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ABSTRACT
Software developers need access to different kinds of infor-
mation which is often dispersed among different documenta-
tion sources, such as API documentation or Stack Overflow.
We present an approach to automatically augment API doc-
umentation with “insight sentences” from Stack Overflow—
sentences that are related to a particular API type and that
provide insight not contained in the API documentation of
that type. Based on a development set of 1,574 sentences,
we compare the performance of two state-of-the-art summa-
rization techniques as well as a pattern-based approach for
insight sentence extraction. We then present SISE, a novel
machine learning based approach that uses as features the
sentences themselves, their formatting, their question, their
answer, and their authors as well as part-of-speech tags and
the similarity of a sentence to the corresponding API docu-
mentation. With SISE, we were able to achieve a precision
of 0.64 and a coverage of 0.7 on the development set. In a
comparative study with eight software developers, we found
that SISE resulted in the highest number of sentences that
were considered to add useful information not found in the
API documentation. These results indicate that taking into
account the meta data available on Stack Overflow as well as
part-of-speech tags can significantly improve unsupervised
extraction approaches when applied to Stack Overflow data.

CCS Concepts
•Information systems → Information extraction;
•Software and its engineering → Documentation;
•Computing methodologies → Supervised learning;

Keywords
API documentation, Stack Overflow, insight sentences

1. INTRODUCTION
While much of the information needed by software devel-

opers is captured in some form of documentation, it is often
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not obvious where a particular piece of information is stored.
Different documentation formats, such as wikis or blogs,
contain different kinds of information, written by different
individuals and intended for different purposes [38]. For
instance, API documentation captures information about
functionality and structure, but lacks other types of infor-
mation, such as concepts or purpose [18]. Some of the most
severe obstacles faced by developers learning a new API are
related to its documentation [32], in particular because of
scarce information about the API’s design, rationale [31],
usage scenarios, and code examples [32].

On the other hand, “how-to” questions [35] (also referred
to as “how-to-do-it” questions [10]) are the most frequent
question type on the popular Question and Answer (Q&A)
site Stack Overflow, and the answers to these questions have
the potential to complement API documentation in terms
of concepts, purpose, usage scenarios, and code examples.
While a lot of research has focused on finding code examples
for APIs (e.g., [17], [33]), less work has been conducted on
improving or augmenting the natural language descriptions
contained in API documentation.

To fill this gap, we compare techniques for automatically
extracting sentences from Stack Overflow that are related
to a particular API type and that provide insight not con-
tained in the API documentation. We call these sentences
insight sentences. The idea is related to update summa-
rization [4], which attempts to summarize new documents
assuming that the reader is already familiar with certain
old documents. Update summarization is often applied to
summarizing overlapping news stories. Applied to API doc-
umentation and content from Stack Overflow, the idea is to
create a summary of the discussions on Stack Overflow as
they relate to a given API type, assuming that the reader is
already familiar with the type’s API documentation.

Our research is guided by two main questions:

RQ1: To what extent are unsupervised and supervised ap-
proaches able to identify meaningful insight sentences?

RQ2: Do practitioners find these sentences useful?

To answer the first research question, we applied two
state-of-the-art extractive summarization techniques—
LexRank [13] and Maximal Marginal Relevance
(MMR) [4]—to a set of API types, their documenta-
tion, and related Stack Overflow threads. These techniques
assign a numeric value to each sentence and return the
top-ranked sentences as a summary. We found these
summarization techniques to perform poorly on our data,
mainly because sentences on Stack Overflow are often not
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Table 1: Motivating Examples
API type Stack Overflow sentence Stack Overflow id
java.sql.DriverManager Normally you use DriverManager when you just want a connection 10868758

for one time while with DataSource you get other features such as
connection pooling and distributed transactions.

java.net.URL URLEncoder is meant for passing data as parameters, not for 724043
encoding the URL itself.

java.lang.Thread join() waits for something meaningful while sleep() just sits there 4561951
doing nothing.

