors are described in Appendix F. It

was found that too much increase in the penalty factor causes artificial over-stiffness

that reduces displacement (or deformation) of the sphere and plate at their contact

interface. Consequently, it leads to ill-conditioning of the global stiffness matrix, and

thereby, causes an unstable solution.

4.2.4 Boundary conditions and loads

The following boundary conditions were applied to the FE model of the rolling element

bearing in order to simulate the real-time operation of a bearing in a typical railway

application. These boundary conditions also effectively simulate the experimental setup

conditions applicable to a bearing during its testing; the experimental work will be

described in the next chapter.

• A radial load W of 50 kN on the top edge of the adapter in the downward (neg-

ative) global cartesian y-direction was applied so as to radially load the bearing;

this load represents half of the load carrying capacity of the bearing.

• The inner ring was constantly rotated with a uniform rotational speed ns of

500RPM in a clockwise direction; this speed corresponds to a train speed of

approximately 95 km/hr for a 1m wheel diameter.
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• In a typical three-piece railway bogie (refer to Figure 1.6, Chapter 1), the adapter

is located on the top of a bearing, and is sandwiched between the bearing and

one of the two side-frames; the essential constructional features of a three-piece

bogie [32, Chapter 3, page 70] were also discussed in Section 1.1.3, Chapter 1,

along with the corresponding schematic in Figure 1.6. During the travel of a train

(operation of a bearing), the adapter remains at its position due to the weight of

the railway vehicle, which is transferred on to the (four) bearings within a bogie

through the side-frame-to-adapter structural coupling. The coupling between the

adapter and the outer ring of a bearing is such that there is a conformal con-

tact between them, as a result of which the outer ring of a bearing also remains

in its position, and does not rotate. Implementing the coupling between the

adapter and outer ring in the FE model of the bearing was challenging because

no direct constraints could be applied to the outer ring as this would result in

over-constraining its translations and vibration response, consequently causing

an incorrect load distribution on the rolling elements. In order to overcome this

problem, a frictional contact with a high coefficient of friction µa−o = 0.1 between

the outer ring and adapter was implemented. The top edge of the adapter was

translationally constrained in the global x-direction, and as a result of the fric-

tional contact, the outer ring was prevented from rotating during the simulation.

This way of constraining the outer ring effectively simulates a real-scenario of a

bearing in a typical railway application, as no constraints were directly applied

to it.

It has been mentioned earlier in Section 2.3.4.3, Chapter 2, and briefly in Sec-

tion 4.1, that in previous explicit FE models [118–120], either the whole outer

ring [118] or its outer surface [119] was modelled as rigid so as to constrain its

rotation. This causes artificial over-stiffening of the bearing structure that lead

to unrealistically high instantaneous acceleration levels of approximately 4,000 g

[119] and 15,000 g [120] compared to the corresponding experimental measure-
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ments of 100 g and 10 g in references [119] and [120], respectively; in reference

[118], the numerically predicted acceleration levels of 107 g were not compared

with experimental results. It will be shown in Chapter 5 that the numerically

modelled acceleration levels, obtained using the explicit dynamics FE model of

the rolling element bearing developed in this chapter, compare favourably with

experimentally measured data.

• As mentioned earlier, a frictional contact with a low coefficient of friction µ =

0.005 was defined for the following contact interfaces: rolling elements–outer ring,

rolling elements–inner ring, and rolling elements–cage. In addition to modelling

the surface-to-surface contact at the aforementioned interfaces, the segment-

based contact formulation [329] was implemented during the numerical simulation

as described in Section 4.2.3.1.

• A global (mass-weighted) damping of 2% was used in the FE model of the bearing.

Higher values of damping, 3% to 5%, were also tested, but these higher values

affected the rotational speed ωc of the rolling elements causing slippage; thereby,

resulting in the incorrect bearing kinematics. Therefore, the results correspond-

ing to the high values of damping are not shown here. In the current FE modelling

work, the effect of damping on the bearing kinematics should not be confused

with that on the vibration characteristics of the system. It is well-known that

the presence of damping in a mechanical system reduces its structural resonant

response in terms of both amplitude and natural frequencies [381, Chapter 10,

pages 517–522]. For example, in a mass–spring–damper system having the mass

driven by an external force, the damping will not only reduce the amplitude of

the displacement of the mass but it will also slightly reduce the natural frequency

of the system by a factor of
√

1− ζ2, where ζ is the damping ratio [381, Chap-

ter 10, pages 517–522]; this reduced frequency is referred to as a damped natural

frequency.
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In contrast, when friction and damping are included in a system that involves

movement between two bodies, the relative movement between the bodies will

decrease if they are not continuously driven. For example, consider an imagi-

nary FE model of a ball rolling over flat surface. Refer to Figure 4.3 which shows

schematics of a ball on a flat surface — a frictionless ball–surface contact is shown

in Figure 4.3a, whereas a frictional ball–surface contact is shown in Figure 4.3b.

In order for the ball to roll on the flat surface, there has to be frictional contact

between the curved surface of the ball and the flat surface. If there is no friction

(Figure 4.3a), then the ball would simply slide along the flat surface and would

not roll. If friction is included in the model (Figure 4.3b), one would expect that

if the ball is not continuously forced, it would eventually stop rolling.

In the finite element model of the bearing considered here, it was mentioned in

Section 4.2.2.1 that no boundary conditions were applied to the rolling elements,

but frictional contact between the rolling elements and raceways was included.

Furthermore, the inclusion of damping, applied globally to all the nodes withing

the FE model, resists the motion of the nodes by a force F damp proportional to

their velocity u̇nod as given by F damp = CDmnodu̇nod [329, Chapter 31], where CD

is the damping constant and mnod is the nodal mass. The acceleration üt at time

t is then estimated as [329, Chapter 31, page 31.4]

üt = M
−1

(

F
ext
t − F

int
t − F

damp
t

)

(4.4)

where, M is the mass matrix, Fext
t is the applied external force vector, Fint

t the

internal force vector, and F
damp
t is the damping force vector. Hence, it follows that

the inclusion of friction and damping would lead to a reduction in the rotational

speed of the rolling elements.

• The standard Earth’s gravity was also applied to the model.
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4.2. Numerical FE model of a defective rolling element bearing

(a) Frictionless ball–surface contact causes the
ball to slide.

(b) Frictional ball–surface contact causes the
ball to roll.

Figure 4.3: Schematics of a ball on a flat surface.

4.2.5 Analysis and control settings

The termination time of the numerical simulations was set to 30 milli-seconds (ms).

The results, in the form of binary text files, were written at an interval of 0.01ms, which

corresponds to a sampling rate of 100 kHz. Despite requesting the results at specific

time intervals, LS-DYNA often writes the output file at varying intervals, which are

irregularly spaced but close to the requested intervals. This is due to the varying time

steps that advance the explicit dynamics numerical simulation, and is discussed below.

Therefore, as part of post-processing the numerical results, the software MATLAB®

was used to interpolate the results based on the minimum output time interval.

4.2.5.1 Time step

The irregular time intervals of the output results are caused by the adaptive time

step method used by the numerical solver. To ensure the stability and accuracy of

the solution, the size of the time step used in the explicit time integration scheme is

limited by the Courant-Friedrichs-Lewy (CFL) criterion [384]. This implies that the

time step is limited in such a way that a stress wave, which propagates through the

entire model, cannot travel further than the smallest characteristic dimension of an

element in a single step.
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In the finite element software package used here, a critical time step is given as

[329, Chapter 22, page 22.3]

∆tcritical =

(

lfe
c

)

min

(4.5)

where, lfe is the characteristic dimension of an element, and c is the local material

sound speed in an element.

In an LS-DYNA solution, a stable time step ∆tstable is always less than the critical

time-step by a default factor tsf of 0.9 to ensure stability of the solution at all times.

The stable time step is

∆tstable = (tsf)×
(

lfe
c

)

min

= 0.9×∆tcritical (4.6)

The stable time step is adaptive and automatically calculated for each solution

cycle based on the smallest characteristic dimension of an element within a model.

The variation of the time step during the progression of the solution has the tendency

to generate noise in the numerical results; the reasons for varying time steps along

with some potential causes of numerical noise in a typical LS-DYNA solution will be

discussed in Section 4.5.1.

For the numerical simulations of a rolling element bearing presented in this thesis,

numerical noise was also generated due to the contact interaction of the polygonised

rolling elements and raceways. This will be discussed in more details in Section 4.5

along with the analytical estimation of the numerical noise frequencies.

One aspect of the accuracy of an FE analysis is associated with the distortion of the

elements within an FE model; other aspects generally include achieving a favourable

agreement between the numerical and analytical solutions. The accuracy of the FE

analysis undertaken here has been verified by checking the distortion of the elements

as well as by comparing the numerical results with corresponding analytical and exper-

imental results. In the FE software package used here, erroneous or severe distortion
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of the elements leading to poor element aspect ratio is referred to as hourglassing or

zero-energy modes [329, Chapters 3, 7, pages 3.4–3.16, 7.6–7.9]. It is generally recom-

mended that the hourglass energy of an element should be less than 10% of its internal

energy. For the current explicit simulation of the rolling element bearing, the hour-

glass energy was found to be less than 0.2% of the internal energy, indicating negligible

distortions of the elements. One of the reasons for having such a low hourglass energy

is the uniform discretisation of the bearing model into finite elements using mostly

the quadrilateral elements, and a sufficiently high mesh density that can accommodate

the applied loads. The comparison of the FE simulations results with those of the

analytical and experimental results will be presented in Chapters 5 and 6.

4.3 Modal analysis

Prior to performing the explicit analysis of the rolling element bearing, a modal analysis

of the outer ring of the bearing was undertaken. As mentioned earlier, the purpose of

numerically modelling the structural modal response of the outer ring is to verify the

adequacy of the mesh size used to discretise the bearing model into finite elements. The

reason for only selecting the outer ring and not the whole bearing has been discussed

earlier in Section 4.2.2.2.

The implicit solving capability of the FE software package, LS-DYNA, was used

to solve for the natural frequencies and mode shapes of the outer ring of the rolling

element bearing model. The outer ring was modelled as a 10mm thick cylindrical

shell. 2-D shell elements were used to discretise the model with a mesh element size of

0.5mm; the element type and size are same for modal and explicit dynamic analyses,

so as to ensure consistency across both analyses.

From the description of the boundary conditions, mentioned in Section 4.2.4, ap-

plied to the FE model of the rolling element bearing shown in Figure 4.2, the outer ring

can neither be considered as fully fixed nor it can be considered as free. As mentioned
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earlier in Section 4.2.4, a frictional contact with a high coefficient of friction µa−o = 0.1

between the outer ring and adapter was implemented, and due to constraining the top

edge of the adapter in the global catersian x-direction, the outer ring was prevented

from rotating during the simulation. An approximate consideration would be to treat

the edges of the outer ring as simply-supported. Nevertheless, two different boundary

conditions were tested for the model verification — free and simply-supported ends.

Figures 4.4a and 4.4b show the numerically obtained modal (natural) frequencies of

the outer ring for the aforementioned boundary conditions along with the corresponding

analytical estimations. The analytical solution was taken from reference [385]; a simple

formula used to estimate the resonance frequencies of the outer ring is given as (see

references [383, 386, 387] for a comprehensive analysis of various theories on the circular

cylindrical shells)

ω2

mn =
B

ρh

[

k2zm +

(

n

Ro

)2
]

+
k (1− ν2)

ρhR2
o







k2zm

k2zm +
(

n
Ro

)2







2

(4.7)

where, the parameter B (bending stiffness) is given as B =
Eh3o

12(1− ν2)
, k =

Eho
1− ν2

, E

is the modulus of elasticity, ρ is the density of the material, ν is the Poisson’s ratio, ho

is the thickness of the outer ring, Ro is the radius of the outer ring, L is the length of

the outer ring, and m, n are the axial and circumferential mode numbers, respectively.

For different boundary conditions, the modal wavenumber kzm takes different forms as

kzm =















mπ

L
for simply-supported ends

(

m− 1

2

)

π

L
for free ends

(4.8)

For no boundary conditions at the edges of the outer ring simulating free ends, the

numerical and analytical estimates of the first natural frequency of the outer ring are

528Hz and 514Hz, respectively. In contrast, for simply supported ends, the numerical
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(a) No boundary condition at the edges of the outer ring.
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(b) Edges of the outer ring were simply supported.

Figure 4.4: Comparison of the numerically and analytically estimated natural frequen-
cies of the outer ring of the FE model of the rolling element bearing for two different
boundary conditions.
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and analytical estimates of the first natural frequency of the outer ring are 3554Hz

and 3621Hz, respectively. As can be seen from the Figures 4.4a and 4.4b, a reasonable

agreement between the analytical and numerical results was achieved. In both cases,

the maximum error in the numerical estimates of the natural frequencies is within 8%

of the corresponding analytical results. The favourable agreement of the results from

the modal analysis obtained using LS-DYNA and the analytical predictions indicates

that the discretisation of the model is adequate.

Experimental work to measure the natural frequencies of the outer ring was not

undertaken during the course of the current study. This is because: 1) the numerically

predicted natural frequencies obtained using LS-DYNA agree favourably with the well-

developed analytical models [383, 386, 387], and 2) the modal analysis of the outer

ring was only undertaken to verify the adequacy of the mesh element size used to

discretise the model of the bearing into finite elements. The principal aim of this thesis

is to present an analysis of the dynamic rolling element-to-raceway contact forces as

the rolling elements traverse through a localised raceway defect, and correlation of

these forces with the vibration response of the bearing. As the numerically predicted

vibration response will be validated using experimental results in the next chapter,

the experimental verification of the analytical and numerical natural frequencies of the

outer ring was deemed unnecessary, and would not have contributed towards the main

aims of this thesis.

In the remainder of this chapter, the results from the explicit dynamics FE mod-

elling of the defective rolling element bearing are presented.
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4.4 Numerical acceleration time-trace

A common technique used in vibration-based condition monitoring of rolling element

bearings is the measurement of acceleration levels, and subsequent implementation

of the envelope analysis technique [30, 251, 252] to detect the defect-related bearing

frequencies. Similarly, in this section, the nodal acceleration results obtained from

the numerical modelling are presented. In addition to the acceleration, nodal velocity

and displacement results were also obtained; these results along with standard signal

processing analyses will be presented in Section 4.6, following the discussion of the

numerical noise in Section 4.5.

The current simulations were conducted using a high-performance super computer,

Tizard [388], using eight parallel processors — 4 AMD OpertonTM 6238, 12-core,

2.6GHz CPUs; it took approximately 250 CPU hours to solve the FE model of the

rolling element bearing.

4.4.1 Time domain analyses

Figure 4.5 shows the (unfiltered) time-trace of the numerically obtained acceleration

ay (in the global cartesian y-direction) for a node located on the outer surface of

the outer ring. The three consecutive defect-related impulses, evident in the plot,

are separated by approximately 0.011 seconds, which corresponds to the outer raceway

defect frequency, commonly referred to as a ball pass frequency outer raceway (BPFO),

fbpo, of 90.91Hz. The analytical estimation of the nominal BPFO, fbpo, is given by [3,

Chapter 25, page 994]

fbpo =
fs ×Nr

2

(

1− Dr

Dp
cosα

)

(4.9)

where, fs is the bearing run speed (that is, the rotational speed of shaft or inner ring),

Nr is the number of rolling elements, Dr is the rolling element diameter, Dp is the

bearing pitch diameter, and α is the contact angle. For the bearing modelled here, the
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Figure 4.5: Numerically modelled, unfiltered, acceleration ay time-trace for a node
located on the outer surface of the outer ring of the FE model of the rolling element
bearing for a radial load W of 50 kN and a rotational speed ns of 500RPM.

analytical estimate of the BPFO, calculated using Equation (4.9), is 90.07Hz, which is

0.9% different from the results of the numerical simulation. The slight difference be-

tween the numerical and analytical estimates is because the analytical formula, shown

in Equation (4.9), does not account for the slippage of the rolling elements [95, 96],

which was accounted in the explicit FE analysis of the bearing undertaken here.

In contrast to previous FE models of rolling element bearings, where unrealisti-

cally high instantaneous acceleration levels of 107 g [118], 4,000 g [119], and 15,000 g

[120] were shown, the model developed here produces realistic acceleration levels of

approximately 180 g; the numerical results will be compared with the experimental

measurements in the next chapter, and it will be shown that the numerical accelera-

tion levels in Figure 4.5 compare favourably with the corresponding measured data.

One of the reasons for this improvement compared to the previous models is the bearing

components were modelled as flexible parts so as to correctly represent their stiffness.

Other reasons, which could not be compared with previous models due to lack of de-
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4.5. Numerical contact noise — an artefact of the model

tails provided in the literature, include optimal discretisation of the model to ensure

continuous rolling element-to-raceway contact, correct implementation of the surface-

to-surface contact at the interfaces, and the use of a value for the coefficient of friction

that is comparable to the recommended practical value in rolling element bearings [3,

Chapter 12].

Close agreement between the numerical and analytical values of the outer race-

way defect frequency shows that the finite element model has satisfactorily simulated

the basic bearing kinematics. However, the acceleration time-trace has a substantial

amount of numerical noise, which is explained in the following section.

4.5 Numerical contact noise — an artefact of the model

It can be observed in Figure 4.5 that while the instantaneous peak impulsive acceler-

ation levels for the three visible defect-related impacts range from 0 to approximately

±180 g, the non-impulsive acceleration levels between the impacts are of the order of

±50 g. In order to seek the frequencies associated with the numerical noise, power spec-

trum of the numerical acceleration signal, shown in Figure 4.5, was calculated using

Welch’s method [389] with 50% overlap. Although the signal was sampled at 100 kHz,

the simulation was run for 30ms, resulting in only 3010 samples after the interpo-

lation based on the minimum output time interval; it has been mentioned earlier in

Section 4.2.5 that the FE simulation results are often output at irregular time intervals

due to the adaptive time-stepping. Therefore, the acceleration signal was zero-padded

with 215 FFT points in order to interpolate the power spectral estimate for a frequency

resolution of 3Hz. The narrow band power spectral density of the numerically mod-

elled acceleration ay signal is shown in Figure 4.6. A fundamental tone at 4671Hz, as

indicated in the figure, corresponds to the numerical noise. There is also an indication

of the 5th harmonic at approximately 23 kHz in the figure that is associated with the

fundamental tone.
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Figure 4.6: Power spectral density of the nodal acceleration ay time-trace shown in Fig-
ure 4.5, highlighting one of the dominant numerical noise frequencies, f onoise = 4671Hz
observed in the FE simulation results.

In addition to the dominant numerical noise at 4671Hz, another frequency compo-

nent that was intermittently observed in the numerical acceleration ay time-trace was

4545Hz; however, it is not apparent in the power spectrum shown in Figure 4.6. In

order to show the presence of the numerical noise at 4545Hz within the acceleration ay

time-trace, it was zoomed between the defect-related impulses, which are separated by

0.011 s as indicated in Figure 4.5. These partial time-traces are shown in Figures 4.7a

and 4.7b. For clarity, the scale of the y-axis in both figures ranges from ±100 g, which

is half of that in Figure 4.5. The time separation between the consecutive peaks as

indicated by three pairs of the circular- and square-shaped data cursors corresponds

to 4545Hz. Despite the presence of the numerical noise at the frequency component

of 4545Hz, it is not apparent in the power spectrum shown in Figure 4.6 in contrast

to the dominant noise component of 4671Hz. A few potential reasons for not having

a tonal component at 4545Hz will be discussed later in Section 4.5.3, which describes

the analytical estimation of this frequency component.
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(a) Time-trace zoomed between the first and second defect-related impulses.
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(b) Time-trace zoomed between the second and third defect-related impulses.

Figure 4.7: Partial time-traces of the numerically modelled, unfiltered, acceleration
ay signal shown in Figure 4.5 zoomed between the defect-related impulses. The time
separation between the consecutive circular- and square-shaped data cursor pairs cor-
responds to the numerical noise frequency component of 4545 Hz.

158



Chapter 4. Explicit Finite Element Modelling of Rolling Element Bearings

Although the fundamental BPFO and its harmonics are not clearly visible in the

power spectrum shown in Figure 4.6, it will be shown in Section 4.6.3 that after con-

ducting an envelope analysis they are presented in Figure 4.29. The natural frequencies

of the bearing are also not visible in Figure 4.6. This is potentially because the structure

could be more easily excited at some frequencies than others.

A development and justification of a novel hypothesis for explaining the cause of the

numerical noise frequencies are described in Section 4.5.2, following a short discussion

on the numerical noise.

4.5.1 A short note on general numerical noise

Results from FE simulations calculated using LS-DYNA can contain a significant

amount of numerical noise [335, page 1110]. Although not clearly mentioned in the

software user and theory manuals [329, 335], it is understood that the majority of noise,

often referred to as spurious oscillations in the context of explicit FE methods, is gen-

erated due to adaptive time-stepping [390]. LS-DYNA uses the second-order central

difference method [293, 329], which is a widely used time integration scheme in several

explicit FE solvers including Abaqus/Explicit [308] and NASTRAN Explicit [311].

In contrast to implicit methods [287–294], which are unconditionally stable, the

explicit methods [292, 295–305] are conditionally stable; that is, for a single solution

cycle only [299, 302, 305]. The stability of an explicit solution depends on the time

step as described in Section 4.2.5.1. In the case of LS-DYNA, the stable time step

∆tstable, 90% of the critical ∆tcritical, is automatically estimated based on the minimum

characteristic dimension of an element within an FE model (see Equations (4.5) and

(4.6)). If a linear FE mesh is generated so that the time step is constant for each

cycle, results obtained by the central difference scheme [292, 295–305] would be close

to exact solutions [305]. However, in practice, it is not feasible to generate a mesh,

so as to achieve a constant time step, not only because of the size of a model but
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also because of the types of various analyses. As an example, one would require finely

meshed areas in the vicinity of contacting bodies compared to non-contacting regions in

order to accurately simulate a Hertzian contact problem [177, Chapter 4]. Furthermore,

depending on various types of analyses, such as impact, vehicle crash, blast, and metal

forming, the elements within a model can undergo severe deformation (elastic or plastic)

or distortion or erode during a simulation. The variation in the size of elements during

an explicit LS-DYNA solution causes a variation in the size of the time steps so as to

ensure the stability of the solution. In other words, as an element size varies, so does the

time step. It is the irregularly (time) spaced progression of the solution to determine

the state variables, acceleration, velocity, and displacement, that generates spurious

oscillations or numerical noise in the results. These spurious oscillations should not be

confused with the defect-related impulses, which are separated by 0.011 s, as shown in

Figure 4.5.

For the current numerical simulation, Figure 4.8 shows the variation in the step size.

It is evident that the step size varies for almost each solution cycle. The maximum

variation from approximately 28.87 ns (nano-seconds) to 28.74 ns can be observed at

about 5ms, 16ms, and 28ms. These timings can be correlated with those of the timings

related to the occurrences of the defect-related impulses, observed in Figure 4.5. It will

be discussed during the analysis of the numerically predicted rolling element-to-raceway

contact forces in Chapter 6 that the rolling elements strike the outer and inner raceways

near the end of the defect. As a result, the size of the elements, involved in the impacts

reduces due to the elastic deformation of the elements for a duration equivalent to the

duration of an impact, consequently leading to the reduction in the time step at the

aforementioned timings in order to maintain the stability of the solution.

In addition to the comparatively higher variations in the step size at 5ms, 16ms,

and 28ms, smaller variations in the step size are evident for almost each solution cycle

in Figure 4.8. This is because as the rolling elements roll during the simulation, the

level of compression or load on them varies with their position; refer to the analytically
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Figure 4.8: Variation in the time step ∆tstable as the numerical solution advances.

estimated load profiles in Figure 3.4, Chapter 3. As a result, the size of finite elements

located at the edge of the rolling elements and the raceways varies, leading to the

variation in the time steps.

As mentioned earlier in Section 4.2.5.1, the accuracy of the finite element analysis

was verified by checking the hourglass energy of the elements, which is recommended to

be less than 10% of the elemental internal energy [329, Chapters 3, 7, pages 3.4–3.16,

7.6–7.9]. Although the hourglass energy was found to be less than 0.2% of the internal

energy, which indicates negligible elemental distortions, the elemental deformations

were enough to cause the slight variations in the time step.

In the explicit FE model of a rolling element bearing developed here, the numeri-

cal noise is also generated due to the interaction (contact) of the rolling elements and

raceways in addition to the inherent numerical noise described in the preceding para-

graphs. In order to explain the cause of numerical rolling contact noise along with the

estimation of the noise frequencies, a detailed hypothesis is presented below.
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Figure 4.9: A 2-D schematic of a polygonised rolling element having 15 edges or points
(not to scale).

4.5.2 Hypothesis for explaining the cause of numerical contact

noise

The hypothesis presented in this section is a novel and original contribution of this

thesis.

Because the circular rolling elements were discretised into a number of finite ele-

ments, the edges of the rolling elements were transformed from circular to multi-point

polygons. Figure 4.9 shows a schematic of a polygonised rolling element. It does not

represent the actual size of a rolling element, which is included in the FE model of the

rolling element bearing. In the schematic, only a few points, 15, were used to create

the polygon for clarity; however, in the FE model, the rolling elements were discretised

using the element size of 0.5mm, which generates a polygon with 113 edges
(

=
πDr

0.5

)

,

where Dr = 18mm.

As they roll during the simulation, the polygonised rolling elements create small

impacts as their points contact the outer and inner raceways. In this case, the fre-

quencies of these impacts would be a function of the element size lfe used to mesh the

rolling elements and the rotational velocity of the rolling elements ωc = 2πfc.

In order to estimate the numerical rolling noise frequency components, a basic
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equation of motion can be used as follows

fnoise =
1

Tnoise
=

2πfc ×Drace

2lfe
(4.10)

where, lfe is the distance between two nodes on the (polygonised) edge of the rolling

elements within the FE model of the bearing (mesh element size, 0.5mm), ωc is the

angular velocity with which the rolling elements roll during the simulation (refer to

Equation (3.21), Section 3.6.1, Chapter 3), and Drace can either be the diameter of

the outer raceway (Do = 200mm) or inner raceway (Di = 163.96mm) which con-

tact the rolling elements. Solving Equation (4.10) for the values of Drace as 200mm

and 163.96mm, the rolling contact noise frequencies equal 4712Hz and 3864Hz, re-

spectively. From now onwards, these frequencies will be referred to as the ‘rolling

element-to-outer raceway ’ f onoise, and ‘rolling element-to-inner raceway ’ f inoise rolling

contact noise frequencies, respectively.

The analytically estimated rolling element-to-outer raceway rolling contact noise

frequency f onoise, 4712Hz, differs from one of the noisy frequency components, 4671Hz,

observed in the numerical acceleration signal (Figure 4.6) by 0.8% only. This indicates

that the presence of the numerical noise at 4671Hz is highly likely due to the interaction

of the rolling elements with the outer raceway. The slight difference between the

analytical and numerical noise frequency estimates is a result of the rolling elements

not following a pure rolling movement during the simulation, indicating a small amount

of slip. It was mentioned earlier that no boundary conditions were applied to the

rolling elements, and they were driven by their interaction with the rotating inner and

stationary outer raceways.

Another reason for the difference between the analytical and numerical estimations

of the rolling element-to-outer raceway rolling contact noise frequency f onoise is associ-

ated with the interaction between the rolling elements and corresponding cage slots.

It was found that at certain instances, the rolling elements were driven (pushed) by
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the cage slots that consequently results in slipping of rolling elements. The interaction

between the rolling elements and cage will be briefly discussed in Chapter 6. How-

ever, it is not within the scope of this thesis to investigate the rolling elements-to-cage

interaction.

The FE model of the rolling element bearing was also solved for two additional

rotational speeds ns of 300RPM and 800RPM. These results will be presented in

the next chapter during their comparison with the experimental results for validation

purposes and investigation of the parametric effect of varying radial load W and rota-

tional speed ns on the vibration response of the bearing. For the rotational speeds of

300RPM and 800RPM, the numerical rolling element-to-outer raceway rolling contact

noise frequencies f onoise due to the polygonised rolling elements were found to be 2811 Hz

and 7487Hz, respectively. These numerical noise frequencies f onoise compare favourably

with the corresponding analytical noise frequencies f onoise of 2830Hz and 7548Hz, re-

spectively, estimated using Equation (4.10). Similar to the aforementioned difference

of 0.8% between the numerical and analytical rolling element-to-outer raceway rolling

contact noise frequencies f onoise for the rotational speed ns of 500RPM, the numerical

and analytical noise frequencies f onoise due to the polygonised effect also differ by 0.8%

for the cases when the bearing was rotated at 300RPM and 800RPM. This favourable

comparison, therefore, indicates the validation of the proposed hypothesis for deter-

mining the cause of the numerical noise that it is generated due to the interaction of

the polygonised rolling elements with the outer raceway of the bearing.

4.5.3 Beating phenomenon

There is a difference of approximately 17% between the other intermittent numerical

noise frequency, 4545Hz, and the analytically estimated rolling element-to-inner race-

way rolling contact noise frequency f inoise, 3864Hz. As the difference is significant, the

analytical and numerical noise frequencies cannot be related. Therefore, the concept
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of beating [381, Chapter 1, page 45] was applied to explain the occasional presence of

the 4545Hz noise frequency component found in the numerical acceleration results.

As mentioned earlier, the polygonised edges of the rolling elements create small im-

pacts with outer and inner raceways as they roll during the simulation. The interaction

of the rolling elements with the raceways would result in the generation of two sinu-

soidal waves with a slight difference between their carrier frequencies. The amplitude

of the sinusoidal waves would also slightly differ from each other. For the purpose of

validating the aforementioned hypothesis, and demonstrating the beating effect, the

sum of two interfering sinusoidal waves is as follows

A(t) = A1 cos(2πf
o
noiset) + A2 cos(2πf

i
noiset + φ) (4.11)

where, the amplitudes, A1 = A2 = 1, t is the time vector, φ is the phase, and f onoise and

f inoise are the analytically estimated noise frequencies using Equation (4.10).

Figure 4.10a shows the resultant sinusoidal wave, and the same wave along with its

envelope, zoomed from 10ms to 15ms for clarity, is shown in Figure 4.10b. The time

separation of the two consecutive peaks, whose data cursors are shown in Figure 4.10b,

corresponds to 4545Hz. This frequency exactly matches the other noise frequency com-

ponent occasionally observed in the numerically modelled acceleration results. From

now onwards, this frequency will be referred to as the beating noise frequency, and

represented as f i−onoise.

The beating effect can also be clearly observed in Figure 4.5 between the first two

defect-related impulses from approximately 5ms to 16ms, but not as clearly between

the second and third impulse from approximately 17ms to 28ms. One potential reason

for not having a clear beating effect is the slippage of the rolling elements which even-

tually results in no tonal component at the beating noise frequency f i−onoise, in contrast

to the strong fundamental tone at the rolling element-to-outer raceway noise frequency

f onoise, as shown in the power spectrum of the acceleration signal in Figure 4.6. Another
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(b) The sinusoidal wave in Figure 4.10a along with its envelope zoomed for
clarity.

Figure 4.10: Demonstration of the beating effect due to the interference of two si-
nusoidal waves at the two analytically estimated rolling contact noise frequencies
f onoise = 4712Hz and f inoise = 3864Hz.

reason for there being no tonal component at 4545Hz could be because the accelera-

tion signal was extracted at a node located on the outer ring of the bearing. In other

words, the nodal results on the outer ring are significantly influenced by the interac-

tion of the rolling elements and outer raceway, but comparatively less by the rolling

elements-to-inner raceway contact interaction.

For the rotational speeds ns of 300RPM and 800RPM, the numerically obtained

beating noise frequencies f i−onoise were 2632Hz and 7143Hz, respectively. Following the

methodology as described above, the beating noise frequencies f i−onoise were analytically

estimated, which equal 2632Hz and 7143Hz for the rotational speeds ns of 300RPM

and 800RPM, respectively. The exact match between the numerical and analytical
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results, therefore, indicates the validation of the proposed hypothesis.

4.5.4 Filtering the rolling contact noise frequencies

Based on the power spectral density of the numerical acceleration signal in Figure 4.6, a

notch filter was designed to eliminate the tonal noise at 4671 Hz. The transfer function,

in the z-transform, of a second-order notch filter can be estimated as [391, Chapter 5,

page 339]

H (z) =
1− 2 cosΩoz

−1 + z−2

1− 2r cosΩoz−1 + r2z−2
(4.12)

where, Ωo is the notch frequency at which the content has to be eliminated from a signal

and r is the pole radius, which is related to the band width ∆Ω as [391, Chapter 5,

page 337]

r ≈ 1− ∆Ω

2
(4.13)

The quality factor Q of the filter is given as [381, Chapter 7, page 298]

Q =
Ωo
∆Ω

(4.14)

For Ωo = 4671Hz, a second-order infinite impulse response notch filter was im-

plemented with a quality factor Q of 15, resulting in the band width ∆Ω of 311Hz.

Figure 4.11 shows the frequency response, both magnitude and phase, of the filter,

whereas its equivalent pole-zero plot is shown in Figure 4.12.

The notch filtered numerical acceleration signal is shown in Figure 4.13. For com-

parison, the unfiltered acceleration results from Figure 4.5 are also plotted along with

the notch filtered results using a gray-coloured, dashed line. The performance of the fil-

ter is evident in Figure 4.13; the instantaneous levels of the non-impulsive acceleration

signals, which prior to the application of the notch filter ranged between approxi-

mately ±50 g, were reduced to approximately ±20 g after filtering the dominant rolling

element-to-outer raceway rolling contact noise frequency f onoise. However, there is still
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Figure 4.11: Frequency response of the second-order notch filter designed to eliminate
the rolling element-to-outer raceway rolling contact noise at f onoise = 4671Hz from the
numerical simulation results.
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Figure 4.12: Pole-zero plot of the second-order notch filter shown in Figure 4.11.
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Figure 4.13: Effect of filtering out the rolling element-to-outer raceway rolling contact
noise at f onoise = 4671Hz on the numerically modelled acceleration ay time-trace shown
in Figure 4.5 for a radial load W of 50 kN and rotational speed ns of 500RPM.
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some residual noise. As mentioned earlier, it is likely that the remaining noise is due

to the sliding (slippage) of the rolling elements as a result of their interaction with the

cage slots in addition to the inherent adaptive time-stepping variations as discussed

in Section 4.5.1 (also refer to Figure 4.8). These noise frequencies are stochastic, and

therefore, could not be estimated and filtered without affecting the signals related to

the vibration response.

The power spectrum of the unfiltered (Figure 4.6) and notch filtered acceleration

ay time-traces are compared in Figure 4.14. In order to clearly see the difference

between the two power spectra, the results in Figure 4.14a are zoomed from 4–6 kHz,

and the corresponding plots are shown in Figure 4.14b. It can be seen that the tone at

the numerical rolling element-to-outer raceway rolling contact noise frequency f onoise has

been attenuated by approximately 25 dB without affecting the majority of the response.

However, the power spectrum at the frequencies within the filter bandwidth is affected

slightly. In contrast to the primarily attenuated sharp fundamental noise tone at

f onoise = 4671Hz, slight attenuation (by 4 dB) of the comparatively weak tone at the

beating noise frequency f i−onoise = 4545Hz can also be seen as indicated in Figure 4.14b.

On the one hand, as bearing vibration signals are generally demodulated in high-

frequency range [30], of the order of 15 kHz, the aforementioned rolling contact noise

frequencies will not influence the bearing diagnosis; it will be shown later in this chapter

that the demodulated power spectra of numerical vibration signals estimated using

envelope analysis [30, 251, 252] are not affected by the numerical noise. On the other

hand, one might question the need to filter the rolling contact noise frequencies. It

will be shown later in this chapter that the elimination of the tonal noise, as discussed

above, will help in enhancing the vibration signals associated with the de-stressing of

the rolling elements when they enter into a raceway defect.

In summary, it can be concluded that the introduction of noise in the simulation

results is an artefact of the numerical modelling. A favourable agreement between

the numerical and analytical rolling contact noise frequencies justifies the proposed
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(a) Power spectral densities of the unfiltered and notch filtered acceleration ay
time-traces, highlighting the tonal noise at fo

noise = 4671Hz for the unfiltered time-
trace.
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(b) Comparison of the power spectral densities shown in Figure 4.14a on a zoomed
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Figure 4.14: Power spectrum of the numerically modelled, unfiltered and notch filtered,
acceleration ay time-traces shown in Figure 4.13 for a radial load W of 50 kN and
rotational speed ns of 500RPM.
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hypothesis for explaining the cause of numerical contact noise observed in the modelled

acceleration results.

Further analyses of the numerically modelled vibration signals are presented in the

next section in order to evaluate additional defect-related vibration characteristics and

demonstrate a novel capability of the developed FE model to predict the de-stressing

of the rolling elements as they enter into the defect, which has not been predicted by

previous models [90–111, 113–120].

4.6 Analyses of the modelled vibration response of

the defective rolling element bearing

This section presents analyses of the bearing vibration response obtained from the

FE modelling of the defective rolling element bearing. The analyses were conducted

using standard signal processing techniques commonly used for the vibration-based

monitoring of rolling element bearings. The analyses are divided into time domain,

time–frequency domain, and frequency domain.

4.6.1 Time domain analysis

The numerically modelled velocity vy and displacement uy time-traces at the same

node where the acceleration ay signal was obtained, are shown in Figures 4.15 and 4.16,

respectively. Both figures compare the unfiltered and notch filtered nodal velocity and

displacement time-traces. Similar to the numerical acceleration results in Figure 4.13,

the effect of filtering out the numerical rolling contact noise frequency f onoise is clearly

evident in Figures 4.15 and 4.16. The defect-related impulses are separated by 0.011 s,

which corresponds to the outer raceway defect frequency fbpo of 90.91Hz, and they

are clearly evident in the velocity vy time-trace in a similar way to the acceleration ay

signal shown in Figures 4.5 and 4.13. In contrast, for the displacement uy signal in
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Figure 4.15: Numerically modelled, unfiltered and notch filtered, velocity vy time-traces
for a node located on the outer surface of the outer ring of the FE model of the bearing
for a radial load W of 50 kN and rotational speed ns of 500RPM.
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Figure 4.16: Numerically modelled, unfiltered and notch filtered, displacement uy time-
traces for a node located on the outer surface of the outer ring of the FE model of the
bearing for a radial load W of 50 kN and rotational speed ns of 500RPM.
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Figure 4.16, the impulses are not as clear as for the cases of acceleration ay and velocity

vy signals; however, the change (fall and rise) in the displacement signal indicates the

traverse of the rolling elements through the defect, which is discussed in the following

paragraphs.

It has been established in the literature [4–7, 161, 162, 165] that the entry of a

rolling element into a defect is a low-frequency de-stressing event, whereas its exit

from a defect is a high-frequency re-stressing impulsive event that excites a broad

range of the structural resonant modes of a bearing [17, 30]. It is crucial for the

numerically modelled vibration response obtained from the developed explicit FE model

of the bearing to show such characteristics for model validation, in addition to correctly

acquiring the bearing kinematics, which has already been demonstrated in Figures 4.5,

4.15, and 4.16. Although the de-stressing event has been experimentally measured by a

few researchers [5, 161, 162, 165], previous models [90–111, 113–120] could not predict

the vibration signals associated with this event.

The observation of the numerical acceleration ay time-trace of the defective bearing

in Figure 4.13 does not reveal a distinction between the low- and high-frequency entry-

and exit-related events, respectively. In fact, the entry of the rolling elements into

the outer raceway defect is not visible compared to their exit indicated by the defect-

related impulses whose separation corresponds to fbpo = 90.91Hz. In contrast, careful

observation of the notch filtered numerical velocity vy in Figure 4.15 provides some

indication of change in the signal characteristics before the defect-related impulsive

signals.

Without the unfiltered results, the notch filtered nodal velocity time-trace is repro-

duced in Figure 4.17 for clarity, along with some markers and associated annotations.

The elliptical and rectangular markers indicate the de-stressing (entry) and re-stressing

(exit) of the rolling elements as they traverse through the outer raceway defect. De-

spite being noisy, the distinction between the vibration signatures associated with the

de-stressing and re-stressing events is evident in the modelled velocity results. Simi-
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Figure 4.17: Numerically modelled, notch filtered, velocity vy time-trace shown in
Figure 4.15, highlighting the low-frequency de-stressing (entry) and high-frequency
re-stressing (exit) events using the elliptical and rectangular markers, respectively.
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Figure 4.18: Numerically modelled, notch filtered, displacement uy time-trace shown
in Figure 4.16, highlighting the low-frequency de-stressing (entry) and high-frequency
re-stressing (exit) events using the elliptical and rectangular markers, respectively.

175



4.6. Analyses of the modelled vibration response of the defective rolling element bearing

lar experimental findings related to the events were observed during the experimental

work carried out for the current research; the experimental work will be presented in

the next chapter for model verification purposes.

Based on the understanding gained from Figure 4.17, the de-stressing and re-

stressing events can also be distinguished from the nodal displacement uy results in

Figure 4.16. For clarity, the notch filtered displacement time-trace is reproduced in

Figure 4.18 along with the indications of the entry and exit of the rolling elements into

and out of the defect, using the elliptical and rectangular markers, respectively.

The de-stressing of the rolling elements upon their entrance into the defect is clearly

evident in the notch filtered velocity vy and displacement uy time-traces in Figures 4.17

and 4.18, respectively, as indicated by the elliptical markers; however, no such signa-

tures are visible in the notch filtered acceleration ay results in Figure 4.13. It is highly

likely that the low-frequency signals related to the de-stressing event are masked by

the (stochastic) numerical noise due to the adaptive time-stepping, as explained in

Section 4.5.1. Time–frequency analysis, which is commonly used to investigate the

energy or power distribution in a typical vibration signal, can be used to check the fre-

quency content of the two events for the modelled vibration signals. It will also help in

identifying if the numerical acceleration signal contains the low-frequency de-stressing

signals. The time–frequency analysis is presented in the next section.

4.6.2 Time–frequency analysis

One of the common forms for preliminary investigation of the energy content of a time-

varying signal is to plot its sonogram. It is also referred to as the short-time Fourier

transform (STFT). STFT is also known by the names of waterfall plot, isoplot, contour

plot, and spectrogram. It is evaluated by applying a windowing function to a time-

trace and evaluating the conventional Fourier transform of the resulting finite length

time signal. For a time-varying signal x(t), moved over a time window w(t), the STFT
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is given by [31, Chapter 3, page 130]

STFT (τ, f) = S (τ, f) = X (t, f) =

ˆ

∞

−∞

x (t)w (t− τ) exp (−i2πft) (4.15)

The amplitude squared | X (t, f) |2 that is generally displayed on a time–frequency

diagram is often called as a spectrogram. A limitation associated with an STFT anal-

ysis is the inherent relation between time and frequency resolution where a finer fre-

quency resolution is achieved at the expense of a coarse time resolution and vice-versa.

Figures 4.19, 4.20, and 4.21 show the spectrogram plots of the numerically modelled

nodal acceleration ay, velocity vy, and displacement uy results, respectively, discussed in

the preceding sections. The numerical noise was removed by de-trending the vibration

time-traces along the time (x-) axis. In other words, the mean of the power spectral

density for each frequency was removed. Being consistent with the usage of the markers

in the previous figures, the signatures related to the de-stressing and re-stressing of

the rolling elements upon their entry into and exit out of the defect are indicated

using elliptical and rectangular markers, respectively. The distinction between the two

events is clearly evident in all spectrogram plots. The energy of the de-stressing event

is concentrated below 3 kHz, whereas the impulses generated during the re-stressing of

the rolling elements appear to be characterised mainly by energy in the high-frequency

band of 10–25 kHz. In addition, there is also a slight indication of the low-frequency

content at the timings corresponding to the re-stressing events. This is due to the

generation of the defect-related impulses, which excite both high- and low-frequency

resonance modes of the bearing.

Compared to the notch filtered time-trace of the numerical acceleration ay in Fig-

ure 4.13, where the de-stressing of the rolling elements could not be seen, the time–

frequency analysis of the acceleration signal in Figure 4.19 facilitated the appearance

of the de-stressing event, as indicated using the elliptical markers.

As the de-stressing signals are mainly characterised by signals in low-frequency re-
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Figure 4.19: A spectrogram of the numerically modelled, unfiltered, acceleration ay
time-trace shown in Figure 4.5, highlighting the low-frequency de-stressing and high-
frequency re-stressing events using the elliptical and rectangular markers, respectively.
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Figure 4.20: A spectrogram of the numerically modelled, unfiltered, velocity vy time-
trace shown in Figure 4.15, highlighting the low-frequency de-stressing and high-
frequency re-stressing events using the elliptical and rectangular markers, respectively.
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Figure 4.21: A spectrogram of the numerically modelled, unfiltered, displacement uy
time-trace shown in Figure 4.16, highlighting the low-frequency de-stressing and high-
frequency re-stressing events using the elliptical and rectangular markers, respectively.
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Figure 4.22: Numerically modelled, unfiltered, acceleration ay time-trace shown in Fig-
ure 4.13 has been low-pass filtered, highlighting the low-frequency de-stressing (entry)
and re-stressing (exit) events using the elliptical and rectangular markers, respectively.
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gions, it was found useful to low-pass filter the numerical acceleration ay time-trace

using a third-order Butterworth filter [392] with a cut-off frequency of 2.5 kHz. The

corresponding results are plotted in Figure 4.22. On the one hand, the occurrences

of the de-stressing event, which could not be previously seen in the acceleration ay

time-trace in Figure 4.13, can be clearly distinguished with the elimination of the high-

frequency content. On the other hand, the application of the low-pass filter resulted

in the loss of high-frequency defect-related impulsive characteristics, but the impulsive

signatures related to the re-stressing of the rolling elements are still visible. This is

because the re-stressing event excites a broad range of frequencies that include both

low- and high-frequency resonance modes of a bearing as mentioned earlier. Therefore,

the impulses related to the re-stressing event that remained after the low-pass filter ef-

fectively have low-frequency characteristics. The instantaneous level of the re-stressing

impulses in Figure 4.22 is significantly reduced from approximately 180 g to 20 g as a

result of the low-pass filtering. It should be noted that the low-pass filter has only been

implemented to enhance the de-stressing of the rolling elements, and that the low-pass

filtered signals will not be used for data analysis.

The capability of the explicit FE model presented here to predict the de-stressing of

the rolling frequency is novel and unique, compared to previous multi-body analytical

[90–111, 113–116] and FE models [117–120], which could not predict this event.

Frequency domain analysis is presented in the next section.

4.6.3 Frequency domain analysis

Frequency domain analysis, commonly referred to as spectral analysis, enables the

transformation of a time-trace into its equivalent frequency domain representation by

taking the Discrete Fourier Transform (DFT) of the time-trace. In digital signal pro-

cessing, spectral analysis is typically performed using the Fast Fourier Transform (FFT)
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algorithm. The Fourier transform F of a time-varying signal x(t) is defined as

F {x (t)} = X (f) =

ˆ

∞

−∞

x (t) exp (−i2πft) dt (4.16)

One of the main purposes of performing spectral analysis on bearing vibration data

is to identify major frequency components, such as defect-related fundamental and

harmonics, which can indicate the presence of a defect. The envelope analysis technique

[30, 251, 252], which is widely used for bearing diagnosis, has been implemented in this

study.

It is well-known that the generation of defect-related impulses within a bearing

results in the excitation of bearing resonance modes [17, 22, 30, 253]. As a result, the

impulses are often amplified by resonances of the bearing structure [30]. Implementa-

tion of the envelope analysis involves band pass filtering a bearing vibration signal in

a high-frequency range around the bearing structural resonances. It is then amplitude

demodulated to form the envelope signal, whose spectrum contains the desired diag-

nostic information in terms of both repetition frequency (ball pass frequency or ball

spin frequency) as well as modulation by the appropriate frequency at which the fault

is passing through the load zone [30].

A prerequisite associated with the envelope analysis technique is that the most

suitable frequency band for demodulation is chosen. While an estimate may be de-

termined from the time–frequency analysis, spectral kurtosis [25] and kurtograms [26]

are commonly used to find the frequency band with the highest content of impulsive

energy.

4.6.3.1 Spectral kurtosis

Spectral kurtosis (SK) was introduced by Dwyer [393] as a statistical tool for de-

tecting non-Gaussian components and their locations in the frequency domain. It

was used to supplement the power spectral density estimate in situations pertinent
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to defect-related transients in noisy signals [394, 395]. SK was originally defined as

the normalised fourth-order moment of the real part of the short-time Fourier trans-

form (STFT). Later, Ottonello and Pangan [396, 397] proposed a modified definition

of SK as the fourth-order moment of the magnitude of the STFT, which led to con-

siderably simplified properties. Lately, Capdevielle et al. [398] provided an enhanced

definition of the SK as the fourth-order cumulant of the Fourier transform; the defi-

nition worked well for stationary signals, but not for non-stationary signals. SK, for

stationary signals, was further investigated by Vrabie et al. [399, 400]. More recently,

Antoni [25] laid the theoretical foundation for the comprehensive formalisation of SK

for non-stationary signals followed by its application to the vibration-based condition

monitoring of rotating machines [26].

Spectral kurtosis extends the concept of (global) kurtosis to that of a function of

frequency, which indicates the impulsiveness of the signal in a frequency band. It

provides a means of determining which frequency bands contain a signal of maximum

impulsivity. Spectral kurtosis K of a time-varying signal x(t) may be computed from

the STFT; that is, local Fourier transform, at time t by moving a window along the

signal. Mathematically, it is defined as [30]

K {x (t)} = SK (f) =

〈

|X (t, f)|4
〉

〈

|X (t, f)|2
〉2

− 2 (4.17)

where, the squared magnitude, |X (t, f)|2 — the spectrogram — returns the power

spectrum at time t and its average over time,
〈

|X (t, f)|2
〉

— the power spectral density.

For various window lengths Nw (power of 2), Figures 4.23, 4.24, and 4.25 show

the spectral kurtosis of the notch filtered numerical acceleration ay, velocity vy, and

displacement uy time-traces shown in Figures 4.13, 4.17, and 4.18, respectively. A

common characteristic of the shown spectral kurtoses plots is that the defect-related

impulsivity within the vibration signals is approximately between 12 kHz and 22 kHz.

These findings are similar to those shown in the spectrogram plots in Figures 4.19, 4.20,
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Figure 4.23: A spectral kurtosis plot of the numerically modelled, notch filtered, accel-
eration ay time-trace shown in Figure 4.13 corresponding to a radial load W of 50 kN
and rotational speed ns of 500RPM for various window lengths Nw.
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Figure 4.24: A spectral kurtosis plot of the numerically modelled, notch filtered, veloc-
ity vy time-trace shown in Figure 4.17 corresponding to a radial load W of 50 kN and
rotational speed ns of 500RPM for various window lengths Nw.
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Figure 4.25: A spectral kurtosis plot of the numerically modelled, notch filtered, dis-
placement uy time-trace shown in Figure 4.18 corresponding to a radial load W of
50 kN and rotational speed ns of 500RPM for various window lengths Nw.

and 4.21, where the energy of the defect-related (re-stressing) impulses can be seen to

have concentrated between 10 kHz and 25 kHz. These results provide an indication of

the frequency bands for the envelope analysis; however, as the SK varies for various

window lengths, the frequency bands need to be judiciously chosen. A kurtogram helps

to determine the optimal frequency band and is described next.

4.6.3.2 Kurtogram

Kurtogram, a term coined by Antoni and Randall [26], refers to the representation of

SK as a function of both frequency and window length. A kurtogram is basically a

cascade of spectral kurtoses obtained for different values of the STFT window length

Nw, but for a much finer grid.

Figures 4.26, 4.27, and 4.28 show the full kurtogram plots of the numerically mod-

elled acceleration, velocity, and displacement results, shown in Figures 4.13, 4.17, and

4.18, respectively. The results consistently show that the defect-related impulsivity is
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Figure 4.26: A kurtogram of the numerically modelled, notch filtered, acceleration ay
time-trace shown in Figure 4.13 for a radial load W of 50 kN and rotational speed ns
of 500RPM.
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Figure 4.27: A kurtogram of the numerically modelled, notch filtered, velocity vy time-
trace shown in Figure 4.17 for a radial load W of 50 kN and rotational speed ns of
500RPM.
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Figure 4.28: A kurtogram of the numerically modelled, notch filtered, displacement uy
time-trace shown in Figure 4.18 for a radial load W of 50 kN and rotational speed ns
of 500RPM.

concentrated around 20 kHz. Although the information in spectral kurtosis and kur-

togram plots is similar, one can achieve precise information from the latter due to the

mapping of the former over a wide range of STFT window lengths.

4.6.3.3 Envelope analysis

In this thesis, envelope analysis [30, 251, 252] has been carried out using the Hilbert

transform [348, 349]. For a real-valued time signal x(t), the Hilbert transform H is the

imaginary component of its complex analytic signal x̂ (t). These variables are related

as

H {x (t)} = x̃ (t) (4.18)

x̂ (t) = x (t) + ix̃ (t) (4.19)

Unlike the Fourier transform F , which moves the independent variable of a signal

from the time to the frequency domain or vice-versa, the Hilbert transform H leaves
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the signal in the same domain; however, it causes a phase shift of 90◦ in the frequency

domain or a quarter of a wavelength in the time domain. An excellent tutorial on the

applications of the Hilbert transform to mechanical vibrations is provided in reference

[349].

From the kurtogram plots in Figures 4.26, 4.27, and 4.28, the impulsive frequency

band of 18–23 kHz was chosen for demodulating the numerical bearing vibration sig-

nals, and subsequently the envelope analysis technique was implemented. The power

spectrum of the envelope signals was estimated using Welch’s method [389] with 50%

overlap. As the simulated signals have only 3010 data points, they were zero-padded

with 216 FFT points in order to smoothly interpolate the results for a frequency reso-

lution of 1.5Hz.

Figures 4.29, 4.30, and 4.31 show the envelope power spectrum of the numerical

acceleration ay, velocity vy, and displacement uy time-traces. The tonal peaks at

the fundamental and harmonics, as indicated in the figures, correspond to the outer

raceway defect frequency fbpo. The envelope power spectra of the vibration time-

traces follow the standard pattern of having the highest amplitude of the fundamental

and decreasing amplitudes for subsequently harmonics. These envelope power spectra

shown in the figures clearly indicate the presence of a defect within a rolling element

bearing.

4.6.3.4 Power spectrum

The power spectral density of the notch filtered velocity vy and displacement uy time-

traces was estimated to be similar to that of the numerical acceleration signal, as de-

scribed in Section 4.5. The corresponding power spectra are shown in Figures 4.32 and

4.33 along with the unfiltered velocity and displacement results, respectively. The fun-

damental tone at the numerical rolling element-to-outer raceway rolling contact noise

frequency f onoise = 4671Hz in the unfiltered power spectra, as indicated in Figures 4.32

and 4.33, is similar to that observed in the power spectrum of the acceleration signal
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Figure 4.29: Envelope (demodulated) power spectrum of the numerically modelled,
band-pass filtered, acceleration ay time-trace shown in Figure 4.13 for W = 50 kN and
ns = 500RPM; the vertical lines indicate the fundamental fbpo and its harmonics.
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Figure 4.30: Envelope (demodulated) power spectrum of the numerically modelled,
band-pass filtered, velocity vy time-trace shown in Figure 4.17 for W = 50 kN and
ns = 500RPM; the vertical lines indicate the fundamental fbpo and its harmonics.
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Figure 4.31: Envelope (demodulated) power spectrum of the numerically modelled,
band-pass filtered, displacement uy time-trace shown in Figure 4.18 for W = 50 kN
and ns = 500RPM; the vertical lines indicate the fundamental fbpo and its harmonics.

plotted in Figure 4.14. The attenuation of the tonal noise by approximately 25 dB, as

a result of the notch filter, can be clearly seen in Figures 4.32b and 4.33b, which show

comparisons of the unfiltered and notch filtered power spectra at a zoomed frequency

scale of 4–6 kHz.

In contrast to the narrow band spectrum, it is often more useful to conduct an

octave or one-third octave band spectral analysis in order to seek detailed information

about the frequency characteristics of a time-varying signal [381, Chapter 1, pages 41–

43]. Figures 4.34, 4.35, and 4.36 show the one-third octave band spectrum of the

numerical acceleration ay, velocity vy, and displacement uy time-traces, respectively.

For comparison, both unfiltered and notch filtered results are plotted. As can be seen

from the comparison that the spectra of the unfiltered and notch filtered signals are

similar to each other except at 4 kHz and 5 kHz. As a result of the tonal noise at the

rolling element-to-outer raceway numerical rolling contact frequency f onoise = 4671Hz,
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(a) Power spectral densities of the unfiltered and notch filtered velocity vy time-
traces, highlighting the tonal noise at fo

noise = 4671Hz for the unfiltered time-trace.
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(b) Comparison of the power spectral densities shown in Figure 4.32a on a zoomed
frequency scale of 4–6 kHz, highlighting the attenuation of the tonal noise by 25 dB
after filtering.

Figure 4.32: Power spectrum of the numerically modelled, unfiltered and notch filtered,
velocity vy time-traces shown in Figure 4.15 for a radial load W of 50 kN and rotational
speed ns of 500RPM.
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(a) Power spectral densities of the unfiltered and notch filtered displacement uy
time-traces, highlighting the tonal noise at fo

noise = 4671Hz for the unfiltered time-
trace.
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(b) Comparison of the power spectral densities shown in Figure 4.33a on a zoomed
frequency scale of 4–6 kHz, highlighting the attenuation of the tonal noise by 25 dB
after filtering.

Figure 4.33: Power spectrum of the numerically modelled, unfiltered and notch filtered,
displacement uy time-traces shown in Figure 4.16 for a radial load W of 50 kN and
rotational speed ns of 500RPM.
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Figure 4.34: One-third octave band spectrum of the numerically modelled, unfiltered
and notch filtered, acceleration ay time-traces shown in Figure 4.13 for a radial load
W of 50 kN and rotational speed ns of 500RPM.
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Figure 4.35: One-third octave band spectrum of the numerically modelled, unfiltered
and notch filtered, velocity vy time-traces shown in Figure 4.15 for a radial load W of
50 kN and rotational speed ns of 500RPM.
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Figure 4.36: One-third octave band spectrum of the numerically modelled, unfiltered
and notch filtered, displacement uy time-traces shown in Figure 4.16 for a radial load
W of 50 kN and rotational speed ns of 500RPM.

the spectrum of the unfiltered signals peaks at 5 kHz. The other peak at 10 kHz is

highly likely due to one of the structural resonances around 10 kHz. As shown in

Figure 4.4, there are a few structural vibration modes at around 10 kHz. These results

will be compared with the experimental results in the next chapter.

4.6.4 Summary of the numerical results

In the preceding sections, standard signal processing techniques, applicable to the

vibration-based monitoring of rolling element bearings, were used to analyse the nu-

merically modelled vibration signals obtained using the novel explicit dynamics FE

model of the defective bearing. The main emphasis of the analyses was to discuss

the verification of the modelled results based on the relevant analytical and experi-

mental knowledge from the literature, such as bearing kinematics fbpo, and low- and

high-frequency characteristics of the de-stressing and re-stressing events, respectively.
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A favourable match between the analytical and numerical fbpo, indicating accurate

acquisition of the bearing kinematics, has been shown in Figures 4.5, 4.15, and 4.16.

The envelope power spectrum plots shown in Figures 4.29, 4.30, and 4.31 also show the

fundamental and subsequent harmonics at fbpo. The low- and high-frequency charac-

teristics of the signatures associated with the de-stressing and re-stressing of the rolling

elements have been demonstrated not only in the notch filtered vibration time-traces

in Figures 4.17, 4.18, and 4.22, but also in the spectrogram plots in Figures 4.19, 4.20,

and 4.21.

Further verification of the developed FE model of the rolling element bearing will

be discussed in the next chapter, which presents the results of experimental testing of

a rolling element bearing having a machined line spall on its outer raceway.

4.7 Conclusions

A novel explicit dynamics finite element model of a defective rolling element bearing

has been developed and solved using a commercial FE software package, LS-DYNA.

All the steps required to perform the modelling were described, including the boundary

conditions and loads. It was shown that a much finer mesh element size was required

to accurately model the interaction of the rolling elements and bearing raceways so

as to ensure a continuous rolling contact between them. The elements-per-wavelength

necessary to properly discretise the bearing model exceeded the recommended EPW

criterion by nearly 5 times.

The FE model of the rolling element bearing presented in this chapter is more

comprehensive than recently published similar FE models [117–120] and existing ana-

lytical multi-body dynamic models [90–114]. The performance of previous FE models

was compromised due to treating either the whole outer ring or its outer surface as

rigid. This caused artificial over-stiffening of the bearing structure leading to unrealisti-

cally high acceleration levels of 107 g [118], 4,000 g [119] and 15,000 g [120]. In contrast
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to the previous FE models, the explicit FE model of the rolling element bearing de-

veloped here models all the bearing components as flexible bodies, which facilitates

a more accurate representation of the bearing stiffness. As a result, the FE model

presented here predicts realistic acceleration levels, ±180 g, in contrast to unrealisti-

cally high acceleration levels by previous FE models [117–120] as mentioned above.

It will be shown in the next chapter, which presents the experimental verification of

the numerically modelled results, that the predicted instantaneous acceleration levels

compare favourably with measured data. Several favourable comparisons between the

modelled and measured data will also be presented in the next chapter.

In contrast to the multi-body models, which used rigid bearing raceways [100–

112], excluded rolling elements [100–103, 105–107, 109–111, 114], and ignored their

inertial and centrifugal effects [100–111, 113, 114], the explicit FE model developed here

modelled all the bearing components as flexible bodies, included the rolling elements

and considered their centrifugal effects. Although simplified to consider the translations

in the plane of the bearing, the FE model of the bearing presented here does not require

assumptions, except for the finite element type, material model, friction, and damping.