Table 2: Regular Expressions for filtering Stack Overflow Threads
question part pattern

body
.*(^|[a-z]+ |[\.!?] |[\(<])TypeName([>\)\.,!?$]| [a-z]+).*

(non-qualified API type surrounded by lower case words or punctuation marks)

title or body
(?i).*\bPackageName\.TypeName\b.*

(fully-qualified API type, case-insensitive)

body
.*<code>.*\bTypeName\b.*</code>.*

(non-qualified API type in code)

body
.*<a.*href.*PackageName/TypeName\.html.*>.*</a>.*

(link to the official API documentation)

title
(?i).*\b(a |an )TypeName\b.*

(non-qualified API type prefixed with “a” or “an”, case-insensitive)

Figure 1: Stack Overflow Example

meaningful on their own without their surrounding code
snippets or the question that prompted a given answer.
We also applied a pattern-based approach that has been
successfully used to detect and recommend fragments of
API documentation potentially important to a programmer
who has already decided to use a certain API element [7],
with similar results. We then developed a novel machine
learning approach called SISE (Supervised Insight Sentence
Extractor), which uses as features the sentences themselves,
their formatting, their question, their answer, and their
authors as well as part-of-speech tags and the similarity of
a sentence to the corresponding API documentation. With
SISE, we were able to achieve a precision of 0.64 and a
coverage of 0.7 on our development set.1 In addition to the
similarity of a sentence to its corresponding API documen-
tation, characteristics of the user asking the question, the
score and age of the answer, question characteristics, and
the part-of-speech tags at the beginning of a sentence were
among the features with the highest information gain.

To answer the second research question on whether practi-
tioners find these sentences useful, we conducted a compar-
ative study in which we asked eight software developers to
rate sentences extracted with all four approaches (LexRank,
MMR, patterns, and SISE). These sentences were related
to 20 Java API types. The study showed that sentences

1Precision measures the fraction of sentences extracted by
an approach that are meaningful while coverage measures
the ratio of API types for which the approach extracts at
least one sentence.

extracted by SISE were considered significantly more mean-
ingful and resulted in the most sentences that added use-
ful information not contained in the API documentation.
These results indicate that taking into account Stack Over-
flow meta data as well as part-of-speech tags can signifi-
cantly improve existing unsupervised approaches when ap-
plied to Stack Overflow data.

The main contributions of this work are the conceptual-
ization of insight sentences as sentences from one documen-
tation source that provide insight to other documentation
sources and a comparative study of four different approaches
for the extraction of such insight sentences, as well as a list
of factors that can be used to distinguish insight sentences
from sentences that are not meaningful or do not add useful
information to another documentation source.

2. MOTIVATING EXAMPLES
Table 1 shows, for three Java API types, a sentence taken

from Stack Overflow that contains useful information about
this type that is not stated in the type’s API documentation.
The goal of our work is to automatically extract such sen-
tences and use them to augment API documentation. The
first example is taken from our development set while the
other two examples were automatically identified by SISE.

Figure 1 shows the source of the sentence in the first ex-
ample. In an answer to a question about “DataSource and
DriverManager on J2SE”, the Stack Overflow user first cites
a statement from the API documentation, but then elabo-
rates on it further than the API documentation does. This
is an example of the API documentation lacking informa-
tion on purpose [18] since it only states which alternative is
preferred without explaining why. In contrast, the sentence
added by the Stack Overflow user clearly distinguishes the
roles of the API types discussed and explains which one
should be used in which situation. The second example
shows a case where a Stack Overflow user clarifies the re-
lationship between types with similar names in an answer



to “HTTP URL Address Encoding in Java”. In the third ex-
ample, a user again compares two alternatives and explains
which one to use in a particular situation, this time in an
answer to “Thread sleep and thread join”.

In the next sections, we describe our investigation of the
means to automatically identify sentences on Stack Over-
flow that are meaningful and add useful information not
contained in the API documentation.

3. LINKING DOCUMENTATION
First, we describe how we identify Stack Overflow threads

related to a given API type as well as our development set
used for comparing different extraction approaches.

3.1 Linking
Our linking approach identifies Stack Overflow threads

that are related to an API type in a two-step process: (1) we
perform a full-text query for the non-qualified type name
using the Stack Overflow API relying on its “relevance” or-
dering, and (2) we reject all results that do not match at
least one of a number of regular expressions that are applied
to the question that started the thread (see Table 2). The
advantage of using the Stack Overflow API over the Stack
Overflow data dump used in previous research such as that
of Bacchelli et al. [2] is that sentences extracted by our link-
ing approach always reflect the latest content available on
Stack Overflow. However, the querying mechanism offered
by the Stack Overflow API is limited, thus warranting the
additional filtering in step (2).

We manually created a benchmark to measure the rele-
vance of the threads that the filter identifies in step (2). For
40 randomly selected types of the Java SE 7 API (20 types
with one-word identifiers, such as List, and 20 types with
multi-word identifiers, such as ArrayList), we selected the
first five threads that the Stack Overflow API returned for
each non-qualified type, and we manually annotated whether
the thread actually mentioned the API type. We evalu-
ated our linking approach separately for one-word types and
multi-word types. For one-word types, precision was 0.82
and recall was 1.0 (F1-measure: 0.90), and for multi-word
types, precision was 0.92 and recall was 0.97 (F1-measure:
0.94).