The significance of including the rolling elements and modelling their centrifugal

effects will be highlighted in Chapter 6, which presents an in-depth analysis of the

numerically predicted rolling element-to-raceway contact forces as the rolling elements

traverse through a raceway defect. As such an analysis has not been previously pre-

sented in the literature, the contact force analysis will provide new knowledge and

insights on the dynamic interaction of the rolling elements and raceways, leading to

the development of an understanding about the physical mechanism that generates

defect-related impulses as the rolling elements traverse through a bearing defect. As

no boundary conditions or constraints were applied to the rolling elements in the FE

model of the rolling element bearing here, they were acted on by centrifugal forces

during the bearing rotation. It is due to these centrifugal forces that result in es-

timating their varying position (trajectory) during their traverse through the outer
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raceway defect, as opposed to assuming their path to follow the defect profile. While

the centrifugal forces tend to project the rolling elements outward from the centre of

the bearing, their outward trajectory is restricted between the outer and inner race-

ways when the rolling elements are stressed between the raceways. During the analysis

of the rolling element-to-raceway contact forces, to be presented in Chapter 6, it will

be shown that the rolling elements completely de-stress during their traverse through

the defect, they tend to freely follow their outward trajectory, and eventually strike

the defective surface a multiple times.

In addition to discussing the reasons for the numerical noise observed in the mod-

elled bearing vibration response, a new hypothesis was developed to explain the cause

of spurious oscillations due to the rolling contact interaction of the polygonised rolling

elements and raceways. The rolling contact noise frequencies, rolling element-to-outer

raceway f onoise and rolling element-to-inner raceway f inoise, and beating f i−onoise, were ana-

lytically estimated, and were found to be within 1% of those observed in the numerically

modelled vibration time-traces.

A unique and novel capability of the explicit FE model presented here is to predict

the vibrations signals associated with the de-stressing of the rolling elements upon

their entrance into a bearing defect. Although the low-frequency characteristics of the

de-stressing event have been measured by a few researchers [161, 162, 165], previous

multi-body analytical models [90–111, 113–120] could not predict this event. Existing

FE models [118–120] also did not report on the signals related to the de-stressing

event: similar to the multi-body models, the emphasis of the previous FE models was

to predict the defect-related (re-stressing) impulses and validate the modelling results

through envelope analysis. In contrast to the previous FE models, the FE model of

the rolling element bearing presented here also predicts the rolling element-to-raceway

contact forces and other Hertzian contact-related parameters. These results will be

presented in Chapter 6.

The frequency characteristics of the de-stressing and re-stressing events, obtained
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from the developed FE model, were discussed and demonstrated using the spectro-

gram plots of the numerically modelled vibration time-traces. It was shown that the

de-stressing signals are dominated by energy below 3 kHz, whereas the defect-related

impulses generated during the re-stressing of the rolling elements are characterised

mainly by energy in the frequency band of 10–25 kHz.

Standard signal processing techniques, associated with the vibration-based condi-

tion monitoring of rolling element bearings, were implemented on the numerical vibra-

tion signals including the most commonly used envelope analysis technique.

The next chapter presents results from the experimental testing of a package railway

bearing unit having a machined line spall on its outer raceway. The numerical results

will be compared with experimental measurements for model validation purposes.
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Chapter 5

Experimental Verification

5.1 Introduction

This chapter presents the findings of the experimental work undertaken on a package

bearing unit having a manufactured line spall on its outer raceway. The bearing chosen

for its vibration testing is an axle bearing, commonly used in the railway industry,

especially in freight wagons, but not uncommon in passenger coaches too. The reason

for manufacturing the line spall is that it is representative of a typical defect found in

many railway axle bearings. The size of the manufactured defect was chosen based on

the inspection of numerous railway bearings [378], available at Track IQTM [11], one of

the sponsors of this research.

In contrast to bearing defects resulting from operational use that have rough pro-

files, the manufactured outer raceway defect has a clean rectangular profile. Such a

defect profile cannot be generated during the operation of a bearing; however, for the

current study, it was specifically chosen to satisfactorily accomplish the following two

conditions, with minimal influence of the roughness-related characteristics of the defect:

• to validate the explicit dynamics FE model of the defective rolling element bearing

presented in Chapter 4; and

• to clearly distinguish the vibration signatures associated with the de-stressing
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and re-stressing of the rolling elements, as they enter into and exit out of the

defect, respectively.

Once the FE model of the bearing is validated, the numerically estimated rolling

element-to-raceway contact forces will be analysed, which will help facilitate the de-

velopment of an understanding of the physical mechanism by which defect-related im-

pulses are generated in defective rolling element bearings. An analysis of the contact

forces along with their correlation with bearing vibrations, will be discussed in the next

chapter.

In this chapter, the results pertinent to the vibration testing of the defective bear-

ing are presented. The experimental work was conducted for various radial loads W

applied to the bearing and for various rotational speeds ns. The experimental data

were analysed using standard signal processing techniques [17–31], and compared with

the numerically modelled data obtained using the novel explicit dynamics FE model

of the rolling element bearing presented in the previous chapter.

5.1.1 Aims

The aims of the work presented in this chapter are to:

• test the rolling element bearing having a manufactured line spall on its outer

raceway subjected to various radial loads and rotational speeds;

• measure the vibration levels of the defective rolling element bearing;

• analyse the measured data using standard signal processing techniques associated

with vibration-based monitoring of rolling element bearings;

• compare the experimental results with the numerical results obtained using the

explicit FE model of the rolling element bearing; and to

• investigate the parametric effect of varying radial load and rotation speed on the

vibration response of the defective rolling element bearing.
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5.1.2 Structure

This chapter begins with a description of the experimental setup, which includes a

description of the defective test bearing and the bearing test rig in Section 5.2. The

analysis of the experimentally measured acceleration data, using the signal process-

ing techniques described in the previous chapter, is presented in Section 5.3. Time,

time–frequency, and frequency domain analyses of the measured data are presented

in Sections 5.3.1 to 5.3.3 along with the corresponding analyses of the numerically

modelled acceleration for the validation of the FE model of the rolling element bear-

ing. The comparison of the results is summarised in Section 5.3.5. A mathematical

formula is presented in Section 5.3.4 to estimate the size (length) of the defect in the

(experimental) bearing using the time separation between the distinct acceleration sig-

natures associated with the de-stressing and re-stressing of the rolling elements. In

Section 5.4, the parametric effect of varying radial load and rotational speed on the

vibration response of the bearing is discussed. Finally, conclusions are presented in

Section 5.5.

5.2 Experimental setup

A description of the test bearing and the bearing test rig used to measure the vibration

levels of the test bearing is provided in the following sections.

5.2.1 Test bearing with a manufactured line spall

A commonly used package bearing unit in the railway industry was considered for its

vibration testing. The bearing has a number of rolling elements Nr = 24, nominal

pitch diameter Dp = 180.2mm, mean roller diameter Dr = 17.9mm, and contact

angle α = 9.1◦. A line spall of length Ld = 10mm and depth Hd = 0.2mm, was

manufactured on the outer raceway of the bearing using electric spark erosion. A
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Figure 5.1: A photo of the line spall of circumferential length Ld = 10mm and depth
Hd = 0.2mm machined on the outer raceway of the bearing using electric spark erosion.

photo of the machined line spall on the outer raceway of the test bearing is shown in

Figure 5.1.

The dimensions of the bearing including the outer raceway line spall, which were

used to build the analytical and FE models of the rolling element bearing presented in

Chapters 3 and 4, respectively, were representative of the test bearing described above.

5.2.2 Bearing test rig

The bearing test rig shown in Figure 5.2 was available at the premises of Track IQTM [11]

and was used to conduct testing of the defective bearing. The test rig comprises a 15 kW

three-phase induction motor, a steel structure to support the wheelset axle, a hydraulic

piston–cylinder arrangement for applying the radial load, and a variable frequency drive

unit (not shown in the figure) for controlling the speed of the motor. The defective

bearing, referred to as the test bearing in Figure 5.2, and a non-defective bearing on the

drive-end were press-fitted onto the axle using a roller bearing puller/installer [401].

The motor was coupled to the axle using V-belts and pulleys. The piston–cylinder

arrangement applies radial loads of up to 100 kN to the wheel seat area on the axle

through two metallic rollers. The test and drive-end bearings were seated on standard

adapters (refer to Figure 1.6, Chapter 1, to see the adapters) which were supported on
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Motor

Piston-cylinder arrangement

for radially loading the bearing

Axle

Test bearing

Figure 5.2: A photo of the bearing test rig used to conduct the testing of the defective
rolling element bearing.

wooden blocks. The movement of the axle and bearings in the horizontal direction was

constrained by sandwiching rubber-lined wooden blocks between the steel structure and

the bearings. The test rig setup simulates the operation of the bearings in a typical

railway application.

An accelerometer was stud mounted on a base that was attached to the test bearing

using super glue (cyanoacrylate). It was mounted on the top of the bearing, diametri-

cally opposite to the location of the outer raceway defect. A tachometer was mounted

near the axle in order to measure its rotational speed. The experimental vibration data

were acquired using a data acquisition system that comprises a National Instruments

(NI) CompactDAQ along with a 3-channel NI 9232 I/O module for the accelerometer

and an NI 9234 I/O module for the tachometer signal. The signals were sampled at

the rate of 102.4 kHz. The reason for such a high sampling rate is that it was not clear

at the beginning of the study what vibration characteristics were to be investigated.

Therefore, the highest sampling rate that the equipment permitted was used. Although
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5.3. Analyses of the measured vibration response of the test rolling element bearing

a lower sampling rate has not been used during the experimentation work, the high

sampling rate has ensured acquiring the impulsive characteristics associated with the

re-stressing of the rolling elements with a maximum resolution.

5.3 Analyses of the measured vibration response of

the test rolling element bearing

The aim of conducting the experimental work was to validate the numerical results

obtained using the explicit dynamics FE model of the defective rolling element bearing

presented in Chapter 4. As the FE modelling results were presented for the bearing

subjected to a radial (vertical) load W of 50 kN and rotational speed ns of 500RPM,

the experimentally measured vibration signatures of the defective test bearing corre-

sponding to the aforementioned radial load and rotational speed are presented first

along with the necessary comparison with the corresponding numerical FE modelling

results. Keeping the rotational speed ns of 500RPM unchanged, the comparison be-

tween the measured and modelled results corresponding to radial loads W of 25 kN

and 80 kN is presented next, and this is followed by the comparison of the results at

two additional rotational speeds of 300RPM and 800RPM. While a radial load W of

25 kN corresponds to the load of an empty railway wagon on one of the axle bearings,

a radial load of 80 kN corresponds to the bearing load of an almost fully loaded wagon.

For a 1m wheel diameter, a rotational speed ns of 300RPM corresponds to a train

speed of approximately 55 km/hr, whereas a rotational speed of 800RPM corresponds

to the train speed of approximately 120 km/hr.

Table 5.1 presents a test matrix describing various loads and speeds for the experi-

mental work and corresponding FE simulations: for each radial load W applied to the

test bearing, it was rotated at three speeds ns in a clockwise (CW) direction, and the

vibration measurements were acquired. The FE simulations were also conducted at
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Radial load W
(kN)

Rotational speed ns
(RPM)

Direction

25, 50, 80 300, 500, 800 CW

Table 5.1: A matrix for the experimental testing of the rolling element bearing sub-
jected to various radial loads W and rotational speeds ns.

the loads and speeds described in the table, and the simulated results are compared

with those of the measured results.

Similar to the analysis of the numerically modelled vibration results presented in

Section 4.6.3, Chapter 4, the analysis of the experimentally measured data presented

here is also divided into time, time–frequency, and frequency domain analyses. The

analyses, which include implementation of standard signal processing techniques rele-

vant to vibration-based monitoring of rolling elements bearings, are presented in the

same chronological order as was followed for analysing the numerically modelled vi-

bration time-traces. Refer to Sections 4.4 and 4.6 for the description of the signal

processing techniques.

5.3.1 Time domain analysis

Results for a radial load W of 50 kN and rotational speed ns of 500 RPM

Figure 5.3 shows the measured acceleration ay time-trace of the defective test bearing

under a radial load W of 50 kN and a rotational speed ns of 500RPM. Although the

bearing acceleration was measured for approximately 10 seconds, the length of the

acceleration time-trace shown here is only 30ms, so it can be compared with the FE

simulation results. The reason for solving the explicit FE model of the bearing for only

30ms is that it takes extensive CPU (run time) hours to solve the model; for the case

of the FE modelling results presented in Chapter 4, it was mentioned that the model

took approximately 250 CPU hours to solve using parallel computing [388].

Being consistent with the usage of the markers throughout this thesis, the distinct

vibration signatures associated with the de-stressing and re-stressing of the rolling el-
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Figure 5.3: Experimentally measured acceleration ay of the defective test bearing for
W = 50 kN and ns = 500RPM, highlighting the de-stressing and re-stressing events
using the elliptical and rectangular markers, respectively.
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Figure 5.4: Numerically modelled acceleration ay time-trace that has been notch and
low-pass filtered as shown in Figures 4.13 and 4.22, respectively; the de-stressing and
re-stressing events are highlighted using the elliptical and rectangular markers, respec-
tively.
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ements, as they enter into and exit out of the line spall, respectively, in Figure 5.3,

are highlighted using elliptical and rectangular markers, respectively. While the peak

instantaneous acceleration level of the de-stressing event is about ±20 g, it is approx-

imately ±180 g for the defect-related impulses due to the re-stressing of the rolling

elements. The time separation between the consecutive events, either de-stressing or

re-stressing, as indicated in Figure 5.3, corresponds to the outer raceway defect fre-

quency (BPFO) fbpo of 90.91Hz. It agrees favourably with the numerically estimated

fbpo of 90.91Hz using the numerical acceleration results in Figure 4.13, Chapter 4,

which is different by 0.9% from the theoretical estimate of 90.07Hz obtained using

Equation (4.9). The slight difference between the experimental and theoretical estima-

tions is because the analytical formula, shown in Equation (4.9), does not account for

the slippage of the rolling elements [95, 96], which was accounted in the explicit FE

analysis of the rolling element bearing undertaken here.

For comparison, a plot of the experimentally measured and numerically modelled

acceleration ay time-traces together on a single graph will cause cluttered results due

to the presence of residual numerical noise in the latter results. Instead, the mod-

elled acceleration results from the previous chapter are reproduced here in Figure 5.4.

The reasons for the numerical noise in the FE simulation results were described in

Section 4.5 of the previous chapter. It was also mentioned that despite filtering the

numerical noise at the rolling element-to-outer raceway rolling contact noise frequency

f onoise = 4671Hz, some (random) noise still remains in the notch filtered numerical ac-

celeration time-trace. This noise is due to the adaptive time-stepping ∆tstable (refer to

Sections 4.2.5.1 and 4.5.1) and slippage of the rotating components.

In Figure 5.4, the notch filtered and low-pass filtered numerical acceleration ay

time-traces are represented using the thin, blue-coloured, and thick, gray-coloured,

lines, respectively. It was mentioned earlier in Section 4.6.2, Chapter 4, that the nu-

merical acceleration results were low-pass filtered in order to enhance the low-frequency

characteristic signatures associated with the de-stressing of the rolling elements, which
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5.3. Analyses of the measured vibration response of the test rolling element bearing

were buried in the numerical noise. The enhancement of the low-frequency de-stressing

event, which corresponds to the entry of the rolling elements into the defect, was

achieved at the expense of compromising the high-frequency impulsive characteristics

of the re-stressing of the rolling elements. It should be noted that the low-pass filtered

acceleration time-trace was not used in the data analysis presented in Section 4.6,

Chapter 4.

From Figures 5.3 and 5.4, it is evident that the time instances related to the oc-

currences of the de-stressing and re-stressing events for experimentally measured and

numerically modelled results are similar. The measured and modelled instantaneous

acceleration levels associated with the re-stressing of the rolling elements are also com-

parable — approximately 180 g. Furthermore, the acceleration levels related to de-

stressing event are approximately 20 g and 15 g for the measured and modelled data,

respectively, which compare favourably with one another.

Results for radial loads W of 25 kN and 80 kN, and a rotational speed ns of

500 RPM

Findings similar to those in Figures 5.3 and 5.4 were also observed for additional mea-

surements and corresponding FE simulation results. Figure 5.5 shows a favourable

comparison between the experimentally measured and numerically modelled acceler-

ation ay time-traces of the rolling element bearing corresponding to radial loads W

of 25 kN and 80 kN at a rotational speed ns of 500RPM. The measured acceleration

signals are shown in Figures 5.5a and 5.5c, whereas the corresponding modelled accel-

eration time-traces, both notch filtered and low-pass filtered, are shown in Figures 5.5b

and 5.5d, along with the markers highlighting the entry and exit of the rolling elements

into and out of the defect, respectively.

The purpose of presenting these figures is to show a comparison between the ex-

perimentally measured and numerically modelled results. Parametric effects of varying

radial load W and rotational speed ns on the vibration response of the rolling element
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bearing will be discussed in Section 5.4. However, as can be seen from Figure 5.5,

the instantaneous acceleration levels of the defect-related impulses increase with the

increasing load for both measured and modelled acceleration results.

Results for radial loads W of 25 kN, 50 kN and 80 kN, and rotational speeds

ns of 300 RPM and 800 RPM

Figures 5.6, 5.7, and 5.8 show a comparison of the measured acceleration ay time-

traces of the test bearing with those of the numerically modelled acceleration results

obtained using the FE model of the bearing for radial loads W of 25 kN, 50 kN, and

80 kN, respectively. Each figure comprises four subplots: subplots (a, c) show the

measured acceleration signals corresponding to the rotational speeds ns of 300RPM

and 800RPM, respectively, and subplots (b, d) show the corresponding modelled ac-

celeration time-traces. It is evident from the figures that the modelled instantaneous

acceleration signals compare reasonably well with those of the measured data.

From the results in Figures 5.6, 5.7, and 5.8, it is clear that the acceleration levels

increase with the increasing radial loads. For the modelled results, along with the

levels of the defect-related impulses, the instantaneous acceleration levels between the

impulses also generally increase. Although not annotated, the low- and high-frequency

events associated with the entry and exit of the rolling elements into and out of the

defect, respectively, can be seen in Figures 5.6, 5.7, and 5.8. As described earlier, the

effects of varying load W and speed ns on the acceleration signals will be discussed in

Section 5.4.

Previous FE models versus the novel explicit dynamics FE model of the

bearing presented in Chapter 4 of this thesis

Revisiting previous explicit FE models of rolling element bearings [118–120], reviewed

in Section 2.3.4.3, Chapter 2 — for the model presented in reference [118], the predicted

acceleration level of 107 g was not compared with measured results, whereas for the
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5.3. Analyses of the measured vibration response of the test rolling element bearing

models in references [119, 120], the predicted acceleration levels were 4,000 g [119]

and 15,000 g [120] compared to the experimentally measured levels of 100 g and 10 g,

respectively. The potential errors in the previous FE models were discussed during

their critical review.

In contrast to the FE models discussed previously in the literature, the accelera-

tion levels predicted by the explicit dynamics FE model of the bearing developed here

compare favourably with the corresponding measured results. Although the acceler-

ation signals from the FE simulations contain numerical noise, the results from the

simulations and the measured instantaneous acceleration levels of the vibration sig-

natures associated with the de-stressing and re-stressing of the rolling elements show

good agreement.

Time–frequency analysis of the experimentally measured acceleration time-traces

is presented next.

210



C
h
ap

ter
5.

E
x
p
erim

en
tal

V
erifi

cation

high-frequency
impulsive

re-stressing (exit)
event

low-frequency
de-stressing (entry)

event
1

fbpo

=
1

90.91Hz
= 0.011sA

cc
el

er
at

io
n
a
y

[g
]

Time t [ms]

0 5 10 15 20 25 30
−500

0

500

(a) Measured acceleration ay time-trace for W = 25 kN and ns =
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(b) Modelled acceleration ay time-trace for W = 25 kN and ns =
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(c) Measured acceleration ay time-trace for W = 80 kN and ns =
500RPM.
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(d) Modelled acceleration ay time-trace for W = 80 kN and ns =
500RPM.

Figure 5.5: Comparison of the experimentally measured and numerically modelled acceleration ay times-traces of the rolling
element bearing for a rotational speed ns of 500RPM, and radial loads W of 25 kN and 80 kN.

211



5.3.
A

n
aly

ses
of

th
e

m
easu

red
v
ib

ration
resp

on
se

of
th

e
test

rollin
g

elem
en

t
b
earin

g

A
cc

el
er

at
io

n
a
y

[g
]

Time t [ms]

0 10 20 30 40 50
−500

0

500
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(c) Measured acceleration ay time-trace for W = 25 kN and
ns = 800RPM.
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(d) Modelled acceleration ay time-trace for W = 25 kN and
ns = 800RPM.

Figure 5.6: Comparison of the experimentally measured and numerically modelled acceleration ay times-traces of the rolling
element bearing for a radial load W of 25 kN, and rotational speeds ns of 300RPM and 800RPM.
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(a) Measured acceleration ay time-trace for W = 50 kN and ns =
300RPM.
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(c) Measured acceleration ay time-trace for W = 50 kN and
ns = 800RPM.
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(d) Modelled acceleration ay time-trace for W = 50 kN and
ns = 800RPM.

Figure 5.7: Comparison of the experimentally measured and numerically modelled acceleration ay times-traces of the rolling
element bearing for a radial load W of 50 kN, and rotational speeds ns of 300RPM and 800RPM.
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(a) Measured acceleration ay time-trace for W = 80 kN and ns =
300RPM.
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(c) Measured acceleration ay time-trace for W = 80 kN and
ns = 800RPM.
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(d) Modelled acceleration ay time-trace for W = 80 kN and
ns = 800RPM.

Figure 5.8: Comparison of the experimentally measured and numerically modelled acceleration ay times-traces of the rolling
element bearing for a radial load W of 80 kN, and rotational speeds ns of 300RPM and 800RPM.
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5.3.2 Time–frequency analysis

Results for a radial load W of 50 kN and rotational speed ns of 500 RPM

Figure 5.9 shows a spectrogram of the measured acceleration ay time-trace, shown

in Figure 5.3, corresponding to a radial load W of 50 kN and rotational speed ns

of 500RPM. The distinction between the de-stressing and re-stressing of the rolling

elements, which are indicated using the elliptical and rectangular markers, respectively,

is clearly evident in the spectrogram plot. Similar to the findings observed in the

spectrogram of the numerical acceleration signal in Figure 4.19, Chapter 4, it can

be seen from Figure 5.9 that the energy (or power) of the signals related to the de-

stressing event is concentrated below 3 kHz, whereas the impulses generated during the

re-stressing of the rolling elements appear to be characterised mainly by energy in the

high-frequency band of 10–30 kHz. These findings show excellent agreement with those

observed in the spectrogram plot of the numerical acceleration signal in Figure 4.19,

where the energy of the signals pertinent to de-stressing and re-stressing events was

found to be mainly concentrated below 3 kHz and 10–25 kHz, respectively.

It should be noted that the colour scale of the power spectrum levels shown us-

ing colour bars in the spectrogram plots of the measured and modelled acceleration

time-traces in Figures 5.9 and 4.19, respectively, are different; −80 dB to 20 dB re

1 (m/s2)2/Hz for measured and −40 dB to 30 dB re 1 (m/s2)2/Hz for modelled results.

This is due to the numerical noise in the modelled results which makes the distinct

characteristics of the signatures associated with the de-stressing and re-stressing events

less clear if the colour scale of the modelled results was made similar to the measured

data. Therefore, the colour scale of the spectrogram plots for the modelled vibration

results was chosen so as to reasonably highlight the two aforementioned events.

In Figure 5.9, there is also a slight indication of the low-frequency content at the

timings corresponding to the re-stressing events. As mentioned earlier, this is due to the

generation of the defect-related impulses, which excite both high- and low-frequency
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Figure 5.9: A spectrogram of the experimentally measured acceleration ay time-trace
shown in Figure 5.3 for a radial load W of 50 kN and rotational speed ns of 500RPM,
highlighting the de-stressing and re-stressing events using the elliptical and rectangular
markers, respectively.

resonance modes of the bearing.

Results for radial loads W of 25 kN, 50 kN and 80 kN, and rotational speeds

ns of 300 RPM and 800 RPM

For various radial loads W and rotational speeds ns, findings similar to those in Fig-

ure 5.9 can also be observed in Figures 5.10, 5.11, 5.12 and 5.13, which compare the

spectrogram plots of the experimentally measured and numerically modelled accelera-

tion ay time-traces shown in Figures 5.5, 5.6, 5.7 and 5.8, respectively.

The low-frequency de-stressing and high-frequency re-stressing of the rolling ele-

ments, respectively, are clearly evident in the spectrogram plots of the measured ac-

celeration data shown in subplots (a, c) of Figures 5.10, 5.11, 5.12 and 5.13. However,

the events are comparatively less clear in the spectrogram plots of the modelled accel-

eration time-traces shown in subplots (b, d) of Figures 5.10, 5.11, 5.12 and 5.13. This
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is due to the broadband nature of the numerical noise in the modelled results. For the

same reason, as described above, the colour scale of the spectrogram plots for modelled

vibration time-traces is different to that of the measured data.

From subplots (b, d) of Figures 5.10, 5.11, 5.12 and 5.13, the energy of the nu-

merical noise is evident between the time instances related to the re-stressing of the

rolling elements, although its level is comparatively lower than that of the defect-related

impulses. In contrast, the measured acceleration data does not suffer from the noise

problem; thereby, providing a clear distinction between the de-stressing and re-stressing

events. Nevertheless, the comparison of the spectrogram plots of the measured and

modelled data shows a reasonable agreement in terms of the low- and high-frequency

de-stressing and re-stressing events, respectively.

Frequency domain analysis is presented in the next section, and it will be shown

that the measured and modelled power spectrum results compare favourably with one

another.
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(a) A spectrogram of the measured acceleration ay time-trace
shown in Figure 5.5a for W = 25 kN and ns = 500RPM.
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(b) A spectrogram of the modelled acceleration ay time-trace
shown in Figure 5.5b for W = 25 kN and ns = 500RPM.
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(c) A spectrogram of the measured acceleration ay time-trace
shown in Figure 5.5c for W = 80 kN and ns = 500RPM.
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(d) A spectrogram of the modelled acceleration ay time-trace
shown in Figure 5.5d for W = 80 kN and ns = 500RPM.

Figure 5.10: Comparison of the spectrograms of the experimentally measured and numerically modelled acceleration ay time-traces
of the rolling element bearing for a rotational speed ns of 500RPM, and radial loads W of 25 kN and 80 kN.
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(a) A spectrogram of the measured acceleration ay time-trace
shown in Figure 5.6a for W = 25 kN and ns = 300RPM.
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(b) A spectrogram of the modelled acceleration ay time-trace
shown in Figure 5.6b for W = 25 kN and ns = 300RPM.

 

 

A
cc

el
er

at
io

n
a
y

[d
B

re
1

(m
/s

2
)2

/H
z]

F
re

q
u
en

cy
[k

H
z]

Time t [ms]

10 20 30
−80

−60

−40

−20

0

20

0

10

20

30

40

(c) A spectrogram of the measured acceleration ay time-trace
shown in Figure 5.6c for W = 25 kN and ns = 800RPM.
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(d) A spectrogram of the modelled acceleration ay time-trace
shown in Figure 5.6d for W = 25 kN and ns = 800RPM.

Figure 5.11: Comparison of the spectrograms of the experimentally measured and numerically modelled acceleration ay time-traces
of the rolling element bearing for a radial load W of 25 kN, and rotational speeds ns of 300RPM and 800RPM.
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(a) A spectrogram of the measured acceleration ay time-trace
shown in Figure 5.7a for W = 50 kN and ns = 300RPM.
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(b) A spectrogram of the modelled acceleration ay time-trace
shown in Figure 5.7b for W = 50 kN and ns = 300RPM.
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(c) A spectrogram of the measured acceleration ay time-trace
shown in Figure 5.7c for W = 50 kN and ns = 800RPM.
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(d) A spectrogram of the modelled acceleration ay time-trace
shown in Figure 5.7d for W = 50 kN and ns = 800RPM.

Figure 5.12: Comparison of the spectrograms of the experimentally measured and numerically modelled acceleration ay time-traces
of the rolling element bearing for a radial load W of 50 kN, and rotational speeds ns of 300RPM and 800RPM.
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(a) A spectrogram of the measured acceleration ay time-trace
shown in Figure 5.8a for W = 80 kN and ns = 300RPM.
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(b) A spectrogram of the modelled acceleration ay time-trace
shown in Figure 5.8b for W = 80 kN and ns = 300RPM.
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(c) A spectrogram of the measured acceleration ay time-trace
shown in Figure 5.8c for W = 80 kN and ns = 800RPM.
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(d) A spectrogram of the modelled acceleration ay time-trace
shown in Figure 5.8d for W = 80 kN and ns = 800RPM.

Figure 5.13: Comparison of the spectrograms of the experimentally measured and numerically modelled acceleration ay time-traces
of the rolling element bearing for a radial load W of 80 kN, and rotational speeds ns of 300RPM and 800RPM.
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5.3. Analyses of the measured vibration response of the test rolling element bearing

5.3.3 Frequency domain analysis

In this section, frequency domain analysis of the measured acceleration data is pre-

sented. The sequence of the signal processing techniques established in Section 4.6.3,

Chapter 4, for presenting a frequency domain analysis of the numerically modelled vi-

bration signals, is also followed here. Initially, the spectral kurtosis [25] and kurtogram

[26] are generated in order to seek the impulsive bands to be used for demodulating

the acceleration signal, followed by envelope analysis [30, 251, 252], and finally, narrow

band and one-third octave band spectra are shown. As the aim of conducting the fre-

quency domain analysis is to primarily compare the results of envelope analysis of the

measured and modelled acceleration signals, the spectral kurtosis and kurtogram plots,

which are tools used prior to implementing the envelope analysis technique, are only

shown for a single measurement case corresponding to a radial load W of 50 kN and

rotational speed ns of 500RPM. The results of envelope analysis and one-third octave

band spectra are shown for all the nine measurement cases described in Table 5.1.

5.3.3.1 Spectral kurtosis

For various window lengths Nw (power of 2), Figure 5.14 shows the spectral kurtoses

[25] of the measured acceleration ay time-trace shown in Figure 5.3 corresponding to

a radial load W of 50 kN and rotational speed ns of 500RPM. The results show that

the impulsive characteristics of the measured acceleration signal is between 10 kHz and

25 kHz. This favourably matches the findings of the spectral kurtoses of the numerical

acceleration ay signal in Figure 4.23, Chapter 4, where the defect-related impulsivity

was generally found to be between 12 kHz and 23 kHz.

5.3.3.2 Kurtogram

To find the most impulsive frequency band, a kurtogram [26] of the measured accel-

eration ay signal in Figure 5.3 was generated, and the corresponding plot is shown in
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Figure 5.14: A spectral kurtosis plot of the experimentally measured acceleration ay
time-trace shown in Figure 5.3 corresponding to a radial loadW of 50 kN and rotational
speed ns of 500RPM for various window lengths Nw.
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Figure 5.15: A kurtogram of the experimentally measured acceleration ay time-trace
shown in Figure 5.3 for a radial load W of 50 kN and rotational speed ns of 500RPM.
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5.3. Analyses of the measured vibration response of the test rolling element bearing

Figure 5.15. It is clear from the figure that the energy of the defect-related impulses

is concentrated between 20 kHz and 25 kHz. This is slightly different to the frequency

range found in the numerical results, where the maximum impulsivity, obtained from

the kurtogram plot in Figure 4.26, Chapter 4, was concentrated at about 21 kHz. De-

spite the slight difference, it is convenient to use one frequency band (18–23 kHz) for

demodulating the measured and modelled acceleration signals, so as to compare the

results of the most commonly used technique for bearing diagnosis, envelope analysis

[30, 251, 252]. It is discussed in the next section.

5.3.3.3 Envelope analysis

For demodulating the measured acceleration ay signals, the frequency band of 18–

23 kHz was chosen; this frequency band is similar to the one used for demodulating

the numerically modelled acceleration ay time-traces. Envelope analysis [30, 251, 252]

was implemented using the Hilbert transform H [30, 348], and the band-pass filtered

envelopes of the measured acceleration signals corresponding to a rotational speed ns of

500RPM and radial loads W of 25 kN, 50 kN and 80 kN are shown in Figure 5.16, along

with the original acceleration time-traces. The original acceleration time-traces are

represented using the thin lines, and their band-pass filtered envelopes are represented

using the thick, gray-coloured, lines.

Power spectra of the measured envelope signals were calculated using Welch’s

method [389], as implemented for the numerically modelled vibration signals discussed

in Section 4.5, Chapter 4. Figure 5.17 shows the envelope power spectra of the mea-

sured, band-pass filtered, acceleration signals shown in Figure 5.16, corresponding to a

rotational speed ns of 500RPM and radial loads W of 25 kN, 50 kN and 80 kN, along

with the corresponding envelope power spectra of the modelled acceleration signals for

comparison. The experimentally measured results are represented using thick lines in

contrast to relatively thin lines, which represent the numerically modelled results. It

can be seen from the comparison of the measured and modelled envelope power spec-
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(a) Band-pass filtered envelope of the measured acceleration ay time-trace shown
in Figure 5.5a for W = 25 kN and ns = 500RPM.
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(b) Band-pass filtered envelope of the measured acceleration ay time-trace shown
in Figure 5.3 for W = 50 kN and ns = 500RPM.
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(c) Band-pass filtered envelope of the measured acceleration ay time-trace shown
in Figure 5.5c for W = 80 kN and ns = 500RPM.

Figure 5.16: Envelopes of the experimentally measured acceleration ay time-traces,
for a rotational speed ns of 500RPM, and radial loads W of 25 kN, 50 kN and 80 kN,
estimated using the Hilbert transform H of the band-pass filtered acceleration signals
from 18–23 kHz.
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(a) Measured and modelled envelope power spectra for W = 25 kN and ns =
500RPM.
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(b) Measured and modelled envelope power spectra for W = 50 kN and ns =
500RPM.
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(c) Measured and modelled envelope power spectra for W = 80 kN and ns =
500RPM.

Figure 5.17: Comparison of the envelope (demodulated) power spectra of the experi-
mentally measured and numerically modelled acceleration ay time-traces of the rolling
element bearing for a rotational speed ns of 500RPM, and radial loads W of 25 kN,
50 kN and 80 kN; the vertical lines in the subplots correspond to the fundamental fbpo

and its harmonics.
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tra that the fundamental and harmonics of the outer raceway defect frequency fbpo, as

indicated in Figure 5.17 using vertical lines and markers, are in excellent agreement.

However, the peak amplitudes at the fundamental fbpo and harmonics, especially, from

3 × fbpo onwards, corresponding to the measured and modelled spectra do not agree

favourably. One of the reasons for this difference is the numerical noise in the modelled

acceleration data, which could not be completely filtered out, as has been previously

discussed in Chapter 4. During the power spectral estimation of the modelled data,

along with the defect-related tonal components, the numerical noise signals were in-

herently included in respective frequency bins. As a result, the peak amplitudes at the

defect-related frequency components are higher, and therefore, do not agree favourably

with the corresponding measured data. Another reason is the insufficient damping in

the FE model of the rolling element bearing; for the FE modelling results presented in

this thesis, damping of 2% was used. As mentioned earlier in Section 4.2.4, Chapter 4,

higher values of damping, 3% to 5%, were also tested, but these higher values affected

the rotational speed of the rolling elements causing slippage; thereby, resulting in the

incorrect bearing kinematics. Therefore, the results corresponding to the high values

of damping are not shown here.

Similar to the results in Figure 5.17, which correspond to a rotational speed ns of

500RPM, the envelope power spectra of the measured, band-pass filtered, acceleration

ay signals for rotational speeds ns of 300RPM and 800RPM are shown in Figures 5.18

and 5.19, respectively. For comparison, the corresponding spectra of the modelled

acceleration signals are also plotted in the figures. It is evident from the comparison in

Figures 5.18 and 5.19 that the fundamental and harmonics of the outer raceway defect

frequency fbpo, as indicated using vertical lines, are in favourable agreement. However,

as mentioned in the preceding paragraph, there is a disagreement between the peak

amplitudes at the harmonics from 3 × fbpo onwards of the measured and modelled

spectra due to the numerical noise and insufficient damping in the FE modelled results.

The comparison between the analyses of the experimentally measured and numer-
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(a) Measured and modelled envelope power spectra for W = 25 kN and ns =
300RPM.
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(b) Measured and modelled envelope power spectra for W = 50 kN and ns =
300RPM.
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(c) Measured and modelled envelope power spectra for W = 80 kN and ns =
300RPM.

Figure 5.18: Comparison of the envelope (demodulated) power spectra of the experi-
mentally measured and numerically modelled acceleration ay time-traces of the rolling
element bearing for a rotational speed ns of 300RPM, and radial loads W of 25 kN,
50 kN and 80 kN; the vertical lines in the subplots correspond to the fundamental fbpo

and its harmonics.
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(a) Measured and modelled envelope power spectra for W = 25 kN and ns =
800RPM.
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(b) Measured and modelled envelope power spectra for W = 50 kN and ns =
800RPM.
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(c) Measured and modelled envelope power spectra for W = 80 kN and ns =
800RPM.

Figure 5.19: Comparison of the envelope (demodulated) power spectra of the experi-
mentally measured and numerically modelled acceleration ay time-traces of the rolling
element bearing for a rotational speed ns of 800RPM, and radial loads W of 25 kN,
50 kN and 80 kN; the vertical lines in the subplots correspond to the fundamental fbpo

and its harmonics.
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5.3. Analyses of the measured vibration response of the test rolling element bearing

ically modelled acceleration ay time-traces shown so far indicates that the modelled

results match favourably with the experimental data. The results of the envelope

analysis, which is by far the most commonly used technique for bearing diagnosis, in-

dicate a promising agreement between the measured data and simulation results. The

parametric effect of varying radial load W and rotational speed ns on the envelope

power spectra of both measured and modelled acceleration results will be described in

Section 5.4.

5.3.3.4 Frequency spectrum

Narrow and one-third octave band spectra of the measured and modelled acceleration

signals were estimated and are compared below.

Narrow band power spectrum

Using Welch’s method [389], as discussed in Section 4.5, Chapter 4, the power spectral

density of the measured acceleration ay time-trace, shown in Figure 5.3, was estimated,

and is plotted in Figure 5.20. For comparison, the corresponding spectrum of the

modelled acceleration time-trace, obtained using the FE model of the bearing, is also

included in Figure 5.20.

Although it is difficult to compare the narrow-band power spectra, generally, the

results in Figure 5.20 show a favourable agreement up to 25 kHz. There is a clear

disagreement between the measured and modelled spectra from 25 kHz to 31 kHz. In

this case, it is convenient to compare the one-third octave bands spectra, as discussed

below.

One-third octave band spectrum

For a rotational speed ns of 500RPM, Figures 5.21a, 5.21b and 5.21c show a comparison

of the one-third octave band spectra of the measured and modelled (notch filtered)

acceleration ay signals corresponding to radial loads W of 25 kN, 50 kN and 80 kN,
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Figure 5.20: Comparison of the power spectral densities of the experimentally measured
and numerically modelled, notch filtered, acceleration ay time-traces of the rolling
element bearing shown in Figures 5.3 and 5.4, respectively, for a radial load W of
50 kN and rotational speed ns of 500RPM.

respectively. While the spectra pertinent to the measured data are represented using

thick lines, the spectra related to the numerically modelled acceleration are represented

using relatively thin lines.

From Figure 5.21, it is evident that the spectra generally compare favourably well up

to 2.5 kHz and from 7 kHz to 20 kHz, but comparatively less favourably between 2.5 kHz

and 7 kHz. The maximum difference of 17 dB in Figures 5.21a and 5.21b is at 5 kHz.

The difference between the spectra from 2.5 kHz to 7 kHz is due to the presence of the

random numerical noise in the modelled results, as discussed in Section 4.5, Chapter 4.

It was mentioned earlier that the noise was eliminated using a notch filter only at

the rolling element-to-outer raceway rolling contact noise frequency f onoise = 4671Hz;

however, the numerical noise generated due to the adaptive time-stepping and sliding

is stochastic, and because of its broadband nature, it could not be filtered out. In

comparing the one-third octave band spectra of the numerical unfiltered and notch

231



5.3. Analyses of the measured vibration response of the test rolling element bearing

 

 

numerical

experimental

A
cc

el
er

at
io

n
a
y

[d
B

re
1

m
/s

2
]

1/3 octave band centre frequency [Hz]

102 103 104
−40

−20

0

20

40

60

80

(a) Measured and modelled acceleration spectra for W = 25 kN and ns =
500RPM.
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(b) Measured and modelled acceleration spectra for W = 50 kN and ns =
500RPM.
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(c) Measured and modelled acceleration spectra for W = 80 kN and ns =
500RPM.

Figure 5.21: Comparison of the one-third octave band spectra of the experimentally
measured and numerically modelled, notch filtered, acceleration ay time-traces of the
rolling element bearing for a rotational speed ns of 500RPM, and radial loads W of
25 kN, 50 kN and 80 kN.
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filtered acceleration time-traces, shown in Figure 4.34, Chapter 4, a peak at 5 kHz for

the unfiltered acceleration can be observed. Its value of 42 dB was suppressed to 27 dB

as a result of the notch filter.

Similar to the plots in Figure 5.21, a comparison between the one-third octave

band spectra of the experimentally measured and numerically modelled (notch filtered)

acceleration ay signals corresponding to rotational speeds ns of 300RPM and 800RPM

are shown in Figures 5.22 and 5.23, respectively. The spectra in Figure 5.22 compare

favourably up to 2 kHz and from 4 kHz to 20 kHz, but comparatively less favourably

between 2 kHz and 4 kHz, whereas in Figure 5.23, the spectra agree well up to 3 kHz and

from 7 kHz to 20 kHz, but comparatively less favourably between 3 kHz and 7 kHz. The

difference between the measured and modelled spectra for the frequency bands of 2–

4 kHz and 3–7 kHz as described in the preceding paragraph is due to the numerical noise

generated at the rolling element-to-outer raceway rolling contact noise frequencies f onoise

of 2811Hz and 7487Hz, respectively. These noise frequencies respectively correspond

to the rotational speeds ns of 300RPM and 800RPM that compare favourably with the

corresponding analytical results of 2830Hz and 7548Hz, respectively, estimated using

Equation (4.10). Nevertheless, the one-third octave band spectra of the measured and

corresponding modelled acceleration results in Figures 5.21, 5.22, and 5.23 for various

loads and speeds generally agree reasonably well with one another.

As bearing vibration signals are generally demodulated in high-frequency range,

around 15 kHz [30], where the defect-related impulses are amplified by the structural

resonance of a bearing, the discrepancy observed in Figures 5.21, 5.22, and 5.23 does

not effect the bearing fault diagnosis. It has been demonstrated using envelope analysis

in Figures 5.17, 5.18, and 5.19 that the envelope power spectra of the measured and

simulated acceleration results compare favourably with one another.
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(a) Measured and modelled acceleration spectra for W = 25 kN and ns =
300RPM.
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(b) Measured and modelled acceleration spectra for W = 50 kN and ns =
300RPM.
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(c) Measured and modelled acceleration spectra for W = 80 kN and ns =
300RPM.

Figure 5.22: Comparison of the one-third octave band spectra of the experimentally
measured and numerically modelled, notch filtered, acceleration ay time-traces of the
rolling element bearing for a rotational speed ns of 300RPM, and radial loads W of
25 kN, 50 kN and 80 kN.
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(a) Measured and modelled acceleration spectra for W = 25 kN and ns =
800RPM.
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(b) Measured and modelled acceleration spectra for W = 50 kN and ns =
800RPM.
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(c) Measured and modelled acceleration spectra for W = 80 kN and ns =
800RPM.

Figure 5.23: Comparison of the one-third octave band spectra of the experimentally
measured and numerically modelled, notch filtered, acceleration ay time-traces of the
rolling element bearing for a rotational speed ns of 800RPM, and radial loads W of
25 kN, 50 kN and 80 kN.
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5.3. Analyses of the measured vibration response of the test rolling element bearing

5.3.4 Spall size estimation

The time separation between the distinct de-stressing and re-stressing events for the

simple case of a line spall can be used to determine the average size (length Ld) of the

defect as

Ld =
2πfcDo∆tevent

2
(5.1)

where, Ld is the length of the defect, 2πfc = ωc is the angular velocity of the rolling

elements (refer to Equation 3.21, Chapter 3), Do is the outer race diameter, and ∆tevent

is the time difference between the consecutive de-stressing or re-stressing events. For

the case of the measured data shown in Figure 5.3 corresponding to a radial load W

of 50 kN and rotational speed ns of 500RPM, the time separation between the events

∆tevent = 4ms, which corresponds to the estimated length Ld = 9.5mm, compares

favourably to the actual length of 10mm.

In the case of noisy field environments, the signal-to-noise ratio of measured data

can be quite low. It is possible that the low-frequency signals associated with the

de-stressing of the rolling elements could be buried in noise. As implemented here,

the noisy signal could be low-pass filtered to enhance the occurrences of the de-

stressing event. Alternatively, relatively sophisticated techniques and algorithms may

be employed on practical data for estimating the approximate size of a bearing defect

[114, 165].

As discussed in Section 2.6.1, the time separation between the distinct de-stressing

and re-stressing vibration signatures to estimate the average size of a defect can only be

used for the case of localised bearing defects whose length is smaller than the spacing

between two consecutive rolling elements. However, for extended defects, whose length

typically extends beyond the spacing between two consecutive rolling elements, the time

separation between the signatures will result in an incorrect estimation of a defect size,

which would be smaller than the actual defect size.
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5.3.5 Summary of the comparison between the measured and

modelled results

Standard signal processing techniques relevant to the vibration-based monitoring of

defective rolling element bearings were implemented, and various comparisons between

the experimentally measured and numerically modelled acceleration ay time-traces were

presented.

The time domain analysis of the measured and modelled data shows that the time

instances corresponding to the occurrences of the de-stressing and re-stressing events

compare very favourably with one another. The period of the consecutive events that

corresponds to the BPFO compares very favourably between the measured and mod-

elled acceleration time-traces, and, in addition, it differs by less than 1% from the nom-

inal theoretical estimate determined analytically using Equation 4.9. Furthermore, the

instantaneous acceleration levels of the modelled de-stressing and re-stressing events

compare favourably with the corresponding measured data.

The low-frequency and high-frequency energy distribution of the modelled vibration

signals related to the de-stressing and re-stressing of the rolling elements, respectively,

were also observed to be in excellent agreement with the corresponding measurements.

Among other frequency domain analysis techniques, the results of the envelope analysis

also shows a favourable agreement between the experimentally measured acceleration

data and those simulated using the FE model of the bearing.

In summary, it can be concluded that the novel explicit dynamics finite element

model of the rolling element bearing developed here has accurately modelled the com-

plex dynamics of the system.

The next section presents an investigation of the parametric effects of varying radial

load and rotational speed on the vibration response of the defective rolling element

bearing.
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bearing

5.4 Parametric effect of load and speed on the vibra-

tion response of the rolling element bearing

Envelope power spectra of the acceleration signals shown earlier in Figures 5.17, 5.18,

and 5.19 are useful for investigating the parametric effect of varying radial load W and

rotational speed ns on the vibration response of the defective rolling element bearing.

The spectra from these figures were taken and plotted in such a way as to show how the

power spectrum varies with increasing radial load at different rotational speeds. These

results are plotted in Figure 5.24, which comprises six subplots — the measured results

are plotted in subplots (a, c, e), and the corresponding modelled results are plotted in

subplots (b, d, f). The results corresponding to radial loads W of 25 kN, 50 kN, and

80 kN are represented using green-, blue-, and red-coloured, solid lines having different

thicknesses, respectively. For clarity, the scale of the y-axis in Figures 5.24a–5.24d

ranges from 0–400 (m/s2)2/Hz, which is one-third of that in Figures 5.24e and 5.24f

(0–1200 (m/s2)2/Hz). The vertical lines in all the subplots represent the outer raceway

defect frequency fbpo; fundamental and harmonics.

It can be seen from the results in Figure 5.24 that the power spectra of the acceler-

ation signals, both measured and modelled, increase with increasing radial load W at

each rotational speed ns. However, to clearly present the effect of load and speed on

the vibration response of the bearing, the magnitudes of the acceleration power spectra

at the fundamental defect frequencies (1×fbpo) were taken for each load–speed (W–ns)

test combination, and the corresponding results are plotted in Figure 5.25 as a function

of the rotational speed ns of the bearing. The values corresponding to the experimen-

tally measured data are represented using respective markers, whereas the numerically

modelled results are represented using lines. As can be seen from Figure 5.25, both

measured and modelled results compare favourably with one another.

From Figure 5.25, it can be observed that the levels of the envelope (acceleration
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(a) Measured envelope power spectra for ns =
300RPM, and W = 25 kN, 50 kN and 80 kN.
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(b) Modelled envelope power spectra for ns =
300RPM, and W = 25 kN, 50 kN and 80 kN.
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(c) Measured envelope power spectra for ns =
500RPM, and W = 25 kN, 50 kN and 80 kN.
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(d) Modelled envelope power spectra for ns =
500RPM, and W = 25 kN, 50 kN and 80 kN.
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(e) Measured envelope power spectra for ns =
800RPM, and W = 25 kN, 50 kN and 80 kN.
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(f) Modelled envelope power spectra for ns =
800RPM, and W = 25 kN, 50 kN and 80 kN.

Figure 5.24: Comparison of the envelope (demodulated) power spectra of the experi-
mentally measured and numerically modelled acceleration ay time-traces of the rolling
element bearing for radial loads W of 25 kN, 50 kN and 80 kN, and rotational speeds ns
of 300RPM, 500RPM and 800RPM. For clarity, the scale of y-axis in subplots (a–d)
ranges from 0–400 (m/s2)2/Hz compared to 0–1200 (m/s2)2/Hz in subplots (e, f). The
vertical lines in the subplots correspond to the fundamental fbpo and its harmonics.
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Figure 5.25: Comparison of the envelope (demodulated) power spectrum levels at the
fundamental outer raceway defect frequency fbpo for the experimentally measured and
numerically modelled acceleration ay time-traces shown in Figure 5.24 for varying radial
load W and rotational speed ns.

Load W
(kN)

Speed ns (RPM) Percentage increase from (%)
300 500 800 300–500RPM 500–800RPM

25 16 36 274 125 661
50 48 67 333 40 397
80 194 308 1049 60 241
(a) Percentage increase in the spectrum levels from 300–500 RPM and 500–800 RPM.

Speed ns
(RPM)

Load W (kN) Percentage increase from (%)
25 50 80 25–50 kN 50–80 kN

300 16 48 194 200 304
500 36 67 308 86 360
800 274 333 1049 22 215

(b) Percentage increase in the spectrum levels from 25–50 kN and 50–80 kN.

Table 5.2: Percentage increase in the envelope power spectrum levels of the measured
acceleration ay signals at the fundamental outer raceway defect frequency fbpo shown
in Figure 5.25.
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ay) power spectra generally increase with an increasing radial load W and rotational

speed ns. For the case of the measurements and FE simulations corresponding to radial

loads W of 25 kN and 50 kN, the increases in the levels of the envelope power spectra

from 300RPM to 800RPM are similar for each of the two loads. In contrast, for a

radial load of 80 kN, the increase in the spectrum levels from 300RPM to 800RPM

is higher compared to the increase for radial loads of 25 kN and 50 kN. For example,

at 300RPM, the measured levels increase by 200% from a radial load W of 25 kN to

50 kN; however, they increase by 300% when the load increases from 50 kN to 80 kN.

Furthermore, the results also show that the levels increase significantly from 500RPM

to 800RPM compared to those from 300RPM to 500RPM. For example, for an increase

in the rotational speed ns from 300RPM to 500RPM, the measured levels increase by

125% for a radial load of 25 kN, by 40% for 50 kN, and by 60% for 80 kN; however, from

a rotational speed ns of 500RPM to 800RPM the measured levels increase by 661% for

a radial load of 25 kN, by 397% for 50 kN, and by 240% for 80 kN. The aforementioned

percentage variations, which are approximate, along with other variations are given in

Table 5.2.

From the results presented in this section, it can be summarised that:

• as the rotational speed of the bearing increases, the acceleration levels increase,

and

• as the radial load on the bearing increases, the acceleration levels increase.

As will be shown in the next chapter that the defect-related impulses in the acceleration

signals are generated due to the re-stressing of the rolling elements, it is useful to discuss

the reasons for the increase in the acceleration levels (due to increase in the load and

speed) in conjunction with the rolling element-to-raceway contact forces. An analysis of

these contact forces and their correlation with the acceleration results are presented in

the next chapter. The effects of increasing load and speed on the numerically modelled
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contact forces will be discussed in details along with the reasons for the increase in the

vibration levels.

In summary, from several comparisons between the experimentally measured and

numerically modelled acceleration results presented in this chapter, it can be concluded

that the simulated results obtained from the FE model of the rolling element bearing

agree favourably with the measured data for various radial loads and rotational speeds.

5.5 Conclusions

The measured vibration data of the rolling element bearing having a machined line spall

on its outer raceway were presented. The data were analysed using standard signal

processing techniques, and the analysed results were compared with the corresponding

numerically modelled data. Time domain analysis was presented in order to investi-

gate the occurrences of the de-stressing and re-stressing of the rolling elements as they

entered into and exited out of the defect, respectively. Time–frequency analysis was

presented to determine the energy or power of the measured vibration signatures as-

sociated with the de-stressing and re-stressing events. Frequency domain analysis was

presented to show the fundamental outer raceway defect frequency and its harmon-

ics through the implementation of envelope analysis. Several favourable comparisons

between the measured and modelled vibration results were presented, which demon-

strated the validity of the novel explicit dynamics FE model of the rolling element

bearing developed during the course of this study.

The parametric effect of varying radial load and rotational speed on the vibration

response of the bearing was also discussed. It was observed that the magnitude of the

envelope power spectra at the fundamental defect frequencies increases with increasing

radial load and rotational speed of the bearing. The reasons for the increase in the

acceleration levels with increasing load and speed will be described in the next chapter.

The next chapter presents an analysis of the numerically modelled rolling element-
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to-raceway contact forces and their correlation with the bearing vibration signals. As

contact forces between mating components are generally not measured in practice,

the analysis and interpretation of the rolling element-to-raceway contact forces will

provide new insights into the fundamental mechanisms that cause the generation of

the defect-related impulses that are observed in acceleration signals in practice.
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Chapter 6

Analyses of Rolling Element–Raceway

Contact Forces and Correlation with

Bearing Vibrations

6.1 Introduction

This chapter presents an analysis of the numerical rolling element-to-raceway contact

forces obtained from the explicit dynamics FE model of the defective rolling element

bearing presented in Chapter 4.

The static rolling element-to-raceway contact forces have previously been modelled

in various multi-body dynamic models [100–102, 104–106, 109–114], reviewed in Sec-

tion 2.3.3, Chapter 2. However, the scope of the previous models has been limited

to predicting the vibration response of defective rolling element bearings, such as ac-

celeration, velocity or displacement, and subsequently implementing the well-known

envelope analysis technique [30, 251, 252] for bearing fault diagnosis. Previous explicit

dynamic FE models [117–120], reviewed in Section 2.3.4.3, Chapter 2, also did not

presented the contact forces. Furthermore, during the condition-based monitoring of

rolling element bearings, contact forces between mating components are generally not
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measured in practice. In short, only static and quasi-static estimation of the contact

forces at rolling element-to-raceway interfaces [3, 245–248, 312–328] within a bearing

has been previously reported in the literature. However, the quantification of the dy-

namic contact forces, for the case of a rolling element traversing through a defect, has

received much less attention, except published recently [4, 5] by the authors of this

thesis and in references [6, 7] based on the work presented in this thesis. Therefore,

an in-depth analysis and interpretation of the numerically modelled rolling element-

to-raceway contact forces presented here provide new insights into how defect-related

impulsive bearing vibration signatures are generated within a defective rolling element

bearing.

During the traverse of a single rolling element through a bearing defect, multiple

impulses are generally observed in measured bearing vibration signals; however, the

reason for their occurrence has not been clearly understood [105, 165]. These multiple

impulses should not be confused with the consecutive impulses that are generated due to

the traverse of multiple rolling elements through the defect, whose periods correspond

to the defect frequencies — either BPFO, BPFI or BSF; refer to Appendix C for the

definition of these frequencies. The analysis of the contact forces presented in this

chapter shows that during the re-stressing of the rolling elements, a burst of multiple,

short-duration, force impulses, rather than a single force impulse [90–96, 103, 114, 165]

as has been previously modelled, occurs. These impulses excite resonant modes of a

bearing, and this mechanism explains the occurrence of multiple impulses found in

measured vibration signatures.

The low-frequency characteristics of the de-stressing of rolling elements, upon their

entrance into a defect, have been discussed by a few researchers [4–7, 161–165] using

the experimentally measured acceleration time-traces; however, the reason behind the

de-stressing has not previously been clearly understood. As discussed in Chapter 3,

some researchers [100, 104, 106, 109–114] have considered a single point contact at

the rolling element-to-raceway interfaces that causes the contact forces to decrease
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to zero in an instantaneous (sharp) step-like response at the starting position of a

rectangular-shaped profile of a bearing defect. In contrast, others [101, 102, 105] have

modified the shape of the defects so as to model a gradual decrease in the contact forces;

however, they did not provide a corresponding explanation. A novel mathematical

model to accurately predict the gradual de-stressing of rolling elements was presented

in Section 3.5, Chapter 3. The rolling element-to-raceway contact forces calculated

using this model will be compared with the numerical FE modelling results, and it will

be demonstrated that no impulse-like signatures are generated during the de-stressing

of the rolling elements, which explains its low-frequency characteristics.

6.1.1 Aims

The aims of the work described in this chapter are to:

• present a comparison of the numerical rolling element-to-raceway contact forces,

modelled using the explicit FE model of the rolling element bearing presented

in Chapter 4, with the static and quasi-static analytical solution presented in

Chapter 3;

• present an in-depth analysis of the numerically modelled rolling element-to-

raceway contact forces;

• provide an interpretation of variations in the contact forces as rolling elements

traverse through an outer raceway bearing defect;

• correlate the numerical rolling element-to-raceway contact forces with the mod-

elled bearing vibration signals;

• develop an understanding of the physical mechanism that causes the generation of

defect-related impulsive forces, and consequently the vibration signatures, which

are generally observed in measured acceleration signals of defective bearings; and

to
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• explain the occurrence of multiple impulses in experimentally measured, typical,

defect-related vibration signals as a rolling element traverses through a bearing

defect.

6.1.2 New knowledge

The work presented in this chapter has provided the following new knowledge and

insights:

• the presentation and interpretation of the numerically modelled rolling element-

to-raceway contact forces;

• the contrast between the low-frequency de-stressing and high-frequency re-stressing

of the rolling elements as they enter into and exit out of a defect within a bear-

ing, respectively, through the analysis of the numerical rolling element-to-raceway

contact forces;

• that much higher forces and vibrations are generated during the re-stressing of

the rolling elements between the raceways compared to when they strike the

defective surface;

• the physical mechanism that causes a burst of multiple, short-duration, force

impulses during the re-stressing of the rolling elements in the vicinity of the end

of a defect;

• that the defect-related vibration impulses generated during the re-stressing of the

rolling elements are the ones which are generally observed in practice; and

• why in typically measured bearing acceleration signals, multiple impulses are

generated during the traverse of a (single) rolling element through a defect.
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6.1.3 Structure

This chapter begins with comparison of the numerically modelled rolling element-

to-raceway contact forces along with other contact-related parameters, which follow

Hertzian contact theory [177, Chapter 4, pages 84–106], with the corresponding ana-

lytical solution in Section 6.2. An elaborate analysis of the rolling element-to-raceway

contact forces is presented in Section 6.3. Variations in the contact forces as the rolling

elements traverse through the raceway defect were broadly divided into four events,

and are discussed in Sections 6.3.1 to 6.3.4. With an aim to develop an understanding

of the physical mechanism that causes the generation of defect-related impulses, which

are generally observed in practice, the numerical contact forces are correlated with the

modelled bearing vibration signals in Section 6.4. The novel outcomes of the analysis of

the contact forces in conjunction with the vibration signals obtained from the explicit

FE model of the rolling element bearing are listed in Section 6.5. Parametric effects of

varying load and speed on the rolling element-to-raceway contact forces are described

in Section 6.6. Finally, the conclusions of this chapter are presented in Section 6.7.

6.2 Validation of numerical Hertzian contact-related

parameters

The comparison of the numerically predicted acceleration levels obtained from the

explicit dynamics FE model of the rolling element bearing has been presented in the

previous chapter using experimental data. In this section, comparison of the numerical

rolling element-to-raceway contact forces and other contact-related parameters that

follow Hertzian contact theory [177, Chapter 4] is presented.

As mentioned earlier, contact forces between mating bearing components are gener-

ally not measured in practice during the condition-based monitoring of rolling element

bearings, and have not been measured for the current research either. Therefore, the
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numerical rolling element-to-raceway contact forces will be compared with the corre-

sponding analytical solution. It is crucial to present this comparison of the contact

forces because the development of the understanding of the physical mechanism that

causes the generation of bearing defect-related vibration impulses is based on the in-

terpretation of the contact forces and their subsequent correlation with the vibration

signals.

6.2.1 Static contact forces

Although the numerically modelled contact forces are dynamic, their corresponding

static values can be obtained at time t = 0, prior to the commencement of the explicit

dynamic analysis. The magnitude of the rolling element-to-raceway contact forces

at t = 0 corresponds to the mechanically stressed or loaded levels. It is the first

phase of the solution, generically referred to as the implicit (static) phase, where the

applied loads are appropriately converged to a solution, prior to the commencement

of the explicit (dynamic) phase. In LS-DYNA simulations, the implicit phase is more

commonly known as dynamic relaxation [329, Chapter 31]. For the FE analysis of the

defective rolling element bearing presented in Chapter 4, the applied radial load has

to be effectively distributed onto the rolling elements and raceways, or more precisely

the rolling element-to-raceway contact interfaces, so as to achieve the required load

distribution prior to the rotation of the bearing.