3.2 Annotated Data
We created a development set by manually annotating

all 1,574 sentences that belong to the top ten answers (as
indicated by their scores) from the first ten threads that
our linking approach associated with ten Java API types.
We did not remove false positives (threads not mentioning
a target type) to ensure that the development set is a re-
alistic representation of the sentences used as input to the
extraction approaches. To sample API types, we identified
the three most commonly used types from each of the ten
most commonly used Java packages, as indicated by the Ap-
atite tool [12], see Table 3. We chose this stratified sampling
strategy to ensure a wide coverage of commonly used types
while not focusing on rarely used ones. We then divided
the data into the development set and the test set for the
comparative study (see Section 6) as follows: The second
most commonly used type from each package was used to
construct the development set, and the most commonly used
type as well as the third most commonly used type was used
for the comparative study.

Table 3: Three most commonly used types in the ten
most commonly used Java packages. Types in bold
were used for sampling sentences in the development
set and the remaining types were used to sample
sentences for the comparative study.

package type
java.applet Applet, AudioClip, AppletContext
java.awt Event, Image, Component
java.beans PropertyChangeListener,

PropertyChangeEvent,
PropertyDescriptor

java.io File, Serializable, InputStream
java.lang Object, String, Thread
java.net URL, URLClassLoader, Socket
java.security AccessController, SecureClassLoader,

Principal
java.sql Connection, DriverManager,

ResultSet
java.util List, ArrayList, Map
javax.swing JComponent, JPanel, JFrame

Table 4: Development Set
type meaningful not meaningf.
ArrayList 58 235
AudioClip 7 45
DriverManager 14 68
Image 12 151
JPanel 8 129
PropertyChangeEvent 3 101
SecureClassLoader 3 62
Serializable 48 111
String 35 437
URLClassLoader 8 39
sum 196 1,378

The first author annotated each of the 1,574 sentences be-
longing to the second most commonly used type in each of
the ten packages with a yes/no rating to indicate whether
it was meaningful on its own.2 196 sentences were rated as
meaningful. Table 4 shows the number of sentences consid-
ered meaningful for each of the ten API types.

As an example, the first author annotated the following
three sentences related to Java’s ArrayList as being mean-
ingful: “The list returned from asList has fixed size”, “There
is one common use case in which LinkedList outperforms
ArrayList: that of a queue”, and “It’s worth noting that Vec-
tor also implements the List interface and is almost identical
to ArrayList”. Examples for sentences that are not mean-
ingful and related to the same API type are: “See the next
step if you need a mutable list”, “They serve two different
purposes”, and “Use the Javadocs”. All of these sentences
make sense in the context of an entire question-and-answer
thread, but they do not convey meaningful information on
their own.

4. UNSUPERVISED APPROACHES
In this section, after outlining our preprocessing steps,

we present the results of using state-of-the-art text summa-
rization and pattern-based approaches for the extraction of
insight sentences.

2The complete coding guide is available in our online ap-
pendix at http://cs.mcgill.ca/˜swevo/insight/.
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Table 5: Precision and Coverage for different
LexRank Configurations

precision coverage
only first sentence 0.40 1.0
first two sentences 0.25 1.0
first three sentences 0.23 1.0
first four sentences 0.23 1.0
first five sentences 0.24 1.0
score at least 0.005 0.14 0.9
score at least 0.010 0.13 0.8
score at least 0.015 0.16 0.4
score at least 0.020 0.21 0.2

We had developed a set of techniques for preprocessing
software documentation in previous work [36, 37]. We sum-
marize them here for completeness.

We remove markup from the HTML files and preprocess
the resulting text files to account for the unique character-
istics of software documentation not found in other texts,
such as the systematic use of incomplete sentences and the
presence of code terms. In particular, we prefix sentences
that start with a verb in present tense, third person singu-
lar, such as “returns” or “computes”, with the word “this”
to ensure correct parsing of partial sentences, such as “Re-
turns the next page number”. In addition, we prefix sentences
that start with a verb in present participle or gerund, such
as “adding” or “removing”, immediately followed by a noun,
with the word “for” to ensure correct parsing of partial sen-
tences, such as “Displaying data from another source”.3 We
further configure the Stanford NLP parser [19] to automat-
ically tag all code elements as nouns. In addition to code
elements tagged with tt or code tags in the original source,
all words that match one of about 30 hand-crafted regular
expressions are treated as code elements.4 The resulting
sentences are then parsed using the Stanford NLP toolkit.