Figures 6.1a and 6.1b show the comparison between the numerical rolling element-

to-outer raceway contact forces, both horizontal Fx and vertical Fy, respectively, at time

t = 0, and the analytical contact forces, shown in Figure 3.4, Chapter 3. While the

numerically modelled forces, represented by the blue-coloured, circular markers, were

obtained only at the rolling element-to-outer raceway contact interfaces, the analytical

solution, represented by the red-coloured, dashed lines, was estimated for finely spaced

rolling element positions ψj at the resolution of 0.1◦ in order to smoothly interpolate
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(a) Horizontal contact force (load) Fx distribution.
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(b) Vertical contact force (load) Fy distribution.

Figure 6.1: Comparison of the analytically and numerically modelled contact forces at
the rolling element-to-outer raceway contact interfaces for a radial load W of 50 kN;
the numerical values correspond to mechanically stressed levels at time t = 0, prior to
the commencement of the dynamic analysis.
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the horizontal and vertical load profiles. These load profiles have been discussed earlier

in Section 3.3.2, Chapter 3, in relation to Figure 3.4.

The positions of the rolling elements ψj in Figures 6.1a and 6.1b are plotted relative

to the centre of the bearing load zone ψlc, which is also the centre of the bearing defect

ψd; (ψlc = ψd = 90◦) — refer to the schematics of a rolling element bearing in Figure 3.2

for the right-handed coordinate system considered in this thesis. For the finite element

model of the bearing (refer to Figure 4.2, Chapter 4), the rolling element j = 1, located

immediately to the left-hand side of the defect, was offset by 4◦ from the y-axis, the

centre of the bearing zone ψlc: the actual position ψj of the rolling element j = 1 is

94◦, and its relative position ψj − ψlc is 4◦.

The numerical estimates of the contact forces at the rolling element-to-raceway

contact interfaces, which are within the bearing load zone 2ψ
′

l (see Equation 3.14,

Chapter 3), are approximately 2% higher than the corresponding analytical results. A

favourable agreement between the numerical and analytical contact forces in Figure 6.1

indicates that the applied radial load has been accurately distributed within the FE

model of the bearing; thereby, representing the validation of the numerically modelled

static contact forces.

6.2.2 Contact deformation

Other numerical contact-related parameters, such as displacement (or deformation)

and contact width, which follow Hertzian contact theory [177, Chapter 4, pages 84–

106], can also be compared with the corresponding analytical estimates for further

verification of the FE simulation results.

Figure 6.2 shows a comparison of the numerical and analytical estimates of the

horizontal δx and vertical δy contact displacements of the rolling elements and outer

raceway at various contact interfaces. Similar to the discrepancy of 2% between the

analytical and numerical contact forces, mentioned in the preceding paragraph, the
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Figure 6.2: Comparison of the analytically and numerically modelled displacement at
the rolling element-to-outer raceway contact interfaces for a radial load W of 50 kN;
the numerical values correspond to mechanically stressed levels at time t = 0, prior to
the commencement of the dynamic analysis.
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numerically modelled displacement is also, at times, 2% higher than the corresponding

analytical solution. Nevertheless, the comparison in Figures 6.2a and 6.2b shows a

favourable match between the numerical FE modelling and analytical results.

Contact width

For a 2-D LS-DYNA simulation, the contact width at the interface of contacting bod-

ies is not available from the finite element calculations; instead, it can be estimated

on the basis of the contact force, which is resolved during the solution, using Hertzian

contact theory [177, Chapter 4, pages 84–106]. For the FE model of the rolling element

bearing presented here, the contact width at the rolling element-to-outer raceway con-

tact interfaces was estimated using the numerical contact forces, shown in Figure 6.1,

and Equation 3.4, Chapter 3. The results are plotted in Figure 6.3 along with the

corresponding analytical solution for comparison. A favourable match between the nu-

merical and analytical contact widths at the rolling element-to-outer raceway interfaces

is evident.

From Figures 6.1, 6.2, and 6.3, it is clear that the contact interaction at the rolling

element-to-raceway interfaces has been well predicted by the explicit FE model of the

rolling element bearing. It should be highlighted here that the contact width at the

interfaces is less than 0.5mm, which is the same as the element mesh size used to

discretise the FE model. This means that only one node was present at the rolling

element-to-raceway contact interfaces during the numerical simulation. Although this

would generate inaccurate results for the standard node-to-surface penalty-based con-

tact formulations [307] used in many other FE software packages [307, 308, 311], the

surface-to-surface segment-based contact formulation [329] employed in the FE soft-

ware package used here does not suffer from this problem. Refer to Sections 4.2.3

and 4.2.4 of Chapter 4 for a discussion on the difference between the node-to-surface

penalty-based and segment-based contact formulations. The favourable agreement of
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Figure 6.3: Comparison of the analytically and numerically modelled contact width at
the rolling element-to-outer raceway contact interfaces for a radial load W of 50 kN;
the numerical values correspond to mechanically stressed levels at time t = 0, prior to
the commencement of the dynamic analysis.
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6.2. Validation of numerical Hertzian contact-related parameters

the numerically estimated contact force, deformation, and width with the correspond-

ing analytical results, shown in Figures 6.1, 6.2, and 6.3, respectively, indicates the

validation of the explicit FE model of the rolling element bearing.

The dynamic contact forces obtained from the explicit FE model of the bearing are

presented next.

6.2.3 Dynamic contact forces

For the FE model of the defective rolling element bearing, Figures 6.4 and 6.5 show

the numerically modelled, notch filtered, horizontal Fx and vertical Fy contact forces,

respectively, between the outer raceway and the three rolling elements, denoted as

j = 1, 2, 3, which traversed through the outer raceway defect during the numerical

simulation. These results correspond to a radial load W of 50 kN and rotational speed

ns of 500RPM.

Similar to the numerically modelled vibration results, presented in Chapter 4, the

contact forces also contained the numerical noise at the rolling element-to-outer raceway

rolling contact noise frequency f onoise = 4671Hz, which was filtered out using a second-

order notch filter; refer to Figure 4.11 for the frequency response of the filter. However,

as discussed in Chapter 4, some random noise at other frequencies is still present in the

results. Several causes of the noise in the numerical simulation results were discussed

in Section 4.5, Chapter 4.

For comparison, the analytically modelled quasi-static contact forces on the corre-

sponding rolling elements have also been plotted in Figures 6.4 and 6.5, using the red-

coloured, dashed lines, along with the numerically modelled dynamic contact forces,

represented by the blue-coloured, solid lines. The quasi-static analytical model for

estimating the contact forces for a defective rolling element bearing, which includes

the proposed mathematical model (presented in Section 3.5) to predict the gradual

de-stressing of the rolling elements, was presented in Section 3.6, Chapter 3.
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(a) Horizontal contact force between the first rolling element j = 1 and outer raceway.
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(b) Horizontal contact force between the second rolling element j = 2 and outer raceway.
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(c) Horizontal contact force between the third rolling element j = 3 and outer raceway.

Figure 6.4: Comparison of the numerically (notch filtered) and analytically modelled
horizontal rolling element-to-outer raceway contact forces Fx as three rolling elements
j = 1, 2, 3 traverse through the outer raceway defect for a radial load W of 50 kN and
rotational speed ns of 500RPM.
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(a) Vertical contact force between the first rolling element j = 1 and outer raceway.
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(b) Vertical contact force between the second rolling element j = 2 and outer raceway.
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(c) Vertical contact force between the third rolling element j = 3 and outer raceway.

Figure 6.5: Comparison of the numerically (notch filtered) and analytically modelled
vertical rolling element-to-outer raceway contact forces Fy as three rolling elements
j = 1, 2, 3 traverse through the outer raceway defect for a radial load W of 50 kN and
rotational speed ns of 500RPM.
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The comparison of the dynamic numerical and quasi-static analytical rolling element-

to-outer raceway contact forces, plotted in Figures 6.4 and 6.5, shows that both results

agree favourably with one another. The numerical and corresponding analytical esti-

mates of the horizontal Fx and vertical Fy contact forces closely follow each other. The

numerical contact forces are within 3% of the corresponding analytical estimates. One

of the reasons for the slight mismatch is that during the explicit numerical simulation,

the outer ring, inner ring, and the rolling elements were modelled as flexible bodies in

contrast to assuming them as rigid bodies during the analytical modelling. The ability

of the flexible (finite) elements within the FE model of the bearing to vibrate during the

numerical solution, and the interaction of the polygonised edges of the rolling elements

and raceways could result in the excitation of non-physical modes. Other reasons may

include the generation of numerical noise due to the adaptive time-stepping discussed

in Section 4.5, Chapter 4, and the contact interaction of the rolling elements and race-

ways. Nevertheless, the numerically modelled horizontal and vertical contact forces

closely follow the analytical solution. Four events are also indicated in Figures 6.4 and

6.5; these events will be described in the next section.

In summary, the acquisition of the basic bearing kinematics (outer raceway de-

fect frequency fbpo), presented in the numerically modelled vibration time-traces in

Figures 4.5, 4.15 and 4.16, and the correct load distribution on the rolling elements,

presented in Figure 6.1, indicate the validation of the presented results.

A detailed analysis of the dynamic contact forces is presented in the next section,

with the aim of providing an understanding of the variations in the rolling element-to-

raceway contact forces. As mentioned earlier, such an analysis has not been previously

reported in the literature, except published recently in references [4, 5] by the author

of this thesis, and in references [6, 7] based on the research described here.
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6.3. Contact force analysis

6.3 Contact force analysis

The variations in the numerically modelled rolling element-to-outer raceway contact

forces were broadly divided into four events, which are appropriately labelled as event #1

to event #4 in Figures 6.4 and 6.5. These events are similar to those discussed in Sec-

tion 3.7, Chapter 3, which concerned the analysis of the analytical quasi-static contact

forces shown in Figure 3.12. Event #1 corresponds to the de-stressing of the rolling

elements, event #2 to the impact of the rolling elements with the defective surface,

event #3 to re-distribution of load, and event #4 corresponds to the re-stressing of the

rolling elements.

For the purpose of relating the variations in the numerical contact forces as the

rolling elements traverse through the raceway defect, refer to Figure 6.6. This figure

shows a schematic of a rolling element bearing model comprising an outer ring, an inner

ring, a few rolling elements, and a rectangular defect. The rolling elements marked as

‘1’, ‘2’, and ‘3’ are the ones that traversed through the defect in a clockwise direction

during the numerical simulation undertaken here. The starting and ending positions

of the defect are also shown in the schematic. Throughout the discussion to follow in

this thesis, the ‘top surface of the defect ’ is referred to as the ‘defective surface of the

outer raceway ’ as indicated in the schematic.

As the radial load W was applied at the top of the bearing so that the defect is

under maximum load, the rolling elements which traverse through the defect will have

larger vertical contact forces Fy than the corresponding horizontal forces Fx. It is,

therefore, convenient to analyse the variations in the vertical rolling element-to-outer

raceway contact forces Fy presented in Figure 6.5, although similar variations can also

be seen in the horizontal force components Fx in Figure 6.4, but comparatively less

clear.
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Figure 6.6: A 2-D schematic of a rolling element bearing comprising an outer ring, an
inner ring, a few rolling elements, and a localised rectangular-shaped defect centrally
located at the top of the outer raceway. The rolling elements filled using solid gray
colour represent loaded elements, whereas the others represent non-loaded elements.

6.3.1 Event #1: Entry of the rolling elements into the defect —

the ‘de-stressing’ phase

A radial load on a bearing is distributed among the rolling elements within the bearing

load zone, which are stressed between the outer and inner raceways.

The results of the numerically modelled vertical contact forces Fy between the

rolling elements and outer raceway in Figure 6.5 show that as a stressed rolling element

begins to enter the outer raceway defect, it gradually (not instantaneously) starts

losing contact with the outer raceway. From the figure, the time instances at which

rolling elements j = 1, 2, and 3 begin to enter the defect correspond to approximately

1ms, 12ms and 23ms, respectively. Subsequently, the contact forces between the

outer raceway and the rolling elements j = 1, 2, and 3 decrease until they reach

zero at approximately 1.4ms, 12.4ms, and 23.5ms, respectively. The reduction of the
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6.3. Contact force analysis

numerical vertical contact forces Fy from approximately 6 kN to 0 kN in approximately

0.4ms implies that the stress on the rolling elements is also reduced to zero.

The gradual decrease in the contact force between the outer raceway and the three

rolling elements j = 1, 2, 3, which traversed through the outer raceway defect during

the simulation, is highlighted using the solid, elliptical markers in all the subplots of

Figures 6.4 and 6.5. Event #1, which corresponds to the entry of the rolling elements

into the defect, is referred to as the de-stressing of the rolling elements. The occurrences

of the consecutive de-stressing events are separated by approximately 0.011 seconds,

which corresponds fbpo = 90.91Hz compared to the analytically estimated nominal

fbpo = 90.07Hz, a difference of 0.9%.

Based on the aforementioned gradual unloading of the rolling elements, a novel

mathematical model for predicting the gradual de-stressing of the rolling elements has

been presented earlier in Section 3.5, Chapter 3. The differences between the instant

decrease in the contact forces by previous researchers [100–102, 104–106, 109–114] and

gradual decrease were shown in Figures 3.10, 3.12, and 3.13 in Chapter 3.

It is evident from the rolling element-to-outer raceway contact forces Fy plotted

in Figure 6.5, that the numerically modelled and analytically estimated gradual de-

stressing of the rolling elements have favourable agreement.

The gradual decrease in the contact forces highlights that the de-stressing of the

rolling elements shows no indication of an impact, and therefore, cannot excite a broad

range of frequencies which generally causes the ringing of a bearing [17, 30]. It is the

gradual unloading of the rolling elements that indicates the signals associated with the

de-stressing event have low-frequency characteristics.

In summary, the gradual de-stressing of the rolling elements leads to the generation

of the low-frequency event. The occurrence of the de-stressing event was highlighted

in both numerically modelled and experimentally measured vibration signals shown in

Chapters 4 and 5, respectively.
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6.3.2 Event #2: Traverse of the rolling elements through the

defect — impact of the rolling elements with the defective

surface

The zero values of the contact forces between the rolling elements and the defective

part of the outer raceway indicate that the rolling elements unload as they traverse

through the defect. The numerically modelled horizontal Fx and vertical Fy contact

forces in Figures 6.4 and 6.5, respectively, show that during the traverse of the rolling

elements through the defect, the contact force remains zero for most of the time except

for a few instances. These instances, which are indicated as event #2 in the subplots

of Figures 6.4 and 6.5, correspond to the impact of the rolling elements with the top

surface of the defect — the defective surface of the outer raceway (refer to Figure 6.6

to see the top surface of the defect).

During the operation of a bearing, the rolling elements possess centrifugal forces.

While the centrifugal forces tend to project the rolling elements outward from the

centre of the bearing, their outward trajectory is restricted between the outer and

inner raceways when the rolling elements are stressed between the raceways. However,

when the rolling elements are de-stressed due to the loss of contact with the outer

raceway while they traverse through the defect, they tend to freely follow their outward

trajectory. At some point, they strike the top surface of the defect and are indicated

in Figures 6.4 and 6.5 as event #2. It should be noted that the magnitude of these

impacts for the horizontal contact forces Fx is much lower than the corresponding

vertical components Fy; therefore, these impacts are not clearly visible in Figure 6.4,

but are visible in Figure 6.5. The reason for the higher magnitude of the vertical

contact forces is the application of the radial load W along the y-axis.

One of the limitations of the quasi-static analytical model, mentioned in Section 3.8,

Chapter 3, was the inability to predict the aforementioned impacts of the rolling el-

ements with the defective surface during their traverse through the defect. This is
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because the model is static and does not include the dynamics (centrifugal effects) of

the rolling elements. Incorporating their centrifugal effects and analytically modelling

the trajectory of the de-stressed rolling elements is a considerable task, and beyond

the scope of the work presented in Chapter 3. Furthermore, the aim of the analytical

modelling was to verify the FE simulated contact forces using the quasi-static model.

It can be seen from Figures 6.5a and 6.5c that the first j = 1 and third j = 3

rolling elements strike the top surface of the defect twice, while in Figure 6.5b, the

second rolling element j = 2 strikes the defect surface three times. It is also interesting

to note that not only do the amplitudes of these impacts differ from each other, but also

their timings. The reason for the varying period is the interaction of the rolling elements

with the adjacent cage slots. The irregular period of the impact timings implies that

at some instances the rolling elements are driven by the cage (slots), and at other

instances, the rolling elements drive the cage. The rolling element–cage interaction

is also another cause for the slippage of the rolling elements observed in practice, in

addition to the explanation provided in reference [96]. It is one of the reasons for

the slight difference (0.8%) between the analytical and numerical estimations of the

rolling elements-to-outer raceway rolling contact noise frequency f onoise, as discussed in

Section 4.5.2, Chapter 4.

6.3.3 Event #3: Re-distribution of a load on the rolling ele-

ments — the load compensation phase

It was discussed in the preceding section that the rolling elements lose contact with the

defective part of the outer raceway as they traverse through the defect. The loss of the

load (force) on a rolling element must be compensated in order to have the equilibrium

of the system maintained at all times. Therefore, as one rolling element loses contact

(unloads), other rolling elements in the load zone, located at the non-defective sections

of the raceways, take the lost load resulting in the re-distribution of the radial load.
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Event #3, indicated in Figures 6.4 and 6.5, highlights the load compensation.

In the event of a rolling element traversing through a defect, an increase in the

magnitude of load on other rolling elements results in higher contact stresses compared

to a non-defective bearing. The higher contact stresses will eventually result in the

onset of localised surface fatigue cracks in the raceways at spacings approximately

equivalent to roller spacings [337].

6.3.4 Event #4: Exit of the rolling elements from the defect —

the ‘re-stressing’ phase

When the rolling elements reach the end (position) of the defect (refer to Figure 6.6

to see the ending position of the defect), they again come into contact with the non-

defective surface of the outer raceway. At this point, the contact force (load) on

the rolling elements increases from zero to a value that is related to the static load

distribution.

The resumption of the contact between the rolling elements and outer raceway

causes the re-stressing of the rolling elements. Event #4, which corresponds to the re-

stressing of the rolling elements between the outer and inner raceways, is highlighted

using the solid, rectangular markers in the horizontal Fx and vertical Fy contact force

plots in Figures 6.4 and 6.5, respectively. The characteristics of the contact forces

pertinent to the re-stressing of the rolling elements are discussed in the following para-

graphs.

Prior to regaining full contact with the raceways following the de-stressing of the

rolling elements during their traverse through the outer raceway defect (event #2), the

free outward trajectory of de-stressed rolling elements is again restricted between inner

and outer raceways. The rolling elements are gradually wedged between both raceways,

and during this period, they continuously rattle between the raceways until they are

fully loaded (stressed) once again. The rattling of the rolling elements causes the
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generation of a few short-duration (contact) force impulses that excite the resonance

modes of the bearing.

The subplots of Figures 6.4 and 6.5 were zoomed in the vicinity of the re-stressing of

the rolling elements, and are shown in Figure 6.7 in order to highlight the occurrence

of multiple force impulses. Figures 6.7a, 6.7c, and 6.7e show the horizontal rolling

element-to-outer raceway contact forces Fx, whereas Figures 6.7b, 6.7d, and 6.7f show

the corresponding vertical contact forces Fy. While the scale of the y-axis for the

horizontal contact force plots ranges from 0 kN to 1 kN, it ranges from 0 kN to 10 kN

for the vertical contact forces. Despite being different by an order of magnitude, the

timings at which the horizontal and vertical multiple force impulses occur are similar.

In contrast to the de-stressing of the rolling elements upon their entrance into the

defect where no force impulses were generated (event #2), the contact forces in Fig-

ure 6.7 show that the exit of the rolling elements from the defect causes multiple force

impulses. Previous analytical models [90–96, 103, 114, 165] were based on the assump-

tion that the defect-related impulsive vibration response of a bearing is generated by a

single force impulse that exponentially decays over time. However, the explicit dynam-

ics FE modelling results presented here show that a burst of multiple, short-duration,

force impulses occurs as the rolling elements re-stress between the raceways on their

exit from the defect. This is a novel and an important outcome of the modelling. This

will be discussed in more details in Section 6.4.2. Although the re-stressing of the

rolling elements has previously been reported using experimental studies [161–165], its

cause has not been discussed.

It is also interesting to note that the results of the numerically modelled vertical

rolling element-to-outer raceway contact forces Fy in Figure 6.5 show that the amplitude

of the impacts produced during the re-stressing phase, approximately 5 kN, is higher

than the less than 2 kN (event #2) produced when the rolling elements strike the

top surface of the defect. This is another important outcome of the modelling, as it

indicates that higher forces and stresses are generated during the exit of the rolling
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(a) Horizontal contact force between the first
rolling element j = 1 and outer raceway.
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(b) Vertical contact force between the first
rolling element j = 1 and outer raceway.
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(c) Horizontal contact force between the second
rolling element j = 2 and outer raceway.
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(d) Vertical contact force between the second
rolling element j = 2 and outer raceway.
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(e) Horizontal contact force between the third
rolling element j = 3 and outer raceway.
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(f) Vertical contact force between the third
rolling element j = 3 and outer raceway.

Figure 6.7: Numerically modelled, notch filtered, horizontal Fx and vertical Fy rolling
element-to-outer raceway contact forces shown in Figures 6.4 and 6.5, respectively, are
zoomed in the vicinity of rolling elements j = 1, 2, 3 being re-stressed between the
raceways. For clarity, the y-axis in (a, c, e) scales from 0–1 kN, and in (b, d, f) from
0–10 kN.
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elements from the defect compared to when they strike the defect surface, and hence,

could lead to the gradual expansion or lengthening of the defect. These findings show

excellent agreement with the experimental study conducted by Hoeprich [337]. He

investigated the damage progression in rolling element bearings, and found that the

size of a spall progresses in the rolling direction.

The correlation of the numerically modelled dynamic contact forces, plotted in

Figures 6.4 and 6.5, with the acceleration signal will be presented in the next section.

6.4 Correlating contact forces with bearing vibrations

As rolling element-to-raceway contact forces are not measured in practice, it is useful

to correlate the aforementioned numerical contact forces with the acceleration results,

commonly measured in practice. The correlation will also facilitate the development

of an understanding of:

• the cause of the generation of bearing defect-related impulsive signals that are

generally observed in measured acceleration time-traces, and subsequently used

for bearing diagnosis, and

• the physical mechanism that leads to the generation of the defect-related multiple

impulsive forces.

6.4.1 Cause of impulsive signals in acceleration results

Figure 6.8 comprises four subplots: subplot (a) shows the numerically modelled, notch

filtered, nodal acceleration ay time-trace shown in Figure 4.13, Chapter 4; and subplots

(b) to (d) show the numerically modelled, notch filtered, vertical rolling element-to-

outer raceway contact forces Fy shown in Figure 6.5. Of the four events discussed

in Section 6.3, the time instances corresponding to the occurrences of events #2 and

#4 were primarily correlated between the acceleration and contact forces. The reason
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for correlating these events is that the contact–impact kind of interaction was only

observed to be associated with events #2 and #4. The time instances corresponding

to the occurrence of event #1, which is associated with the low-frequency de-stressing

of the rolling elements, will be correlated later between the numerical low-pass filtered

acceleration and contact forces.

Events #2 and #4 correspond to the de-stressed rolling elements striking the de-

fective surface of the outer raceway and the re-stressing of the rolling elements, re-

spectively. In Figure 6.8, these events are highlighted using the dashed, elliptical and

solid, rectangular markers, respectively. From the correlation of the time instances,

implemented using appropriate markers and indicators, it shows that:

1. the dominant impulsive signals in the acceleration time-trace, which are indi-

cated using the rectangular markers, correspond to the re-stressing of the rolling

elements — event #4, and

2. the comparatively low amplitude acceleration signals, prior to the re-stressing

phase, which are indicated using the dashed, elliptical markers, correspond to

the impact of the de-stressed rolling elements with the defective surface as they

traverse through the defect — event #2.

For clarification, the acceleration time-trace was zoomed in the vicinity of the second

and third defect-related impulses, and the partial time-traces are shown in Figure 6.9b

and Figure 6.9c, respectively; Figure 6.9a is the same as Figure 6.8a. It is clear from

the correlation of the two events in Figures 6.8 and 6.9 that the dominant impulsive

signals correspond to the re-stressing of the rolling elements. The zoomed acceleration

time-traces also highlight the occurrence of multiple impulses as a result of the traverse

of a single rolling element through the defect rather than a single impulse as has been

previously modelled by several researchers [90–96, 103, 114, 165]. Such impulses are

generally observed in measured bearing vibration signals; however, the reason for their
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Figure 6.8: Correlation between the numerically modelled, notch filtered, acceleration
ay time-trace shown in Figure 4.13, Chapter 4, and vertical contact forces Fy between
the outer raceway and three rolling elements j = 1, 2, 3 that traversed through the
defect shown in Figure 6.5 for a radial load W of 50 kN and rotational speed ns of
500RPM; (a) nodal acceleration, (b) contact force: outer raceway-to-rolling element
j = 1, (c) contact force: outer raceway-to-rolling element j = 2, and (d) contact force:
outer raceway-to-rolling element j = 3.
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Figure 6.9: Numerically modelled, notch filtered, acceleration ay time-trace shown in
Figure 6.8a; (a) complete time-trace showing the three defect-impulses that occurred
during the numerical simulation, (b) partial time-trace zoomed in the vicinity of the
second impulse generated due to the re-stressing of rolling element j = 2, and (c)
partial time-trace zoomed in the vicinity of the third impulse generated due to the
re-stressing of rolling element j = 3.
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occurrence has not been clearly understood [105, 165]. This will be discussed in the

next section.

During the analysis of the contact forces in Section 6.3.4, it was also observed that

the amplitude of the contact forces resulting from the impacts of the de-stressed rolling

elements with the defective surface of the outer raceway; that is event #2, is lower than

those related to the re-stressing of the rolling elements between the raceways; that is

event #4. This is also reflected in the acceleration results. From Figures 6.8 and 6.9,

the instantaneous level of the acceleration signal during the re-stressing of the rolling

elements is approximately twice the level of the acceleration during the period where

the de-stressed rolling elements strike the defective surface of the raceway.

An important outcome of the results from the explicit dynamics FE analysis of the

rolling element bearing is that it is the re-stressing of the rolling elements, and not

their impact with the defective surface, that causes the generation of the defect-related

impulsive signals. In other words, although a rolling element can strike the surface of

a defect and generate a low amplitude acceleration signal, a much higher acceleration

signal is generated when the rolling elements are re-stressed between the raceways.

These higher acceleration signals, generated during the re-stressing phase, are the ones

that are generally observed in practice, and subsequently used for bearing diagnosis

using the well-known envelope analysis technique [30, 251, 252].

As low-frequency signals related to the de-stressing of the rolling elements could not

be observed in the numerical acceleration ay time-trace until it was low-pass filtered,

Figure 6.10 presents the correlation of the low-pass filtered acceleration ay (shown in

Figure 4.22, Chapter 4) with the vertical rolling element-to-raceway contact forces Fy

for the sole purpose of correlating the time-instances of the de-stressing event. The

occurrences of the de-stressing of the rolling elements, annotated as event #1 and

indicated using the solid, elliptical markers in Figure 6.10, was achieved at the expense

of eliminating the impulsiveness of the re-stressing event. However, as mentioned earlier

in Section 4.6.2, Chapter 4, the low-pass filtering was only implemented to verify the
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Figure 6.10: Correlation between the numerically modelled, low-pass filtered, accel-
eration ay time-trace shown in Figure 4.22, Chapter 4, and vertical contact forces Fy
between the outer raceway and three rolling elements j = 1, 2, 3 that traversed through
the defect shown in Figure 6.5 for a radial load W of 50 kN and rotational speed ns of
500RPM; (a) nodal acceleration, (b) contact force: outer raceway-to-rolling element
j = 1, (c) contact force: outer raceway-to-rolling element j = 2, and (d) contact force:
outer raceway-to-rolling element j = 3.
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Figure 6.11: Correlation between the numerically modelled, notch filtered, velocity vy
time-trace shown in Figure 4.17, Chapter 4, and vertical contact forces Fy between
the outer raceway and three rolling elements j = 1, 2, 3 that traversed through the
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Figure 6.12: Correlation between the numerically modelled, notch filtered, displace-
ment uy time-trace shown in Figure 4.18, Chapter 4, and vertical contact forces Fy be-
tween the outer raceway and three rolling elements j = 1, 2, 3 that traversed through
the defect shown in Figure 6.5 for a radial load W of 50 kN and rotational speed ns of
500RPM; (a) nodal displacement, (b) contact force: outer raceway-to-rolling element
j = 1, (c) contact force: outer raceway-to-rolling element j = 2, and (d) contact force:
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acceleration signatures associated with the de-stressing event.

The numerically modelled, notch filtered, velocity vy and displacement uy time-

traces shown in Figures 4.17 and 4.18, Chapter 4, respectively, were also correlated

with the contact forces in a way similar to that of the acceleration ay signal. The

time instances pertinent to events #1, #2, and #4 were correlated between the vi-

bration time-traces and the contact forces, and the corresponding plots are shown in

Figures 6.11 and 6.12. The markers and indicators shown in the figures highlight that

the findings are similar to those observed for the correlation of the acceleration with

the contact forces as presented in Figures 6.8 and 6.10.

Correlation of the numerically modelled rolling element-to-raceway contact

forces and bearing acceleration for radial loads W of 25 kN and 80 kN, and

a rotational speed ns of 500 RPM

The figures shown above were concerned with the results from the FE analysis of the

rolling element bearing for a radial load W of 50 kN and a rotational speed ns of

500RPM. In order to verify the consistency of the findings observed in Figures 6.8 to

6.10, the correlation of the contact forces and acceleration results was also conducted for

two additional radial loads W of 25 kN and 80 kN at a rotational speed ns of 500RPM.

It has been mentioned earlier in Chapter 5 that a load of W = 25 kN on the bearing

simulates a radial load of an empty railway wagon, whereas a load of W = 80 kN

simulates a load of an almost fully loaded wagon.

Figures 6.13 and 6.14 show the correlation of the numerically modelled, notch fil-

tered, acceleration ay at a rotational speed ns of 500RPM with the corresponding

rolling element-to-outer raceway, notch filtered, vertical contact forces Fy for radial

loads W of 25 kN and 80 kN, respectively. It is evident from the results in the figures

that the variations in the contact forces and their correlation with the bearing acceler-

ation, highlighted using relevant indicators and markers, related to events #2 and #4,

are similar to those observed in Figure 6.8, which represents the simulation results for
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a radial load of 50 kN and rotational speed of 500RPM.

Similar to Figure 6.9, which shows the numerical acceleration for ns = 500RPM and

W = 50 kN, the acceleration ay time-traces in Figures 6.13 and 6.14 for W = 25 kN and

W = 80 kN, respectively, were zoomed in the vicinity of the defect-related impulses,

and the corresponding plots are shown in Figures 6.15 and 6.16 in order to clearly

highlight the variations related events #2 and #4.

For correlating the time instances of the de-stressing event (#1), the numerically

modelled acceleration ay time-traces for radial loads W of 25 kN and 80 kN, shown in

Figures 6.13 and 6.14, respectively, were low-pass filtered to enhance the low-frequency

signatures associated with the entrance of the rolling elements into the defect. Similar

to the plots shown in Figure 6.10 for a rotational speed of ns 500RPM and radial load

W 50 kN, the correlation of the low-pass filtered acceleration with rolling element-to-

outer contact forces for the FE simulations for radial loads of 25 kN and 80 kN are

shown in Figure 6.17 and 6.18, respectively.

From the correlation of the numerical acceleration with contact forces obtained

from the FE simulations undertaken for three different radial loads of 25 kN, 50 kN,

and 80 kN at a constant rotational speed of 500RPM, the findings related to events #2

and #4, as enumerated earlier in this section, were observed to be consistent.

The numerically modelled acceleration ay time-traces shown in Figures 6.8, 6.13,

and 6.14 for radial loads W of 25 kN, 50 kN, and 80 kN, respectively, are plotted on a

similar scale, ±300 g, whereas the contact forces Fy are plotted on dissimilar scales —

0–5 kN, 0–10 kN, and 0–15 kN. The reason for plotting the contact forces on different

scales is to clearly highlight the distinction between the variation in the force impulses

related to events #2 and #4, that is, the impact of the rolling elements with the

defective raceway surface and the re-stressing of the rolling elements, respectively.

However, for comparison, the rolling element-to-raceway contact forces corresponding

to the aforementioned loads and various rotational speeds are plotted together on a

single figure, and will be shown in the Figures 6.22 and 6.23 during the discussion of
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Figure 6.13: Correlation between the numerically modelled, notch filtered, acceleration
ay time-trace shown in Figure 5.5b, Chapter 5, and vertical contact forces Fy between
the outer raceway and three rolling elements j = 1, 2, 3 that traversed through the
defect for a radial load W of 25 kN and rotational speed ns of 500RPM (a) nodal
acceleration, (b) contact force: outer raceway-to-rolling element j = 1, (c) contact
force: outer raceway-to-rolling element j = 2, and (d) contact force: outer raceway-to-
rolling element j = 3.
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Figure 6.14: Correlation between the numerically modelled, notch filtered, acceleration
ay time-trace shown in Figure 5.5d, Chapter 5, and vertical contact forces Fy between
the outer raceway and three rolling elements j = 1, 2, 3 that traversed through the
defect for a radial load W of 80 kN and rotational speed ns of 500RPM; (a) nodal
acceleration, (b) contact force: outer raceway-to-rolling element j = 1, (c) contact
force: outer raceway-to-rolling element j = 2, and (d) contact force: outer raceway-to-
rolling element j = 3.
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Figure 6.15: Numerically modelled, notch filtered, acceleration ay time-trace shown in
Figure 6.13a; (a) complete time-trace showing the three defect-impulses that occurred
during the numerical simulation, (b) partial time-trace zoomed in the vicinity of the
second impulse generated due to the re-stressing of rolling element j = 2, and (c)
partial time-trace zoomed in the vicinity of the third impulse generated due to the
re-stressing of rolling element j = 3.

280



Chapter 6. Analyses of Rolling Element–Raceway Contact Forces and Correlation with
Bearing Vibrations

A
cc

el
er

at
io

n
a
y

[g
]

Time t [ms]

A
cc

el
er

at
io

n
a
y

[g
]

Time t [ms]

A
cc

el
er

at
io

n
a
y

[g
]

Time t [ms]

event #4event #4

event #2event #2

event #2 event #4

event #4event #2

(c)

(b)

(a)

26 26.5 27 27.5 28 28.5 29

15 15.5 16 16.5 17 17.5 18

0 5 10 15 20 25 30

−300

−200

−100

0

100

200

300

−300

−200

−100

0

100

200

300

−300

−200

−100

0

100

200

300

Figure 6.16: Numerically modelled, notch filtered, acceleration ay time-trace shown in
Figure 6.14a; (a) complete time-trace showing the three defect-impulses that occurred
during the numerical simulation, (b) partial time-trace zoomed in the vicinity of the
second impulse generated due to the re-stressing of rolling element j = 2, and (c)
partial time-trace zoomed in the vicinity of the third impulse generated due to the
re-stressing of rolling element j = 3.
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Figure 6.17: Correlation between the numerically modelled, low-pass filtered, accel-
eration ay time-trace shown in Figure 5.5b, Chapter 5, and vertical contact forces Fy
between the outer raceway and three rolling elements j = 1, 2, 3 that traversed through
the defect shown in Figure 6.13 for a radial load W of 25 kN and rotational speed ns of
500RPM; (a) nodal acceleration, (b) contact force: outer raceway-to-rolling element
j = 1, (c) contact force: outer raceway-to-rolling element j = 2, and (d) contact force:
outer raceway-to-rolling element j = 3.
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Figure 6.18: Correlation between the numerically modelled, low-pass filtered, accel-
eration ay time-trace shown in Figure 5.5d, Chapter 5, and vertical contact forces Fy
between the outer raceway and three rolling elements j = 1, 2, 3 that traversed through
the defect shown in Figure 6.14 for a radial load W of 80 kN and rotational speed ns of
500RPM; (a) nodal acceleration, (b) contact force: outer raceway-to-rolling element
j = 1, (c) contact force: outer raceway-to-rolling element j = 2, and (d) contact force:
outer raceway-to-rolling element j=3.
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the parametric effects on the contact forces in Section 6.6.

The physical mechanism by which the defect-related impulses are generated during

the re-stressing of the rolling elements is explained in the next section.

6.4.2 Physical mechanism that generates defect-related impul-

sive forces

It has been established in the preceding section that the defect-related impulsive signals

are generated during the re-stressing of the rolling elements; however, in order to

develop an understanding of the physical mechanism that leads to the generation of

the impulsive signals, it is useful to compare the contact forces on the rolling elements

generated by each of the two bearing raceways.

Figures 6.19a, 6.19c, and 6.19e show the numerically modelled vertical rolling

element-to-outer raceway and rolling element-to-inner raceway contact forces as the

three rolling elements j = 1, 2, 3 traverse through the outer raceway defect for a radial

load W of 50 kN and rotational speed ns of 500RPM. The rolling element-to-outer

raceway contact forces are represented by the blue-coloured, solid lines, whereas the

rolling element-to-inner raceway contact forces are represented by the gray-coloured,

dashed lines. Both sets of the contact forces closely follow each other; however, in op-

posite directions. Although not annotated, the four events highlighted in Figure 6.5 for

the rolling element-to-outer raceway contact forces, can also be seen in Figures 6.19a,

6.19c, and 6.19e for the rolling element-to-inner raceway contact forces.

The contact forces on the rolling elements due to their compression between both

raceways in Figures 6.19a, 6.19c, and 6.19e show that the mating de-stressing and

re-stressing of the rolling elements upon their entry into and exit out of the defect,

respectively, occur at the same time instances.

As discussed in Section 6.3.4, it is the re-stressing event that causes the defect-

related impulsive acceleration signals. Therefore, the rolling element-to-raceway con-
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(a) Vertical contact forces on the first rolling ele-
ment j = 1 due to the compression between the
outer and inner raceways.
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(b) Vertical contact forces in Figure 6.19a
zoomed in the vicinity of rolling element j = 1
being re-stressed.
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(c) Vertical contact forces on the second rolling el-
ement j = 2 due to the compression between the
outer and inner raceways.
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(d) Vertical contact forces in Figure 6.19c zoomed
in the vicinity of rolling element j = 2 being re-
stressed.
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(e) Vertical contact forces on the third rolling el-
ement j = 3 due to the compression between the
outer and inner raceways.
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(f) Vertical contact forces in Figure 6.19e
zoomed in the vicinity of rolling element j = 3
being re-stressed.

Figure 6.19: Numerically modelled, notch filtered, vertical contact forces Fy between
two contact interfaces for a radial load W of 50 kN and rotational speed ns of 500RPM:
1) rolling element-to-outer raceway interface, and 2) rolling element-to-inner raceway
interface; the rolling element-to-inner raceway contact forces represented by the dashed
lines in (a, c, e) were inversed and changed to the solid, thick lines in (b, d, f) for clarity.
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tact forces plotted in Figures 6.19a, 6.19c, and 6.19e were zoomed in the vicinity of the

re-stressing phase, and the corresponding plots are shown in Figures 6.19b, 6.19d, and

6.19f, respectively. For the clear distinction of the time instances pertinent to the inter-

action of the rolling elements with both raceways, the rolling element-to-inner raceway

contact forces in the zoomed plots are inversed; these contact forces in Figures 6.19b,

6.19d, and 6.19f are represented by the gray-coloured, thick, solid lines, a modification

from the dashed lines in Figures 6.19a, 6.19c, and 6.19e.

It is evident from the zoomed contact force plots in Figures 6.19b, 6.19d, and

6.19f, as the rolling elements re-stress between the raceways, they alternate between

striking the outer and inner raceways. The amplitude of the forces is also higher at

the beginning of the re-stressing phase, and it reduces gradually as the rolling elements

fully re-stress between the raceways. In contrast to the rolling element-to-outer raceway

contact forces, the amplitude of the rolling element-to-inner raceway contact forces is

higher during the re-stressing of the rolling elements. This is due to the difference in

the geometrical curvature of the outer and inner raceways, which results in different

equivalent radii of curvature for the raceways estimated in conjunction with the radius

of the rolling element as per the Hertzian contact theory; refer to Equations (3.1)–

(3.3), Chapter 3. Compared to the rolling element-to-outer raceway contact interface,

the equivalent radii of curvature for the rolling element-to-inner raceway interface is

slightly less. As a result, the size of the contact patch at the rolling element-to-inner

raceway interface is slightly smaller than at the rolling element-to-outer raceway. This

difference eventually causes higher contact stresses (Equation (3.6)), and hence, forces

on the inner raceway compared to the outer raceway by 3%.

In practice, it is often observed in measured acceleration signals that the traverse

of a single rolling element through a bearing defect produces multiple impulses. The

experimentally measured acceleration time-traces shown in Figures 5.3, 5.5–5.8, Chap-

ter 5, clearly shows the occurrence of the multiple impulses in a single rolling element

pass-by event. As mentioned earlier, previous analytical models [90–96, 103, 114, 165]
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were based on the assumption that the defect-related impulsive vibration response of

a bearing is generated by a single force impulse that exponentially decays over time.

A tentative explanation about the occurrence of the multiple impulses is provided by

Sawalhi et al. [165] who suggest that they could be due to the beating effect related to

small differences in the resonance frequencies of a bearing. However, from the explicit

FE modelling of the defective rolling element bearing presented here, it is now clear

that it is not a beating effect, but a burst of multiple, short-duration, force impulses

during the re-stressing that consequently causes multiple impulses in the correspond-

ing acceleration signals. This is another important outcome of the FE analysis of the

rolling element bearing as it provides a firm confirmation as to why, in typically mea-

sured vibration signals, multiple impulses are observed during a single rolling element

pass-by event through a defect.

Numerically modelled rolling element-to-raceway contact forces for radial

loads W of 25 kN and 80 kN, and a rotational speed ns of 500 RPM

Similar to Figure 6.19, the numerically modelled, notch filtered, vertical rolling element-

to-outer raceway and rolling element-to-inner raceway contact forces for radial loads

W of 25 kN and 80 kN are shown in Figures 6.20 and 6.21, respectively. While the

complete time-traces of the contact forces for the length of the simulation, 30ms, are

plotted in subplots (a, c, e), the forces zoomed in the vicinity of the re-stressing of

the rolling elements are plotted in subplots (b, d, f) of both figures. The results in

Figures 6.19, 6.20 and 6.21 reveal similar findings as discussed above. As mentioned

earlier in Section 6.4.1, the rolling element-to-raceway contact forces were plotted on

different scales for clarity.

In summary, it can be concluded that defect-related force impulses in defective

rolling element bearings are produced during the re-stressing phase, which occurs in

the vicinity of the end of the defect, where the rolling elements alternatively impact

the outer and inner raceways.
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(a) Vertical contact forces on the first rolling el-
ement j = 1 due to the compression between the
outer and inner raceways.
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(b) Vertical contact forces in Figure 6.20a
zoomed in the vicinity of rolling element j = 1
being re-stressed.
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(c) Vertical contact forces on the second rolling
element j = 2 due to the compression between
the outer and inner raceways.
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(d) Vertical contact forces in Figure 6.20c
zoomed in the vicinity of rolling element j = 2
being re-stressed.
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(e) Vertical contact forces on the third rolling el-
ement j = 3 due to the compression between the
outer and inner raceways.

 

 

inner race-roller 3

outer race-roller 3

C
on

ta
ct

fo
rc

e
F
y

[k
N

]

Time t [ms]

28.2 28.4 28.6 28.8 29
0

1

2

3

4

5

(f) Vertical contact forces in Figure 6.20e
zoomed in the vicinity of rolling element j = 3
being re-stressed.

Figure 6.20: Numerically modelled, notch filtered, vertical contact forces Fy between
two contact interfaces for a radial load W of 25 kN and rotational speed ns of 500RPM:
1) rolling element-to-outer raceway interface, and 2) rolling element-to-inner raceway
interface; the rolling element-to-inner raceway contact forces represented by the dashed
lines in (a, c, e) were inversed and changed to the solid, thick lines in (b, d, f).
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(a) Vertical contact forces on the first rolling ele-
ment j = 1 due to the compression between the
outer and inner raceways.
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(b) Vertical contact forces in Figure 6.21a zoomed
in the vicinity of rolling element j = 1 being re-
stressed.
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(c) Vertical contact forces on the second rolling
element j = 2 due to the compression between the
outer and inner raceways.
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(d) Vertical contact forces in Figure 6.21c zoomed
in the vicinity of rolling element j = 2 being re-
stressed.
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(e) Vertical contact forces on the third rolling el-
ement j = 3 due to the compression between the
outer and inner raceways.
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(f) Vertical contact forces in Figure 6.21e
zoomed in the vicinity of rolling element j = 3
being re-stressed.

Figure 6.21: Numerically modelled, notch filtered, vertical contact forces Fy between
two contact interfaces for a radial load W of 80 kN and rotational speed ns of 500RPM:
1) rolling element-to-outer raceway interface, and 2) rolling element-to-inner raceway
interface; the rolling element-to-inner raceway contact forces represented by the dashed
lines in (a, c, e) were inversed and changed to the solid, thick lines in (b, d, f).
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6.5 Novel outcomes from the results of the explicit

dynamics FE analysis of the rolling element bear-

ing

The following are the novel and significant outcomes of the analysis and correlation of

the numerical rolling element-to-raceway contact forces with bearing vibration signals:

• a burst of multiple, short-duration, force impulses is generated during the re-

stressing of a rolling element, which leads to the generation of multiple vibration

impulses for a single pass-by of a rolling element through a defect,

• the amplitude of the contact forces and acceleration produced during the re-

stressing of the rolling elements is much greater than when the rolling elements

strike the defective surface,

• a burst of force impulses during the re-stressing leads to the generation of defect-

related impulses that are generally observed in measured acceleration signals, and

subsequently used for bearing diagnosis, and

• the generation of multiple force impulses during the re-stressing of a rolling el-

ement provides pragmatic insights that explain the occurrence of multiple im-

pulses in measured vibration signals as opposed to the tentative explanation of

the beating effect in reference [165].

The next section describes the parametric effects of varying load and speed on the

rolling element-to-raceway contact forces.
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6.6 Parametric effect of load and speed on the rolling

element-to-raceway contact forces

Similar to investigating the effect of varying radial load W and rotational speed ns

on the envelope power spectra of the measured and modelled acceleration ay signals

presented in the previous chapter, the effects of various loads and speeds on the rolling

element-to-raceway contact forces Fy are described in this section.

In order to facilitate an understanding of the aforementioned effects, the numer-

ically modelled rolling element-to-raceway contact forces are categorised into static

and dynamic components for the discussion that follows. While the static component

is considered to be the contact forces between the rolling elements and non-defective

sections of the raceways, the dynamic component is related to the multiple (contact)

force impulses that are generated during the re-stressing of the rolling elements as they

traverse through the defect. The static contact force on the rolling elements, which is

equivalent to the load distribution within a bearing, can also be analytically estimated

using the quasi-static load distribution model described in Chapter 3. The reason for

considering the static component to be the contact forces between the rolling elements

and non-defective sections of the raceways is discussed in Section 6.6.1.

For the discussion to be presented here, the static contact forces correspond to those

excluding the forces related to events #1, #2, and #4, whereas the dynamic contact

forces correspond to those related to event #4. As described in Sections 6.3.1, 6.3.2,

and 6.3.4 pertinent to explaining the contact force results in Figure 6.5, events #1,

#2, and #4 correspond to the de-stressing of the rolling elements, striking of the

rolling elements with the defective surface, and the re-stressing of the rolling elements,

respectively. As events #1 and #2 are associated with the interaction of the rolling

elements with the defect, they are not considered a part of the static load distribution

for the discussion that follows.
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Rolling element-to-outer raceway contact forces

Figure 6.22, which comprises six subplots, shows the numerically modelled, notch

filtered, vertical rolling element-to-outer raceway contact forces Fy corresponding to

radial loads W of 25 kN, 50 kN, and 80 kN, and rotational speeds ns of 300RPM,

500RPM, and 800RPM. Complete time-traces of the contact forces pertinent to the

traverse of a single rolling element through the outer raceway defect for each of the

nine load–speed (W–ns) combinations are presented in Figures 6.22a, 6.22c, and 6.22e,

whereas their partial time-traces zoomed in the vicinity of the rolling elements being re-

stressed between the outer and inner raceways are respectively shown in Figures 6.22b,

6.22d, and 6.22f. In all the subplots of Figure 6.22, the contact forces corresponding

to radial loads W of 25 kN, 50 kN, and 80 kN are represented using green-, blue-, and

red-coloured lines, respectively.

Rolling element-to-inner raceway contact forces

Corresponding to the rolling element-to-outer raceway contact forces in Figure 6.22,

the numerically modelled rolling element-to-inner raceway vertical contact forces Fy

are shown in Figure 6.23. Complete time-traces of the contact forces pertinent to the

traverse of a single rolling element through the defect are presented in Figures 6.23a,

6.23c, and 6.23e, whereas their partial time-traces zoomed in the vicinity of the re-

stressing event are respectively shown in Figures 6.23b, 6.23d, and 6.23f.

6.6.1 Effect on static contact forces

As can be seen from the results in Figures 6.22a, 6.22c, 6.22e, 6.23a, 6.23c, and 6.23e,

the magnitude of the static contact forces, corresponding to those between the rolling

elements and non-defective section of the raceways, increases with increasing radial

load W from 25 kN, to 50 kN, to 80 kN. As mentioned earlier, these contact forces can

also be analytically estimated using the quasi-static load distribution model described
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(a) Vertical rolling element-to-outer raceway con-
tact forces for ns = 300RPM, and W = 25 kN,
50 kN and 80 kN.
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(b) Vertical rolling element-to-outer raceway con-
tact forces in Figure 6.22a zoomed in the vicinity
of the rolling elements being re-stressed.
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(c) Vertical rolling element-to-outer raceway con-
tact forces for ns = 500RPM, and W = 25 kN,
50 kN and 80 kN.
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(d) Vertical rolling element-to-outer raceway con-
tact forces in Figure 6.22c zoomed in the vicinity
of the rolling elements being re-stressed.

 

 

80 kN

50 kN

25 kN

C
on

ta
ct

fo
rc

e
F
y

[k
N

]

Time t [ms]

0 10 20 30
0

5

10

15

(e) Vertical rolling element-to-outer raceway con-
tact forces for ns = 800RPM, and W = 25 kN,
50 kN and 80 kN.
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(f) Vertical rolling element-to-outer raceway con-
tact forces in Figure 6.22e zoomed in the vicinity
of the rolling elements being re-stressed.

Figure 6.22: Numerically modelled, notch filtered, vertical contact forces Fy between
the rolling elements and outer raceway for various radial loads and rotational speeds;
(a, c, e) complete time-traces, (b, d, f) partial time-traces zoomed in the vicinity of the
rolling elements being re-stressed between the raceways; geen-, blue-, and red-coloured
lines correspond to radial loads W of 25 kN, 50 kN, and 80 kN, respectively.
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(a) Vertical rolling element-to-inner raceway con-
tact forces for ns = 300RPM, and W = 25 kN,
50 kN and 80 kN.
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(b) Vertical rolling element-to-inner raceway con-
tact forces in Figure 6.23a zoomed in the vicinity
of the rolling elements being re-stressed.
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(c) Vertical rolling element-to-inner raceway con-
tact forces for ns = 500RPM, and W = 25 kN,
50 kN and 80 kN.
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(d) Vertical rolling element-to-inner raceway con-
tact forces in Figure 6.23c zoomed in the vicinity
of the rolling elements being re-stressed.
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(e) Vertical rolling element-to-inner raceway con-
tact forces for ns = 800RPM, and W = 25 kN,
50 kN and 80 kN.
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(f) Vertical rolling element-to-inner raceway con-
tact forces in Figure 6.23e zoomed in the vicinity
of the rolling elements being re-stressed.

Figure 6.23: Numerically modelled, notch filtered, vertical contact forces Fy between
the rolling elements and inner raceway for various radial loads and rotational speeds;
(a, c, e) full time-traces, (b, d, f) partial time-traces zoomed in the vicinity of the
rolling elements being re-stressed between the raceways; geen-, blue-, and red-coloured
lines correspond to radial loads W of 25 kN, 50 kN, and 80 kN, respectively.
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in Chapter 3.

From the aforementioned figures, it can be seen that the contact forces are max-

imised during the re-distribution of a load on the rolling elements at the non-defective

sections of the raceways as one of the rolling elements traverses through the defect

within a bearing; refer to Section 6.3.3 for the description of the load re-distribution

phase. The magnitude of the static contact forces considered for the discussion here

corresponds to that immediately prior or subsequent to the de-stressing or re-stressing

events, respectively, which represents the interaction of the rolling elements with the

non-defective sections of the raceways. This is because in the case of a non-defective

rolling element bearing, re-distribution of a load does not occur, and the vertical con-

tact force is a maximum at the centre of the load zone of the bearing. Except for the

variation in the rolling element-to-raceway contact forces during the re-distribution of

a load, the forces at the non-defective section of the raceways are similar for defective

and non-defective bearings; refer to Figure 3.12, Chapter 3, for a comparison between

the contact forces for defective and non-defective bearings. Therefore, consideration

of the magnitude of the static contact forces immediately prior or subsequent to the

de-stressing or re-stressing events, respectively, is deemed practically appropriate be-

cause the parametric effect of varying load and speed on the defect-related dynamic

force components can be referenced to the static load levels for a non-defective rolling

element bearing.

For the FE model of the defective rolling element bearing presented here, the outer

raceway line spall was centrally located within the bearing load zone. Therefore, the

rolling element-to-raceway vertical contact forces immediately prior and subsequent to

the de-stressing and re-stressing of the rolling elements, respectively, are similar to one

another. From Figure 6.22a (or Figures 6.22c or 6.22e), the magnitude of these rolling

element-to-outer raceway contact forces Fy are approximately 3 kN, 6 kN, and 10 kN

for radial loads W of 25 kN, 50 kN, and 80 kN, respectively. In contrast, the levels of

the rolling element-to-inner raceway contact forces in Figure 6.23a (or Figures 6.23c
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or 6.23e) are slightly higher than the corresponding rolling element-to-outer raceway

contact forces by approximately 3%. This is due to the difference in the geometrical

curvature of the outer and inner raceways that causes slightly higher rolling element-

to-inner raceway contact forces compared to the corresponding rolling element-to-outer

raceway contact forces, as mentioned in Section 6.4.2. The magnitude of the rolling

element-to-inner raceway contact forces prior to de-stressing and subsequent to re-

stressing events are similar and equal to 3.1 kN, 6.2 kN, and 10.3 kN for radial loads W

of 25 kN, 50 kN, and 80 kN, respectively.

The static contact forces (load distribution) are independent of the rotational

speed ns of the bearing; however, the defect-related dynamic contact forces, associ-

ated with the re-stressing of the rolling elements, vary significantly with the rotational

speed as discussed in the next section.

6.6.2 Effect on dynamic contact forces

Dynamic rolling element-to-outer raceway vertical contact forces Fy related to the re-

stressing of the rolling elements have been shown in Figures 6.22b, 6.22d, and 6.22f

for the rotational speeds ns of 300RPM, 500RPM, and 800RPM, respectively, at

various radial loadsW . Similarly, the dynamic rolling element-to-inner raceway vertical

contact forces Fy related to the re-stressing events have been shown in Figures 6.23b,

6.23d, and 6.23f. As can be seen from these figures, multiple force impulses of varying

magnitudes are generated during the re-stressing of the rolling elements. In a similar

way to selecting a single value for the static forces for various loads, it would be useful

to choose a single value for the dynamic contact forces for various load–speed (W–ns)

combinations. However, from the multiple impulses, it was difficult to pick a particular

impulse for representing a maximum level of the dynamic contact forces. Therefore,

in order to ensure consistency across various FE simulations and facilitate choosing a

maximum of the dynamic contact forces, they were band-pass filtered from 18 kHz to
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23 kHz, which is similar to the frequency band used to demodulate the acceleration

ay signals. The envelopes of the band-pass filtered rolling element-to-raceway contact

forces were then estimated using the Hilbert transform H [348] as discussed in the

previous chapters.

For clarity, the defect-related dynamic rolling element-to-outer raceway contact

forces shown in Figures 6.22b, 6.22d, and 6.22f are reproduced in Figures 6.24a, 6.24b,

and 6.24c, respectively, along with their band-pass filtered envelopes. While the contact

forces are plotted using thin lines, the envelopes are plotted using relatively thick

lines. For radial loads W of 25 kN, 50 kN, and 80 kN, the contact forces and their

corresponding envelopes are represented using green-, blue-, and red-coloured lines,

respectively.

Similarly, the defect-related dynamic rolling element-to-inner raceway contact forces

that have been shown in Figures 6.23b, 6.23d, and 6.23f are reproduced in Figures 6.25a,

6.25b, and 6.25c, respectively, along with their band-pass filtered envelopes.

From Figures 6.24 and 6.25, a maximum of the envelopes of the band-pass filtered

rolling element-to-raceway contact forces are plotted in Figure 6.26 as a function of

the rotational speed ns of the bearing for each radial load W . These results for the

rolling element-to-outer raceway contact forces are plotted in Figure 6.26a, and for the

rolling element-to-inner raceway forces are plotted in Figure 6.26b. Along with the

maximum of the defect-related force impulses, which are represented using dash, solid,

and dash-dotted lines for radial loads of 25 kN, 50 kN, and 80 kN respectively, three

horizontal (dotted) lines having dotted markers are also plotted. These lines represent

the static contact force levels immediately subsequent to the re-stressing of the rolling

elements as mentioned in the preceding section. In Figure 6.26a, the static forces are

plotted at 3 kN, 6 kN, and 10 kN corresponding to radial loads of 25 kN, 50 kN, and

80 kN, respectively, whereas in Figure 6.26b, the static forces are plotted at 3.1 kN,

6.2 kN, and 10.3 kN. As mentioned earlier, the static contact forces are independent of

the rotational speed of the bearing.
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(a) Vertical rolling element-to-outer raceway contact forces shown in Figure 6.22b along with their
respective band-pass filtered envelopes.
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(b) Vertical rolling element-to-outer raceway contact forces shown in Figure 6.22d along with their
respective band-pass filtered envelopes.
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(c) Vertical rolling element-to-outer raceway contact forces shown in Figure 6.22f along with their
respective band-pass filtered envelopes.

Figure 6.24: Numerically modelled, notch filtered, vertical contact forces Fy between
the rolling elements and outer raceway for various radial loads and rotational speeds;
geen-, blue-, and red-coloured lines correspond to radial loads W of 25 kN, 50 kN, and
80 kN, respectively; thin lines correspond to the defect-related dynamic contact forces
generated during the re-stressing of the rolling elements, and thick lines correspond to
the band-pass filtered envelopes of the contact forces.
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(a) Vertical rolling element-to-outer raceway contact forces shown in Figure 6.23b along with their
respective band-pass filtered envelopes.
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(b) Vertical rolling element-to-outer raceway contact forces shown in Figure 6.23d along with their
respective band-pass filtered envelopes.
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(c) Vertical rolling element-to-inner raceway contact forces shown in Figure 6.23f along with their
respective band-pass filtered envelopes.

Figure 6.25: Numerically modelled, notch filtered, vertical contact forces Fy between
the rolling elements and inner raceway for various radial loads and rotational speeds;
geen-, blue-, and red-coloured lines correspond to radial loads W of 25 kN, 50 kN, and
80 kN, respectively; thin lines correspond to the defect-related dynamic contact forces
generated during the re-stressing of the rolling elements, and thick lines correspond to
the band-pass filtered envelopes of the contact forces.
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(a) Rolling element-to-outer raceway contact forces.
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(b) Rolling element-to-inner raceway contact forces.

Figure 6.26: Maximum of the envelopes of the band-pass filtered rolling element-to-
raceway contact forces Fy shown in Figures 6.24 and 6.25 for various radial loads and
rotational speeds; the horizontal lines along with dotted markers represent the static
rolling element-to-raceway contact force levels immediately prior or subsequent to the
de-stressing or re-stressing events, respectively, for radial loads W of 25 kN, 50 kN, and
80 kN.
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Load W
(kN)

Maximum of the envelope of the
band-pass filtered dynamic rolling
element-to-outer raceway contact

force Fy

Percentage increase in the
maximum of the envelope

from

Speed ns (RPM)
300 500 800 300–500RPM 500–800RPM

25 1.74 2.64 5.18 51.7 96.2
50 2.78 2.81 5.52 1.08 96.4
80 2.97 3.25 6.22 9.43 91.4

(a) Percentage increase in the dynamic rolling element-to-outer raceway forces from 300–500 RPM and
500–800 RPM.

Speed
ns
(RPM)

Maximum of the envelope of the
band-pass filtered rolling

element-to-outer raceway dynamic
contact force Fy

Percentage increase in the
maximum of the envelope

from

Load W (kN)
25 50 80 25–50 kN 50–80 kN

300 1.74 2.78 2.97 59.8 6.83
500 2.64 2.81 3.25 6.44 15.6
800 5.18 5.52 6.22 6.56 12.7

(b) Percentage increase in the dynamic rolling element-to-outer raceway forces from 25–50 kN and 50–
80 kN.

Table 6.1: Percentage increase in the maximum of the envelopes of the band-pass fil-
tered rolling element-to-outer raceway dynamic, defect-related, contact forces Fy shown
in Figure 6.26a for various radial loads and rotational speeds.

As can be seen from Figures 6.26a and 6.26b, the magnitude of the dynamic contact

force impulses generally increases with increasing rotational speed ns of the bearing and

also with the increasing radial load W . The percentage increase in the maximum of the

envelopes of the band-pass filtered rolling element-to-outer raceway dynamic contact

forces is shown in Table 6.1; the increase in terms of the rotational speed at each load

is shown in Table 6.1a, whereas the increase in terms of load at each rotational speed

is presented in Table 6.1b. Similarly, the percentage increase in the maximum of the

envelopes of the band-pass filtered rolling element-to-inner raceway dynamic contact

forces is shown in Table 6.2.

The percentage increase in the dynamic contact forces shown in Tables 6.1 and 6.2
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Load W
(kN)

Maximum of the envelope of the
band-pass filtered rolling

element-to-inner raceway dynamic
contact force Fy

Percentage increase in the
maximum of the envelope

from

Speed ns (RPM)
300 500 800 300–500RPM 500–800RPM

25 2.29 3.63 6.01 58.5 65.6
50 3.21 3.93 5.52 22.4 58.0
80 3.22 3.97 7.29 23.3 83.6

(a) Percentage increase in the dynamic rolling element-to-inner raceway forces from 300–500 RPM and
500–800 RPM.

Speed
ns
(RPM)

Maximum of the envelope of the
band-pass filtered rolling

element-to-inner raceway dynamic
contact forces Fy

Percentage increase in the
maximum of the envelope

from

Load W (kN)
25 50 80 25–50 kN 50–80 kN

300 2.29 3.21 3.22 40.2 0.31
500 3.63 3.93 3.97 8.26 1.02
800 6.01 6.21 7.29 3.33 17.4

(b) Percentage increase in the dynamic rolling element-to-inner raceway forces from 25–50 kN and 50–
80 kN.

Table 6.2: Percentage increase in the maximum of the envelopes of the band-pass fil-
tered rolling element-to-inner raceway dynamic, defect-related, contact forces Fy shown
in Figure 6.26b for various radial loads and rotational speeds.

indicates that the higher the rotational speed of the rolling elements traversing through

the defect, the greater are the centrifugal forces acting on them. As a result, the

rolling elements traversing at higher speeds will strike the end of the defect with higher

forces that consequently lead to higher magnitudes of the impulsive forces generated

during the re-stressing of the rolling elements. Similarly, the higher the load on the

rolling elements in conjunction with the increasing rotational speed, the greater are

the magnitude of the contact stresses, and hence the contact forces.

During the discussion of the correlation of the rolling element-to-raceway contact

forces with the acceleration results in Section 6.4, it was concluded that the impul-

sive acceleration signatures, generally observed in practice, are generated due to the
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re-stressing of the rolling elements between the outer and inner raceways. As the

magnitude of the dynamic contact forces associated with the re-stressing of the rolling

elements increases with increasing radial load W and rotational speed ns, the impulsive

acceleration levels also increase. The parametric effects of increasing load and speed

on both experimentally measured and numerically modelled acceleration levels were

described in Section 5.4, Chapter 5.

6.6.2.1 Comparison of the defect-related dynamic contact forces with the

static load distribution

This section presents a comparison of the defect-related dynamic contact forces with

the static force levels.

Rolling element-to-outer raceway contact forces

The effects of increasing the rotational speed ns of the bearing for a particular radial

load W , on the dynamic rolling element-to-outer raceway contact forces Fy, presented

in Figures 6.24a, 6.24b, and 6.24c, are discussed below with reference to the aforemen-

tioned static force components.

• Figure 6.24a — for the FE model of the rolling element bearing rotated at

300RPM and subjected to a radial load of 25 kN, it can be observed in Fig-

ure 6.24a that the maximum of the envelope of the band-pass filtered dynamic

contact force, 1.74 kN (at 27.5ms), is less than that of the static force component

immediately subsequent to the re-stressing event, 3 kN (at 28ms) — a difference

of approximately 72%. For the FE simulation corresponding to a radial load of

50 kN, from Figure 6.24a, the difference between the maximum of the envelope,

2.78 kN (at 27.1ms), and static force component, 6 kN (at 28ms), is approxi-

mately 115%, which is almost 1.6 times the previous one. Similarly, for a load of

80 kN, from Figure 6.24a, the difference between the maximum of the envelope,
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2.97 kN (at 26.9ms), and static force, 10 kN (at 28ms), is approximately 236%.

• Figure 6.24b — similar to aforementioned discussion, from the results in Fig-

ure 6.24b corresponding to a rotational speed ns of 500RPM, the differences

between the maximum of the band-pass filtered envelopes and static force com-

ponents are approximately 13%, 113%, and 207% for radial loads W of 25 kN,

50 kN, and 80 kN, respectively.

• Figure 6.24c — from the results in Figure 6.24c corresponding to the rotational

speed ns of 800RPM, the differences between the maximum of the envelopes and

static force components are approximately -42%, 8%, and 60% for radial loads

W of 25 kN, 50 kN, and 80 kN, respectively. It should be highlighted here that

the maximum of the band-pass filtered envelope of the dynamic contact force

corresponding to the FE simulation at a rotational speed of 800RPM and load

of 25 kN (5.18 kN at 18.4ms) is higher than that of the static force component

(3 kN); thereby, resulting in a percentage increase in contrast to percentage de-

crease for all the other FE simulations.

The above described results along with the percentage variations between the static

and maximum of the defect-related dynamic rolling element-to-outer raceway contact

forces are summarised in Table 6.3. For each radial load W , it can be observed from the

results in Table 6.3 that as the rotational speed ns of the bearing increases, the percent-

age difference between the maximum of the envelope of the dynamic and static contact

force components decreases. In other words, the magnitude of the force impulses gen-

erated during the re-stressing of the rolling elements generally increases with increasing

rotational speeds. The reason for the increase in the magnitude of the dynamic contact

forces has been explained in the preceding section.

As mentioned earlier with reference to the results in Figure 6.24c, for the FE model

of the bearing rotated at 800RPM and subjected to a radial load of 25 kN, the mag-

nitude of the defect-related dynamic contact forces generated during the re-stressing
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Load W
(kN)

Static
contact
force Fy
(kN)

Maximum of the
envelopes of the

band-pass filtered
rolling

element-to-outer
raceway dynamic

contact force Fy (kN)

Percentage difference
between static and

dynamic force
components at various

speeds (%)

Rotational speed ns (RPM)
300 500 800 300 500 800

25 3 1.74 2.64 5.18 72.4 13.6 -42.1
50 6 2.78 2.81 5.52 115.8 113.5 8.70
80 10 2.97 3.25 6.22 236.7 207.7 60.8

Table 6.3: Percentage difference between the vertical static force components and the
maximum of the envelopes of the band-pass filtered rolling element-to-outer raceway
dynamic, defect-related, contact forces shown in Figure 6.26a for various radial loads
and rotational speeds.

Load W
(kN)

Static
contact
force Fy
(kN)

Maximum of the
envelopes of the

band-pass filtered
rolling

element-to-inner
raceway dynamic

contact force Fy (kN)

Percentage difference
between static and

dynamic force
components at various

speeds (%)

Rotational speed ns (RPM)
300 500 800 300 500 800

25 3.1 2.29 3.63 6.01 35.37 -14.60 -48.42
50 6.2 3.21 3.93 6.21 93.15 57.76 -0.161
80 10.3 3.22 3.97 7.29 219.9 159.4 41.29

Table 6.4: Percentage difference between the vertical static force components and the
maximum of the envelopes of the band-pass filtered rolling element-to-inner raceway
dynamic, defect-related, contact forces shown in Figure 6.26b for various radial loads
and rotational speeds.
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event is higher than the corresponding static contact force subsequent to the re-stressing

of the rolling elements. However, for the rotational speeds of 500RPM and 300RPM,

the magnitude of the dynamic contact forces is still lower than the corresponding static

contact forces. It indicates that if the rotational speed of a loaded rolling element bear-

ing is increased, the levels of the defect-related force impulses will eventually exceed

the static contact force levels. It is difficult to comment on the implications on the

operation of a bearing if the levels of the defect-related dynamic force impulses exceed

the static force levels, as briefly described below.

One the one hand, higher load on the rolling elements, which increases the static

load distribution within a bearing, can cause higher contact stresses at the rolling

element-to-raceway interfaces. This will lead to an increase in the probability of ini-

tiating surface contact fatigue on the bearing components. On the other hand, the

increase in the magnitude of the impulsive contact forces generated during the re-

stressing of the rolling elements can cause an expansion of a defect, thereby extending

the length of the defect in the rolling direction [337]. This poses an interesting research

question as to which is more severe for an operating rolling element bearing, load or

speed?

For non-defective rolling element bearings, application of higher than recommended

loads can significantly reduce the fatigue life of the bearing components. However, for

defective rolling element bearings, to answer the question one has to undertake a full

parametric study, which could involve the application of an axial load, a combination

of axial and radial loads, varying amounts of clearance, and various types (size and

profiles) of defect. Such investigations are not a part of the current study, but can be

realised in future using the explicit FE model of the bearing developed in this thesis.
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Rolling element-to-inner raceway contact forces

Findings, similar to those discussed above pertinent to the dynamic rolling element-to-

outer raceway contact forces in Figure 6.24, can also be observed in Figure 6.25a, 6.25b,

and 6.25c. These figures show rolling element-to-inner raceway contact forces zoomed

in the vicinity of the re-stressing of the rolling elements along with their band pass-

filtered envelopes. The percentage variations between the maximum of the envelopes

of the rolling element-to-inner raceway contact forces and corresponding static force

components for varying radial loadW and rotational speed ns are provided in Table 6.4.

It can be observed from the results in Table 6.4 that for the FE simulation results

corresponding to rotational speeds ns of 500RPM and 800RPM, and a radial load W

of 25 kN, the levels of the defect-related dynamic force impulses are higher than the

static force component. This is also the case for the simulation corresponding to a

rotational speed of 800RPM and a radial load of 50 kN. These findings are similar to

those discussed above for the numerically modelled rolling element-to-outer raceway

contact forces corresponding to the rotational speed of 800 RPM and load of 25 kN. As

mentioned earlier, the magnitude of the rolling element-to-inner raceway contact forces

are slightly higher than the corresponding rolling element-to-outer raceway contact

forces due to the difference in the geometrical curvature of the outer and inner raceways,

which results in different equivalent radii of curvature of the raceways estimated in

conjunction with the radius of the rolling element as per the Hertzian contact theory.

In summary, from the results of the parametric study presented here, it can be

concluded as the rotational speed of a rolling element bearing increases, the magnitude

of the defect-related force impulses generated during the re-stressing of the rolling

elements increases.
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6.7 Conclusions

An in-depth analysis of the numerical rolling element-to-raceway contact forces, ob-

tained from the explicit dynamics finite element model of a defective rolling element

bearing, was presented along with their correlation with the bearing vibration signals.

The numerically modelled contact forces were validated against the static and quasi-

static analytical solution presented in Chapter 3. In addition to the contact forces at

the rolling element-to-raceway interfaces, the numerically modelled contact width and

displacement were also compared and found to be in a favourable agreement with the

corresponding analytical solution.

The variations in the contact forces as the rolling elements traverse through the

outer raceway defect were broadly divided into four events, namely event #1 to event #4.

While the low-frequency de-stressing of the rolling elements upon their entry into the

defect was labelled as event #1, the highly impulsive re-stressing of the rolling elements

corresponding to their exit from the defect was labelled as event #4. The impact of the

de-stressed rolling elements with the defective surface was labelled as event #2, and

event #3 was related to compensating for the lost load in the case of a rolling element

being unloaded in the defective region.

It was found that the re-stressing of the rolling elements that occurs near the end

of a raceway defect generates a burst of multiple, short-duration, force impulses. The

modelling results also highlight that much higher contact forces and accelerations are

generated on the exit of the rolling elements from the defect compared to when they

strike the defective surface.

As contact forces between mating bearing components are generally not measured

in practice during the condition-based monitoring of rolling element bearings, the dy-

namic modelling of the rolling element-to-raceway contact forces presented here adds

significant knowledge to the understanding of the characteristic vibration response of

defective rolling element bearings.
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The parametric effects of varying radial load and rotational speed on the rolling

element-to-raceway contact forces, both static and dynamic components, were de-

scribed. While the static forces corresponding to the load distribution are independent

of the rotational speed, the defect-related dynamic forces related to the re-stressing of

the rolling elements vary significantly with both load and speed. It was observed that

the magnitude of the dynamic contact forces increases with:

• increasing radial load on the bearing; and

• increasing rotational speed of the bearing.

The conclusions of the work presented in this thesis are presented in the next chapter

along with recommendations for future work.
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Chapter 7

Summary and Conclusions

7.1 Summary

The primary aim of the work presented in this thesis was to develop an understanding

of the underlying physical mechanism by which defect-related impulses are generated

in defective rolling element bearings. It was accomplished by modelling and analysing

the dynamic contact interaction of the rolling elements and bearing raceways, as the

rolling elements traverse through a localised raceway defect.

A comprehensive non-linear explicit dynamics finite element model of a rolling

element bearing having a localised line spall on its outer raceway was developed. The

model was solved numerically using a commercial FE software package, LS-DYNA.

In addition to predicting the rolling element-to-raceway contact forces, the vibration

response of the bearing was also modelled. The numerical modelling results were

verified using both analytical modelling results and experimental data measured during

the course of this research.

During the condition-based monitoring of rolling element bearings, a common prac-

tice is to measure the acceleration signals and analyse them using standard signal pro-

cessing techniques associated with the vibration-based monitoring of bearings. Contact

forces between mating bearing components are not measured in practice. As it was
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important to verify the numerically modelled rolling element-to-raceway contact forces,

a quasi-static analytical model for a defective rolling element bearing was developed to

estimate the load (force) distribution within the bearing. The numerical contact forces

were compared with the corresponding analytical results, and a favourable agreement

between the numerical and analytical contact forces was achieved. The quasi-static

model was based on the static load distribution model for a non-defective rolling ele-

ment bearing available in the literature.

Based on the findings of the numerically modelled rolling element-to-raceway con-

tact forces, a hypothesis was developed to explain the gradual decrease in the contact

forces as a rolling element enters into a defect. A new mathematical model was devel-

oped to estimate this gradual decrease in the rolling element-to-raceway contact forces,

and the model was incorporated in the quasi-static analytical model. The inertial and

centrifugal effects of the rolling elements, which determine the trajectory (path) of the

de-stressed rolling elements as they traverse through the defect, were not included in

the quasi-static model. Therefore, the quasi-static analytical model could not predict

the multiple force impulses, which are generated as the rolling elements re-stress be-

tween the raceways near the end of a defect; however, the model accurately predicted

the de-stressing of the rolling elements indicating the verification of the developed

hypothesis.

The numerically predicted vibration response of the defective rolling element bear-

ing was analysed. Standard, vibration-based, signal processing techniques were im-

plemented on the numerical vibration time-traces, and the results of the time, time–

frequency, and frequency domain analyses were presented. Time domain analysis was

used to determine the basic bearing kinematics; that is, the time separation of the

defect-related impulses representing the outer raceway defect frequency fbpo. Time–

frequency analysis was used to investigate the low- and high-frequency characteristic

vibration signatures, which are generated at the entry and exit of the rolling ele-

ments into and out of the defect, respectively. The most impulsive frequency band was
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determined using spectral kurtosis and a kurtogram, and the numerically modelled

vibration time-traces were band-pass filtered, prior to implementing the well-known

envelope analysis technique in order to predict the significant frequency components;

fundamental fbpo and corresponding harmonics.

A significant amount of numerical noise was observed in the numerically modelled

vibration time-traces. The instantaneous noise levels were high enough to mask the

low-frequency characteristic vibration signatures associated with the de-stressing of the

rolling elements. A novel hypothesis was developed to explain the cause of the rolling

contact noise, and the noise frequencies due to the interaction of the polygonised rolling

elements with both bearing raceways were analytically estimated. A favourable match

between the numerical and analytical rolling contact noise frequencies was observed,

which justifies the proposed hypothesis.

The numerical acceleration results predicted using the explicit dynamics FE model

of the bearing were validated using the corresponding measured data. A package

bearing unit having a line spall machined on its outer raceway was experimentally

tested and its vibration levels were measured. Several favourable comparisons between

the modelled and measured data were presented, which indicates the validation of the

numerically modelled results.

With the aim of understanding the dynamic contact interaction of the rolling ele-

ments and raceways of a bearing, an in-depth analysis of the rolling element-to-raceway

contact forces was undertaken. The variations in the contact forces as the rolling ele-

ments traverse through the outer raceway defect were broadly divided into four events:

event #1 — the de-stressing of the rolling elements, event #2 — the impact of the

rolling elements with the defective surface, event #3 — the load compensation, and

event #4 — the re-stressing of the rolling elements.

The physics behind the low- and high-frequency characteristic vibration signatures

generated at the entry and exit of the rolling elements into and out of the defect,

respectively, was explained. It was found that no impulse-like signatures were generated
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during the de-stressing of the rolling elements as they enter into a raceway defect; thus,

explaining the low-frequency characteristics of the vibration signatures for this event.

In contrast, a burst of multiple, short-duration, force impulses is generated as the

rolling elements re-stress between the raceways in the vicinity of the end of a defect,

which explains the high-frequency characteristics of the re-stressing event.

As the rolling elements re-stress between the raceways, they alternate between strik-

ing the outer and inner raceways, leading to the generation of multiple, short-duration,

force impulses in the vicinity of the end of a defect. The numerically modelled rolling

element-to-raceway contact forces were correlated with the vibration time-traces, and

the cause of the defect-related impulsive vibration signals generally observed in mea-

sured acceleration time-traces was explained.

It was found that although a rolling element can impact the surface of a defect

and generate a low amplitude acceleration signal, a much higher acceleration signal

is generated when the rolling elements are re-stressed between the raceways. These

higher acceleration signals, generated during the re-stressing phase, are the ones that

are generally observed in practice, and subsequently used for bearing diagnosis using

envelope analysis.

A parametric study to investigate the effects of varying radial loads W and ro-

tational speeds ns on the vibration response of the bearing and contact forces was

undertaken. The magnitude of the band-pass filtered envelope (demodulated) power

spectra at the fundamental defect frequency (1 × fbpo) was chosen as representative

of the vibration response, whereas a maximum of the band-pass filtered envelope of

the rolling element-to-raceway contact forces was used to represent the magnitude of

the multiple, short-duration, force impulses. It was found that the magnitude of the

defect-related vibration impulses and contact forces generated during the re-stressing

of the rolling elements increases with increasing load and speed.
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7.2 Conclusions

The conclusions of the work presented in this thesis are as follows:

• a burst of multiple, short-duration, force impulses is generated during the re-

stressing of a rolling element near the end of a defect, which leads to the gen-

eration of multiple vibration impulses for a single pass-by of a rolling element

through a defect;

• the amplitude of the contact forces and acceleration produced during the re-

stressing of the rolling elements is much greater than when the rolling elements

strike the defective surface;

• a burst of multiple force impulses during the re-stressing event leads to the gen-

eration of defect-related impulses that are generally observed in measured accel-

eration signals, and subsequently used for bearing diagnosis;

• the generation of multiple force impulses during the re-stressing of a rolling ele-

ment provides pragmatic insights that explain the occurrence of multiple impulses

in measured vibration signals; and

• the amplitude of defect-related dynamic contact forces and impulsive acceleration

signals, generated during the re-stressing of the rolling elements, increases with

increasing radial load and rotational speed.

7.3 Recommendations for future work

Some recommendations for future work are listed below.

• A parametric study that includes a combination of various radial loads and ro-

tational speeds on the vibration response and rolling element-to-raceway contact

forces of the defective rolling element bearing having a rectangular line spall on its
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outer raceway has been presented in this thesis. Similar studies can be conducted

for various defect sizes ranging from line, to area, to extended spalls in order to

understand the characteristic vibration signatures for various defect sizes. The

profiles of the defects can also be varied ranging from smooth to more realistic

rough surfaces.

• Results from the FE modelling of the rolling element bearing presented here can

be incorporated into a statistical energy analysis software, such as VA One [402],

in order to predict the acoustic pressure levels corresponding to the defect-related

vibration response of the bearing. Transfer functions between the input defect-

related vibration and/or contact force levels and output sound pressure levels

can be investigated to understand the characteristics of the acoustics-related sig-

natures of the vibration impulses. This can be useful for further enhancing the

performance of the bearing acoustic monitors in the railway industry.

• The FE model of a rolling element bearing presented in this thesis is 2-D; there-

fore, only radial loads could be applied to the bearing model. In order to under-

stand the effect of an axial load and a combination of axial and radial loads on

the bearing vibration response, a 3-D model can be developed.

• Despite filtering the numerical noise, residual noise was present in the vibration

response and rolling element-to-raceway contact force results. This noise is in-

herent to the numerical solution and is due to the implementation of the central

difference method, which is an explicit time integration scheme, in LS-DYNA.

A new explicit time integration scheme has recently been developed [305] and

integrated in a commercially available FE software package, ADINA [309]. From

the comparison of results, shown in reference [305], obtained using the central

difference method and the new time integration method, it is understood that

the new time integration scheme produces less numerical noise. The dynamics of
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a rolling element bearing can be solved using ADINA to explore the possibility

of achieving cleaner results.
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Appendix B

Various Types of Bearing Damage

Bearing damage can occur as a result of a number of different operating conditions.

Those listed in this section are the most commonly found in rolling element bearings,

and often caused by the following [54]:

• insufficient maintenance practices;

• mishandling;

• improper installation and adjustment practices;

• inadequate lubrication

An overview of various types of damage commonly found in rolling element bearings

is provided here.

B.1 Wear — foreign material

One of the most common sources of trouble in rolling element bearings is wear and

damage caused by foreign particles. Foreign particle contamination can cause abrasive

wear, bruising, grooving, circumferential lining or debris contamination.
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B.1. Wear — foreign material

B.1.1 Abrasive wear

Fine foreign material in the bearing can cause excessive abrasive wear. Sand, fine metal

from grinding or machining, and fine metal or carbides from gears will wear or lap the

rolling elements and races. In roller bearings, the roller ends and cone (inner ring) rib

will wear to a greater degree than the races. This wear will result in increased axial

endplay or internal clearance, which can reduce fatigue life and result in misalignment

in the bearing. Abrasive wear also can affect other parts of the machine in which the

bearings are used. The foreign particles may get in through badly worn or defective

seals. Improper initial cleaning of housings and parts, ineffective filtration or improper

filter maintenance can allow abrasive particles to accumulate.

B.1.2 Pitting and bruising

Hard particles rolling through the bearing may cause pitting and bruising of the rolling

elements and races. Metal chips or large particles of dirt remaining in improperly

cleaned housings can initiate early fatigue damage.

B.1.3 Grooving

Grooving is caused by extremely heavy wear from chips or metal particles. These

contaminants become wedged in the soft cage material and cause cut grooves in the

rolling elements. This condition results in improper rolling contact geometry and can

reduce service life.

B.1.4 Debris contamination

Common causes of external debris contamination include dirt, sand and environmental

particles. Common causes of internal debris contamination include wear from gears,

splines, seals, clutches, brakes, joints, housings not properly cleaned, and damaged or
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Appendix B. Various Types of Bearing Damage

spalled components. These hard particles travel within the lubrication, through the

bearing and eventually bruise (dent) the surfaces. Raised metal around the dents that

act as surface-stress risers cause premature spalling and reduced bearing life.

B.2 Etching — corrosion

Etching or corrosion is one of the most serious problems encountered in rolling element

bearings. The high degree of surface finish on races and rolling elements makes them

susceptible to corrosion damage from moisture and water if not adequately protected.

Etching is most often caused by condensate collecting in the bearing housing due

to temperature changes. The moisture or water oftentimes gets in through damaged,

worn or inadequate seals. Improper washing and drying of bearings when they are

removed for inspection also can cause considerable damage.

B.3 Inadequate lubrication

Inadequate lubrication can create a wide range of damage conditions. Damage happens

when the lubricant intended for a bearing is not sufficient to separate the rolling and

sliding contact surfaces during service. The damage caused by inadequate lubrication

varies greatly in both appearance and performance. Depending on the level of damage,

it may range from very light heat discoloration to total bearing lockup with extreme

metal flow.

B.4 Brinell and impact damage

Improper mounting practices and/or extremely high operational impact or static loads

may cause brinelling. Brinell due to improper mounting is caused where a force is

applied against the unmounted race. When mounting a bearing on a shaft with a tight
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B.5. False brinelling

fit, pushing the outer race will exert an excessive thrust load and bring the rolling

elements into sharp contact with the race, causing brinell.

Extremely heavy impact loads, which may be short in duration, can result in brinell

of the bearing races and sometime even fracture the races and rolling elements.

B.5 False brinelling

False brinelling is, as the name implies, not true brinelling or denting. False brinelling

is actually fretting wear. It is caused by slight axial movement of the rolling elements

while the bearing is stationary. A groove is worn into the race by the sliding of the

rolling element back and forth across the race. Vibration causes the sliding movement.

There are times when this cannot be prevented, such as when automobiles or other

types of equipment are shipped by rail or truck for relatively long distances. It also

can occur during shipment by ocean freight. The vibration present may cause enough

movement to produce some of this false brinelling. It can be greatly reduced or elimi-

nated by reducing the potential for relative movement and decreasing the static weight

present during shipment or storage.

False brinelling can be distinguished from true brinelling by examining the depres-

sion or wear area. False brinelling will actually wear away the surface texture, whereas

the original surface texture will remain in the depression of a true brinell.

B.6 Burns from electric current

Arcing, which produces high temperatures at localised points, results when an electric

current that passes through a bearing is broken at the contact surfaces between the

races and rolling elements. Each time the current is broken while passing between the

ball or roller and race, a pit is produced on both parts. Eventually fluting develops.

As it becomes deeper, noise and vibration result. A high-amperage current, such as
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Appendix B. Various Types of Bearing Damage

a partial short circuit, will cause a rough, granular appearance. Heavy jolts of high-

amperage charges will cause more severe damage, resulting in the welding of metal

from the race to the ball or roller. These protrusions of metal on the roller will, in

turn, cause a crater effect in the race, resulting in bearing noise and vibration.

Causes of arcing include static electricity from charged belts or processes that use

calendar rolls, faulty wiring, improper grounding, welding, inadequate or defective

insulation, loose rotor windings on an electric motor and short circuits.
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Appendix C

Bearing Defect Frequencies

For the case of a stationary outer ring and rotating inner ring, following are the char-

acteristic defect frequencies of a rolling element bearing rotating at a frequency fs [3,

Chapter 25, page 994]:

fc =
fs
2

(

1− Dr

Dp

cosα

)

(C.1)

fbpo =
fs ×Nr

2

(

1− Dr

Dp
cosα

)

(C.2)

fbpi =
fs ×Nr

2

(

1 +
Dr

Dp
cosα

)

(C.3)

fbs =
fs ×Dp

2×Dr

[

1−
(

Dr

Dp
cosα

)2
]

(C.4)

fc cage frequency, commonly referred to as fundamental train frequency — it

is the rotational speed of the cage in a rolling element bearing,

fbpo ball pass frequency outer raceway (BPFO), commonly referred to as outer

raceway defect frequency — it is the rate at which the rolling elements pass

a point on the outer raceway within a rolling element bearing,

327



fbpi ball pass frequency inner raceway (BPFI), commonly referred to as inner

raceway defect frequency — it is the rate at which the rolling elements pass

a point on the inner raceway within a rolling element bearing,

fbs ball spin frequency (BSF), commonly referred to as ball or roller defect

frequency — it is the rate of rotation of a rolling element about its own

axis,

Dp bearing pitch diameter,

Dr rolling element diameter,

Nr number of rolling elements, and

α contact angle.

These frequencies are kinematic frequencies that are based on the geometry of a rolling

element bearing. These frequencies do no take into account the slippage of the rotating

components [30]. As a result, actual characteristic defect frequencies slightly differ from

those predicted using the aforementioned equations.
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Appendix D

Implicit and Explicit Time Integration

Schemes

Finite element analysis that involves simulating short-duration large deformation dy-

namics and quasi-static problems with large deformations and multiple non-linearities

or complex contact–impact problems requires the use of either implicit [287–294] or

explicit [292, 295–305] solution techniques. Examples of these types of simulations are

crashworthiness analysis, drop testing, deep drawing, rolling, extruding, pipe whip,

bird strike and many more [307, 329].

Both implicit and explicit solution techniques involve a numerical time integration

scheme to solve for the unknown displacement solution, which is the basis for calculating

resulting strains and stresses. Implicit integration schemes, such as Newmark time

integration method [288], assume a constant average acceleration over each time step,

between tn and tn+1. The value tn is the time at the beginning of each time step and

the value tn+1 is the time at the end of each time step. The governing equation is

evaluated and the resulting accelerations and velocities at tn+1 are calculated, followed

by the estimation of unknown displacements at tn+1. Explicit integration schemes,

central difference method [299, 302], assume a linear change in displacement over each

time step. The governing equation is evaluated and the resulting accelerations and
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D.1. Description of structural and other second-order systems

velocities at tn are calculated, followed by the estimation of unknown displacements at

tn+1.

The implicit solution method requires matrix inversion of the structural stiffness

matrix, whereas the explicit solution does not. In contrast to implicit methods [287–

294], which are unconditionally stable, the explicit methods [292, 295–305] are stable

only if the time step size ∆t is smaller than the critical time step size ∆tcritical for the

structure being simulated. In other words, explicit solutions are conditionally stable.

Newmark and central difference time integration methods, which are commonly used

implicit and explicit solution techniques, respectively, for approximating the dynamics

of a system are described below.

D.1 Description of structural and other second-order

systems

For most structural dynamics problems of a mechanical system, the spatial discretisa-

tion for the principle of virtual work using the finite element method gives the finite

element semi-discrete equation of motion as follows [403, Chapter 17]

Mü(t) +Cu̇(t) + F
i(t) = F

a(t) (D.1)

where,

M structural mass matrix,

C structural damping matrix,

ü(t) nodal acceleration vector,

u̇(t) nodal velocity vector,

u(t) nodal displacement vector,
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Appendix D. Implicit and Explicit Time Integration Schemes

F
i internal load vector, and

F
a applied load vector.

D.1.1 Newmark time integration scheme for nonlinear systems

The Newmark method assumes that at time tn+1 the semi-discrete equation of motion

given in Equation (D.1) can be rewritten as [403, Chapter 17]

Mün+1 +Cu̇n+1 + F
i
n+1un+1 = F

a
n+1 (D.2)

where,

ün+1 is the nodal acceleration vector at time tn+1,

u̇n+1 is the nodal velocity vector at time tn+1,

un+1 is the nodal velocity vector at time tn+1, and

F
a
n+1 is the applied load vector at time tn+1.

Note that F
i
n+1un+1 is dependent on the current displacement un+1 at time tn+1. In

addition to Equation (D.2), the Newmark family of time integration algorithms requires

the displacement and velocity to be updated as follows [403, Chapter 17]

u̇n+1 = u̇n + [(1− Λ)ün + Λü]∆t (D.3)

un+1 = un + u̇n∆t + [(
1

2
− Γ)ün + Γün+1]∆t

2 (D.4)

where,

Λ, Γ are the Newmark’s integration parameters,

ün is the nodal acceleration vector at time tn,
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D.1. Description of structural and other second-order systems

u̇n is the nodal velocity vector at time tn, and

un is the nodal velocity vector at time tn.

By introducing the residual vector Rn+1un+1, Equation (D.2) can be written as [403,

Chapter 17]

Rn+1un+1 = F
a
n+1 − F

i
n+1un+1 −Mün+1 +Cu̇n+1 (D.5)

It is important to note that the time integration operator given in either Equa-

tion (D.2) or Equation (D.5) represents a nonlinear system of simultaneous algebraic

equations. Therefore, a linearised form of the time integration operator can be obtained

by the Newton-Raphson method as follows [403, Chapter 17]

Rn+1u
k
n+1 +

∂Rn+1u
k
n+1

∂uin+1

∆u
k
n+1 = [0] (D.6)

where, u
k
n+1 the estimate of un+1 at the kth iteration, and ∆u

k
n+1 the displacement

increment of un+1 at the kth iteration.

Rn+1u
k
n+1 = F

a
n+1 − F

i
n+1u

k
n+1 −Mün+1 +Cu̇n+1 (D.7)

Equation (D.6) gives [403, Chapter 17]

[(a0M+ a1C) +K
T
n+1u

k
n+1]∆u

k
n+1 = Rn+1u

k
n+1 (D.8)

where, a0 =
1

Γ∆t2
, a1 =

Λ

Γ∆
, and K

T
n+1u

k
n+1 is tangent stiffness matrix at time tn+1.

For nonlinear problems:

• The solution is obtained using a series of linear approximations (Newton-Raphson

method), so each time step may have many equilibrium iterations.

• The solution requires inversion of the nonlinear dynamic equivalent stiffness ma-

trix.
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• Small, iterative time steps may be required to achieve convergence.

• Convergence tools are provided, but convergence is not guaranteed for highly

nonlinear problems.

D.1.2 Central difference time integration scheme for nonlinear

systems

For the explicit method, the central difference time integration method is used. The

the semi-discrete equation of motion at time n are given as [329, Chapter 24]

Mün = F
ext
n − F

int
n + F hg

n (D.9)

where, F
ext
n is the applied external and body force vector, F

int
n is the internal force

vector, and F hg
n is the hourglass resistance force. To advance to time tn+1, acceleration

evaluated at time n are given by as

ün = M
−1(Fext

n − F
int
n + F hg

n ) (D.10)

The velocities and displacements are then evaluated as

u̇n+1/2 = u̇n−1/2 + ün∆t (D.11)

un+1 = un + u̇n+1/2∆tn+1/2 (D.12)

where,

∆tn+1/2 =
∆tn +∆tn+1

2
(D.13)

The geometry is updated by adding the displacement increments to the initial

geometry X0

Xn+1 = X0 + un+1 (D.14)
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D.1. Description of structural and other second-order systems

For nonlinear problems:

• A lumped mass matrix is required for simple inversion.

• The equations become uncoupled and can be solved for directly (explicitly).

• No inversion of the stiffness matrix is required.

• All non-linearities (including contact) are included in the internal force vector.

• The major computational expense is in calculating the internal forces.

• No convergence checks are needed since the equations are uncoupled.

• Very small time steps are required to maintain the stability limit.
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Appendix E

Material Model for the Explicit FE

Model of the Rolling Element Bearing

For the explicit dynamics finite element simulations undertaken for the current study,

isotropic elastic material model was used. The model is defined by density, modulus

of elasticity, and Poisson’s ratio. In this model, the co-rotational rate of the deviatoric

Cauchy stress tensor is computed as [329, Chapter 19, page 19.14]

s∇
n+1/2

ij = 2Gε̇
n+1/2
ij (E.1)

and pressure as

pn+1 = −K lnV n+1 (E.2)

where, G is the elastic shear modulus, K is the bulk modulus, V is the relative volume;

that is, the ratio of the current volume to the initial volume, and ε̇ij is the strain rate

tensor.
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Appendix F

Contact–Impact Analysis of a Sphere

with Plate using LS-DYNA

List of Symbols

E1, E2 modulus of elasticity of a sphere and plate (half-space)

E
′ equivalent modulus of elasticity

Fc time-varying contact–impact force

Fm maximum force at the sphere–plate (half-space) contact interface

hf fall height

h
′ initial fall height

kcs contact or spring stiffness

m mass of a sphere

r radius of a sphere

vi impact velocity

337



F.1. Introduction

δm maximum displacement at the sphere–plate (half-space) contact interface

∆tcritical critical time step

ν1, ν2 Poisson’s ratio of a sphere and plate (half-space)

ρ material density

τ contact–impact time duration

F.1 Introduction

In order to understand the functional capabilities and features of the contact–impact

algorithm used in LS-DYNA [329, Chapter 26], a problem of a sphere impacting a plate

was modelled using LS-DYNA. In this appendix, a detailed step-by-step analysis of the

problem along with necessary theoretical background is presented. The importance of

meshing and adjusting the stiffness penalty factor is highlighted for achieving accurate

results. Several comparison between the numerically modelled and analytically esti-

mated results has highlighted the need to alter the default analysis and control settings

pertinent to the contact–impact algorithm built within LS-DYNA. Altering the default

settings has helped achieved a close agreement between numerical and theoretical re-

sults.

F.2 Analytical solution

The solution to the problem of a sphere impacting a plate is governed by the Hertz

theory of elasticity [175, 176]. An overview of the Hertz theory has already been

presented in Section 3.2, Chapter 3; therefore, only key formulae relevant to modelling

an elastic impact of a sphere with plate are mentioned here. A comprehensive account

on the contact of two bodies can be found in reference [177, Chapters 4].
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Considering an elastic sphere of mass m and radius r that impacts normally on

a plate, which is modelled as an elastic half-space, with velocity vi, the maximum

displacement δm during the impact is given as [177, Chapter 11, page 353]

δm =

(

15mv2i
16r1/2E ′

)2/5

(F.1)

where, E ′ represents the equivalent modulus of elasticity of the sphere and half-space,

which can be estimated as

1

E ′
=

1− ν21
E1

+
1− ν22
E2

(F.2)

where, E1 and ν1 are the modulus of elasticity and Poisson’s ratio of the sphere respec-

tively, and similarly E2, ν2 represent same definitions for the half-space.

The contact duration τ related to the impact of the sphere with half-space is given

by

τ = 2.94
δm
vi

(F.3)

The force–time relationship of the contact–impact between two bodies was investi-

gated by Hunter [404]. It can be approximated as a function of half-sine wave, and is

given by [405, 406]

Fc (t) =
1.14v2i
k1δm

sin
1.068vit

δm
, 0 ≤ t ≤ πδm

1.068vi
(F.4)

where, k1 =
3

4πρr
. The maximum force developed during a contact of two elastic bodies

was also reported by Hertz, which can be estimated as [177]

Fm =
2

3

E1

(1− ν21)
r
1/2δ

3/2
m (F.5)

In order to compare Equations (F.4) and (F.5), the maximum force magnitudes
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Figure F.1: A plot showing differences between peak contact force magnitudes obtained
using Equations (F.4) and (F.5).

using these equations were estimated, and the comparison of the results is shown

in Figure F.1. As can be seen from the figure that the estimates of the equations

diverge with increasing impact velocity vi or fall height hf ; the results obtained using

Equation (F.5) are higher compared to those obtained using Equation (F.4).

It is not the intention of this study to investigate the highlighted differences, but

to validate numerical modelling results, so as to understand the analysis methods

of the LS-DYNA software, especially the contact–impact algorithm. Therefore, the

numerical modelling results will be compared with those of the analytical estimates

from the aforementioned equations:

• Equation (F.1) for comparing maximum displacement δm,

• Equation (F.3) for comparing contact–impact duration τ ,

• Equation (F.4) for comparing force-time curve Fc, and

• Equations (F.4) and (F.5) for comparing peak contact–impact force Fm.
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F.3 Numerical modelling

This section describes the numerical modelling and validation of the contact–impact

analysis of a sphere and plate conducted using the FE software package, LS-DYNA

[329]. The steps related to conducting the FE contact–impact analysis of the sphere

and plate are described below. These steps include: (1) building the model; (2) meshing

the model; (3) defining contact interactions; (4) applying boundary conditions and

loads; and (5) solving the model.

F.3.1 Building the model

A three-dimensional (3-D) geometrical model of a sphere of radius r = 2mm and a

plate of dimensions (length×depth×height) 5 × 5 × 1mm was built. The sphere and

plate were separated by a distance of 1mm along the y-axis of the global coordinate

system.

Of the ten element types available in the element library within the FE software

package, LS-DYNA, eight-noded solid brick elements [329, Chapter 3] were used for

defining and meshing the sphere and plate. Each node of the element has the following

degrees-of-freedom: translations, velocities and accelerations in the nodal x-, y- and

z-directions.

For the current analysis involving the simulation of an elastic impact of a sphere

with plate, the isotropic material model was chosen. For defining an elastic material, its

density ρ, Young’s modulus E, and Poisson’s ratio υ, must be defined. The material

steel was used to model the sphere and plate with values of ρ = 7850 kg/m3, E =

200GPa, and ν = 0.3.

F.3.2 Meshing the model

The discretisation of a model into nodes and elements is an extremely important step

in an FE analysis as the accuracy of the results depends on the quality of the mesh and
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elements. Depending upon the nature and type of contacts between multiple bodies,

the location of regions of high stress concentration can vary constantly. Therefore, it

is generally recommended to mesh a model using uniform element sizes for explicit

analyses; however, for the current contact analysis of a sphere impacting a plate, the

region of high stress concentration is known a priori. Therefore, the regions of the

sphere and plate to be in contact can be meshed with fine elements, and the rest of

the regions of the model can be meshed with comparatively coarse elements.

Figure F.2 shows a meshed, quarter, model of the sphere-plate geometry. The

sphere and plate were meshed using tetrahedral and hexahedral elements, respectively

[329]. As mentioned earlier in Chapter 4, the smallest element size in a model controls

the time step that is used to advance the explicit solution. Refer to Section 4.2.5.1,

Chapter 4, for the definitions of the critical ∆tcritical and stable ∆tstable time steps,

which are limited by the Courant-Friedrichs-Lewy (CFL) criterion [384].

Finely meshed models with small sized elements would provide reliable estimates,

but result in large CPU run times. In contrast, coarsely meshed models can be solved in

less time comparable to models with fine mesh, but can result in inaccurate estimations.

Therefore, in order to investigate the effects of various mesh sizes, the sphere-plate im-

pact analyses were conducted for three different element mesh sizes — 0.2mm, 0.1mm,

and 0.05mm.

F.3.3 Contact interactions

Interactions between multiple bodies within a model refer to defining the type of contact

between the bodies and the parameters related to the contact algorithm. A detailed

explanation of the aforementioned topics is provided in LS-DYNA theory manual [329,

Chapter 26]. For the current analyses, a frictionless contact between the sphere and

the plate was defined.
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Figure F.2: A 3-D quarter model of a sphere and plate displaying the meshing.

F.3.3.1 Contact–impact algorithm

The surface-to-surface segment-based contact algorithm [329, Chapter 26] was chosen

to model the contact between the sphere and plate. The segment-based contact algo-

rithm is a general-purpose penalty-based algorithm. This algorithm invokes contact

between the surfaces of the bodies in contact, and provides more accurate contact

analysis compared to the node-surface penalty-based algorithm [329].

AS mentioned earlier in Section 4.2.3.1, Chapter 4, the contact stiffness between

contacting bodies, also referred to as spring stiffness, is calculated as [329, Chapter 26,

page 26.10]
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kcs(t) =
1

2
(SLSFAC)× (SFS or SFM)

(

m1m2

m1 +m2

)(

1

∆tcritical

)

(F.6)

where, SLSFAC is the default penalty scale factor, SFS or SFM are the default slave

and master penalty stiffness factors, respectively, m1 and m2 are segment masses of

the bodies in contact, and ∆tcritical is critical time step that advances the numerical

solution (discussed in Section 4.2.5.1, Chapter 4). The default value of SLSFAC defined

in the contact–impact algorithm built within LS-DYNA is 0.1, and for SFS and SFM, it

is 1. The effective penalty factor is the product of SLSFAC and SFS or SFM.

In a typical contact analysis, it is required to achieve an acceptable amount of pen-

etration of one body into the other; the amount of penetration depends on the nature

of contact analysis and material properties. As the default stiffness penalty factors

defined in the LS-DYNA code have to cater for a wide range of contact-related real

world problems, it can result in unnecessarily high penetration, consequently leading

to inaccurate results. Therefore, in order to achieve an acceptable amount of pen-

etration, the default penalty factors may need adjustment. Although increasing the

stiffness penalty factors results in decreasing the amount of penetration, such increase

can cause the ill-conditioning of the global stiffness matrix [329]; and can consequently

lead to unstable solution. Therefore, judicious scaling of these factors may be required.

Understanding the effects of altering the stiffness penalty factors on the accuracy

of contact–impact analyses is one of the crucial steps involved in such analyses. For

the contact–impact analysis of the sphere and plate, the penalty factor, SLSFAC, was

increased gradually to the limit beyond which the solution becomes unstable; this limit

is problem dependent as will be discussed in this appendix later.

F.3.4 Boundary conditions and loads

For the current analyses, the sphere was dropped from several heights hf : 1mm, 5mm,

25mm, 50mm, and 100mm. Instead of starting the simulation from 5mm, 25mm,
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50mm and 100mm, the simulations were started at the height of 1mm, and the initial

free fall of the sphere was modelled by applying initial velocity to all the nodes of

the sphere using the formula
√

2gh′, where h′ is the initial free fall height. This was

implemented to reduce the CPU run times.

To model the plate as half-space, an impedance boundary condition was applied to

all its exterior faces (and edges) except the top surface which will make contact with the

falling sphere. The application of the impedance boundary condition prevents stress

waves being generated at model boundaries from re-entering the model. The bottom

surface of the plate was constrained, translationally and rotationally, in x-, y- and z-

global directions. The standard earth gravity was applied to the model in the global

y-direction.

F.3.5 Analysis and control settings

Appropriate termination time was defined for various FE simulations to capture the

first impact so as to enable the output of contact–impact force Fc, contact–impact

duration τ and maximum displacement δm. The results, in the form of binary text

files, were output at the interval of 0.0001ms. All the results were post-processed

using a commercially available software, MATLAB®.

F.4 Numerical FE results

In order to investigate the influence of mesh sizes on the numerical modelling results,

FE simulations were conducted for three different mesh element sizes — 0.2mm, 0.1mm

and 0.05mm. For all these element sizes, the analyses were also conducted with default

and scaled stiffness penalty factors. These results are systematically presented in the

following sections.
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Figure F.3: Numerical and analytical contact forces generated during the free fall
normal impact of the sphere, from the height hf of 100mm, with the plate, modelled
as a half-space; the numerical results are shown for three different mesh element sizes
of 0.2mm, 0.1mm, and 0.05mm.

F.4.1 Influence of different mesh sizes

For the free fall height hf of 100mm, Figure F.3 shows various plots of the numerically

modelled contact forces pertinent to the impact of the sphere with plate (modelled as

half-space) for the three mesh sizes of 0.2mm, 0.1mm and 0.05 mm. The analytical

solution of the contact force versus time, calculated using Equation (F.4), is also plotted

in the figure along with the numerical modelling results for comparison.

It is clear from the results shown in Figure F.3 that the accuracy of the FE analyses

strongly depends on the size of the elements used for meshing the model. The contact–

impact durations τ for these simulations vary from 0.0248ms, to 0.0199ms, to 0.0173ms

for the mesh element sizes of 0.2mm, 0.1mm and 0.05mm, respectively. Compared to

the analytically estimated contact–impact duration, the numerically modelled contact

durations differ by (the percentage error of) 85.4%, 49.5% and 30.3% for the mesh

element sizes of 0.2mm, 0.1mm and 0.05mm, respectively.
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Mesh element size (mm) Maximum displacement δm(mm) Error (%)
numerical analytical

0.2 0.0129
0.0063

104.72
0.1 0.0100 58.73
0.05 0.0085 35.72

Table F.1: Numerical and analytical results for the maximum displacement δm during
the contact–impact of the sphere and plate.

As the analytical force–time relationship (Equation (F.4)) was approximated as a

function of half-sine wave, it can be seen from Figure F.3 that at the start and end

of the contact, the theoretical force-time curve follows a parabolic path. In contrast,

the numerically modelled force-time curves plateau during the start and end of the

contact, before gradually increase to follow a linear path; however, different to that of

the analytical solution.

Table F.1 shows the amount of maximum displacement δm of the sphere during

its contact with the plate for the three FE simulations with the aforementioned mesh

element sizes. The analytical solution for the maximum displacement, calculated us-

ing Equation (F.1), is also shown in the table along with the respective percentage

errors between the numerical and analytical results. The errors between numerical and

analytical results vary significantly from 104.72% to 58.73% to 35.72% for the mesh

element sizes of 0.2mm, 0.1mm, and 0.05mm, respectively.

For the above mentioned numerical analyses, the penalty factors were not altered

from their default values of 0.1 for SLSFAC, and 1 for SFS and SFM. Although the

difference between numerical and theoretical results, highlighted in Figure F.3 and

Table F.1, reduces with refining the mesh, numerically modelled higher contact dura-

tions τ and maximum displacements δm indicate the need to alter the default stiffness

penalty factors within the FE software package, LS-DYNA. This is described next.
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F.4.2 Altering the stiffness penalty factor

For all the three numerical simulations described above, the default penalty stiffness

factors were altered, and force-time curve Fc, contact–impact τ duration and maximum

displacement δm were obtained. These results are shown below.

F.4.2.1 Mesh element size of 0.2 mm

For the sphere-plate model discretised using the element size of 0.2mm, various FE

simulations were conducted with different stiffness penalty factors. The penalty factors

were increased from its default value of 0.1 to the limit where the solution became

unstable. The criterion for unstability in the solution was chosen to be the introduction

of unnecessary noise (spikes) in the results due to increased stiffness of the elements in

contact.

Contact force versus time

Figure F.4 shows the numerically modelled contact forces pertinent to the impact of the

sphere and plate, obtained using LS-DYNA, for various penalty factors. The analytical

estimated contact force Fc as a function of time is also plotted, represented by a solid,

thick, line, along with the FE simulation results, so as to facilitate the comparison.

The effect of increasing the stiffness penalty factor is evident in Figure F.4; the nu-

merically modelled contact force (and consequently contact duration) vary significantly

before reaching a state where solution stabilises, and ultimately resulting in an unsta-

ble solution. The magnitude of the peak contact force increases from approximately

62N for the penalty factor of 0.1 to 94N for the penalty factor of 1. For the penalty

factors ranging from 10 to 35, the numerical contact force–time curves are similar to

each other with their respective peak force magnitudes at around 105N.

The analytical peak contact force estimates obtained using Equations (F.4) and

(F.5) are 93N and 103N (differences between the maximum force magnitudes from
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Figure F.4: Numerical and analytical contact forces Fc generated during the free fall
impact of the sphere, from the height hf = 100mm, with the plate for various penalty
factors; the sphere-plate model was meshed using 0.2mm-sized elements.

these equations were shown in Figure F.1). The comparison of the analytical solution

with that of the numerically modelled peak contact force of 105N shows percentage

errors of 9.41% and 2.08%, respectively. It was mentioned in the literature [404],

the analytical force-time relationship given by Equation (F.4) is an approximation;

therefore, the above described comparison between the numerical and analytical peak

contact forces indicates that Equation (F.5) provides a better estimate for calculating

the peak contact force. However, Equation (F.4) is also required for plotting the force-

time curve and comparing it with respective numerical results.

As mentioned earlier, too much increase in the stiffness of a structure can cause

the ill-conditioning of the global stiffness matrix, which can result in unstable solution

and loss of accuracy. The unstability in Figure F.4 can be seen when the LS-DYNA

analysis was conducted with the stiffness penalty factor of 37.
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Contact–impact duration versus penalty factor

The contact–impact durations τ pertinent to the results of the FE simulations shown in

Figure F.4 were plotted over the corresponding penalty factors, and the respective plot

is shown in Figure F.5. The ‘unstable’ numerical solution is indicated using a circular

marker filled with a solid, red, colour; the size of this marker is biggest compared to all

the other markers in the figure. The ‘stable–converged’ refers to those FE simulations

for which the numerical contact durations τ are within 2% of the analytical estimate;

these numerical results are indicated using unfilled circular markers. The ‘stable–

unconverged’ refers to those simulations for which the difference between the numerical

and analytical contact durations is ≥ 4%; these numerical results are indicated using

circular markers filled with a solid, blue, colour; the size of these markers is smallest

compared to all the other markers in the figure. The usage of the words ‘converged’

and ‘unconverged’ in this appendix is purely related to comparing the numerical and

analytical results.

The corresponding analytical solution is also plotted in Figure F.5 as a dash-dotted

horizontal line. The contact duration τ of 0.0248ms obtained using the default penalty

factor continues to reduce with the increasing penalty factors; using the penalty factor

of 35, contact duration of 0.0131ms was obtained. The error between the analytical

and numerical solution for the contact duration converges from 88.39% (for default

penalty factor) to 0.49% (for penalty factor of 35). It can be seen from Figure F.5

that the numerical contact durations corresponding to the penalty factors from 10 to

35 agree well with the theory.

Maximum displacement versus penalty factor

Numerical solution for the maximum displacement δm of the sphere pertinent to the FE

simulation results in Figure F.4 are shown in Figure F.6 for varying stiffness penalty

factors, along with the respective analytical solution as a dash-dotted horizontal line.
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Figure F.5: Numerical and analytical contact–impact durations τ for the free fall im-
pact of the sphere, from the height hf = 100mm, with the plate for various penalty
factors; the sphere-plate model was meshed using 0.2mm-sized elements.

Although the numerical results corresponding to the penalty factors ranging from 10

to 35 plateau at around 0.0071mm, they differ by approximately 15% in comparison

with that of the analytical solution. For the penalty factor of 37, the ‘unstable’ FE

simulation has been indicated using a circular marker filled with solid, red, colour,

which is bigger in size compared to the rest of the circular markers filled with blue

colour.

Despite achieving favourable agreement between the analytical and numerical re-

sults for the contact–impact duration τ (Figure F.5), the disagreement of the numer-

ically estimated maximum displacement δm (shown in Figure F.6) with that of the

analytical estimate indicates the lack of accuracy in LS-DYNA analyses. This inaccu-

racy is also highlighted by the lack of smoothness in the numerical contact force-time

plots shown in Figure F.4.

As the influence of mesh element size on FE simulation results has already been

highlighted in Figure F.3, the aforementioned inaccuracy can be caused by inade-
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Figure F.6: Numerical and analytical maximum displacements δm for the free fall
impact of the sphere, from the height hf = 100mm, with the plate for various penalty
factors; the sphere-plate model was meshed using 0.2mm-sized elements.

quate meshing. Therefore, the aforementioned FE simulations were conducted with

fine meshing, and are presented below.

F.4.2.2 Mesh element size of 0.1 mm

The sphere-plate geometrical model was discretised using the mesh element size of

0.1mm, which is half the size of of the element size used for the previous analyses.

Contact force versus time

Figure F.7 shows the numerically modelled contact forces, obtained using LS-DYNA,

for various penalty factors. The analytically estimated contact force as a function of

time is also plotted in the figure, represented by a solid, thick, line, along with the

numerical results for comparison. The penalty factors were increased from the default

value in the way similar to that of the aforementioned simulations, and the effect of

increasing the penalty factor was also observed to be similar to the previous simulations.
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Figure F.7: Numerical and analytical contact forces Fc generated during the free fall
impact of the sphere, from the height hf = 100mm, with the plate for various penalty
factors; the sphere-plate model was meshed using 0.1mm-sized elements.

Figure F.7 shows that the numerical results for the peak contact force increase

from approximately 78 N for the penalty factor of 0.1 to approximately 105 N for the

penalty factors ranging from 1 to 25. The contact force-time curves corresponding to

the penalty factors of 10 to 25 are similar. The FE simulation corresponding to the

penalty factor of 30 resulted in instability as evident from the noise in the curve; the

relevant curve is indicated using a thin, solid, red, line in Figure F.7.

Compared to the results shown in Figure F.4 where the penalty factor of 37 caused

instability in the analysis, the penalty factor of 30 caused similar instability when the

element size of 0.1mm was used to discretise the sphere-plate model. This is because

the contact stiffness used during an contact–impact analysis depends on the masses

of the elements in contact and time step, which is also dependent on the size of the

elements within an FE model.

The comparison of Figures F.4 and F.7 clearly shows the influence of mesh refine-

ment as the contact-force plots shown in the latter figure are smoother than the plots
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Figure F.8: Numerical and analytical contact–impact durations τ for the free fall im-
pact of the sphere, from the height hf = 100mm, with the plate for various penalty
factors; the sphere-plate model was meshed using 0.1mm-sized elements.

in the former figure.

Contact–impact duration versus penalty factor

Similar to numerical results plotted in Figure F.5 for the mesh element size of 0.2mm,

the numerical impact-contact durations τ for the mesh element size of 0.1mm are

shown in Figure F.8. Except for the shape of the markers used in Figure F.5, similar

definition (variation in the size and fill pattern) was followed to distinguish between

‘stable–unconverged’, ‘stable–converged’, and ‘unstable’ FE simulations. The analyt-

ical solution of the contact duration is also plotted in Figure F.8, represented as a

dash-dotted horizontal line. It is evident from the figure that the numerical impact-

contact durations for the penalty factors from 10 to 25, referred to as ‘stable–converged’

analyses, agree well with the analytical solution; numerical and analytical results are

within 1.8%.

The variation in the sizes of the square-shaped markers was used to distinguish
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Figure F.9: Numerical and analytical maximum displacements δm for the free fall
impact of the sphere, from the height hf = 100mm, with the plate for various penalty
factors; the sphere-plate model was meshed using 0.1mm-sized elements.

between ‘stable–unconverged’, ‘stable–converged’, and ‘unstable’ FE simulations.

Maximum displacement versus penalty factor

The maximum displacement of the sphere during its impact with the plate, pertinent

to the results in figure F.7 for various penalty factors, is shown in Figure F.9. The

respective analytical estimate is also plotted in the figure as a dash-dotted horizontal

line. It can be seen from the figure that the numerical results corresponding to the

penalty factors from 5 to 25 agree well with the analytical solution; numerical and

analytical results are within 2.5%.

The comparison of Figures F.6 and F.9 shows significant improvement in the accu-

racy of the FE modelling results as the difference between the analytical and numerical

results reduced from 15% to 2.5%; these error percentages correspond to the discreti-

sation of the sphere-plate model using 0.2mm and 0.1mm sized elements, respectively.
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Figure F.10: Numerical and analytical contact forces Fc generated during the free fall
impact of the sphere, from the height hf = 100mm, with the plate for various penalty
factors; the sphere-plate model was meshed using 0.05mm-sized elements.

F.4.2.3 Mesh element size of 0.05 mm

The size of the elements used to discretise the sphere-plate model was further refined

to 0.05mm, and the FE simulations similar to those mentioned above were conducted.

Contact force versus time

Figure F.10 shows the results of numerically modelled contact forces for various penalty

factors along with the analytical solution for comparison purposes. The increase of the

penalty factors from the default value was carried out in the way similar to that of

the above-described FE simulations, and the effect of increasing the penalty factor was

also observed to be similar to the previous simulations.

The numerically modelled peak contact force increased from approximately 85N for

the penalty factor of 0.1 to approximately 106N for the penalty factors ranging from 5

to 40. The numerical contact force-time curves which correspond to the aforementioned
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range of the penalty factors are also similar to each other. These force-time curves are

relatively smooth in comparison to the plots of the contact forces shown in Figures F.4

and F.7.

The LS-DYNA results corresponding to the penalty factor of 42 shows ‘unstable’

solution indicated by thin solid, red, line.

Contact–impact duration versus penalty factor

The contact–impact durations τ pertinent to the FE simulations in Figure F.10 are

plotted for the corresponding penalty factors, and the respective plot is shown in Fig-

ure F.11. The ‘stable–unconverged’, ‘stable–converged’, and ‘unstable’ FE simulations

are distinguished using variation in the size and fill pattern of the diamond-shaped

markers. The contact–impact durations pertinent to the ‘stable–converged’ simual-

tions are similar to the analytical solution, which is shown as a dash-dotted horizontal

line. As evident from Figure F.11, the numerically modelled contact durations plateau

at around 0.0128ms, which differs by 2.3% from the analytical estimate of 0.0131ms.

Maximum displacement versus penalty factor

For the FE simulations corresponding to the mesh element size of 0.05mm, the maxi-

mum displacement δm versus penalty factor plot is shown in Figure F.12. The numerical

results pertinent to the ‘stable–converged’ simulations agree well with the analytical

solution; numerical and analytical results are within 3%.

Although the percentage errors between the numerical and analytical results shown

in Figures F.11 and F.12 (corresponding to the mesh element size 0.05mm) is slightly

higher than those of the errors shown in Figures F.8 and F.9 (corresponding to the

mesh element size 0.1mm), the latest FE simulations for 0.05 mm sized elements are

also considered as reliable and accurate. This is because of the relative smoothness of

the contact force-time plots; the smoothness is clearly evident in Figure F.10 compared

to Figures F.4 and F.7.
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Figure F.11: Numerical and analytical contact–impact durations τ for the free fall
impact of the sphere, from the height hf = 100mm, with the plate for various penalty
factors; the sphere-plate model was meshed using 0.05mm-sized elements.
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Figure F.12: Numerical and analytical maximum displacements δm for the free fall
impact of the sphere, from the height hf = 100mm, with the plate for various penalty
factors; the sphere-plate model was meshed using 0.05mm-sized elements.
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Figure F.13: Analytical and numerical estimates of the contact duration τ correspond-
ing to the impact of the sphere with half-space for various free fall heights hf .

FE simulations pertinent to the impact of the sphere with plate (modelled as half-

space) were also conducted for different heights hf — 50mm, 25mm, 10mm, 5mm.

The respective numerically modelled contact durations τ along with the analytical

estimates are shown in Figure F.13. A close agreement between the numerical and

analytical solution shows the validation of the dynamic sphere-plate impact modelling.

F.5 Conclusions

From the results of the numerical FE simulations described in this appendix, it can be

concluded that the accuracy of the analyses is highly dependent on the mesh element

size used in the model. For the numerical analyses corresponding to the mesh element

sizes of 0.2mm, 0.1mm and 0.05mm, the contact durations closely agree with that

of the analytical solution. However, the disagreement of the analytically estimated

maximum displacement with that of the numerically modelled for the mesh element
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F.5. Conclusions

size of 0.2mm highlights the need for refining the mesh.

The importance of scaling the stiffness penalty factors was highlighted in order to

achieve a reasonable agreement between numerical predictions and analytical results.

The validation of the contact–impact analysis of the sphere and plate has facilitated

gaining the required understanding of the contact–impact algorithm used in LS-DYNA.
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