These preprocessing steps are identical for all the ap-
proaches described below.

4.1 LexRank
LexRank is a text summarization technique that concep-

tualizes a text as a graph where each node represents a sen-
tence and the weight of each edge corresponds to the cosine
similarity of the sentences it connects.5 The importance of
a sentence is then given by the eigenvector centrality of the
corresponding node [13]. We chose LexRank because it is the
best-known graph-based method for summarization [24].

We re-implemented LexRank in Java and calculated the
eigenvector centrality of each sentence in our development
set, separately for each API type.6 For each API type, we
considered all related sentences in our development set as
the text to be summarized. The result is a numeric score
for each sentence. There is no clear rule as to how many
sentences should be considered for a summary or what a

3Using other prepositions, such as “by”, does not signifi-
cantly change the results.
4The regular expressions are available in our online appendix
at http://cs.mcgill.ca/˜swevo/insight/.
5similarity(A,B) = |A ∩ B|/(

√
|A| × |B|), where A and B

are the tokens of the respective sentence.
6We implemented our own version of LexRank to be able to
modify it if needed. However, all results in this paper are
based on an unmodified implementation following Erkan and
Radev [13].

Table 6: Precision and Coverage for different MMR
Configurations

precision coverage
only first sentence 0.20 1.0
first two sentences 0.10 1.0
first three sentences 0.10 1.0
first four sentences 0.15 1.0
first five sentences 0.16 1.0
score at least 0.005 0.13 0.8
score at least 0.010 0.14 0.5
score at least 0.015 0.11 0.3
score at least 0.020 0.14 0.1

good threshold for eigenvector centrality is. Thus, we ex-
perimented with different settings and evaluated the perfor-
mance of different configurations on our development set.
Table 5 shows the results in terms of precision and cover-
age. We define coverage as the ratio of API types for which
there is at least one sentence. We focus on coverage instead
of recall because our goal is the extraction of useful insight
sentences and not the identification of all possible insight
sentences. If we only consider the sentence with the high-
est eigenvector centrality to be the insight sentence for each
API type, the average precision across the ten API types in
our development set is 0.40. The precision drops if we con-
sider more sentences as insight sentences. We also explored
the effects of different eigenvector centrality thresholds. As
Table 5 shows, the precision remains low and coverage drops
as well.

4.2 Update Summarization
The goal of update summarization is to produce a sum-

mary of a new document under the assumption that the
reader is already familiar with the content of a given set of
old documents. Applied to insight sentence extraction, the
idea is to create a summary of Stack Overflow threads re-
lated to an API type under the assumption that the reader
is already familiar with the type’s API documentation.

As previously done by Boudin et al. [4], we adopted the
concept of Maximal Marginal Relevance (MMR) in our im-
plementation of update summarization, using the LexRank
score as a baseline for calculating the MMR scores (see pre-
vious section). We subtracted from each sentence’s LexRank
score the maximum cosine similarity between that sentence
and any sentence in the API type’s documentation. In other
words, if the similarity between a sentence and each sentence
in the API documentation is 0, the MMR score is identical to
the one assigned by LexRank. However, sentences that are
similar to at least one sentence in the API documentation
receive a score lower than the one assigned by LexRank.

Table 6 shows precision and coverage for different con-
figurations of our MMR implementation when applied to
the development set. The results are worse than those for
LexRank.

4.3 Knowledge Patterns
Previous research has successfully used knowledge pat-

terns to detect and recommend fragments of API documen-
tation potentially important to a programmer using an API
element. In their work, Chhetri and Robillard [7] catego-
rize text fragments in API documentation based on whether
they contain information that is indispensable, valuable, or
neither. From the fragments that contain potentially im-
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Table 7: Features used for SISE
source feature type
sentence sentence string

part-of-speech tags string
sentence the number of tokens in the sentence numeric

whether the sentence is a codeblock (i.e., surrounded by pre tags) boolean
the position of the sentence in the answer numeric
the position of the API element in the sentence (or 0) numeric
whether the sentence starts lower case boolean
the number of characters that are code (as indicated by pre or code tags) numeric
whether sentence contains HTML tag (code, pre, a, strong, em, i, b, h1, h2, h3, sup, strike) boolean
the percentage of tokens tagged (code, pre, a, strong, em, i, b, h1, h2, h3, sup, strike) numeric

question whether the question title or body contain the API element boolean
question attributes: score, favorites, views, answer count, size, age numeric
question attributes: whether it was edited, whether it contains a code block boolean
question user attributes: reputation, acceptrate numeric
whether the question user is registered boolean

answer answer attributes: score, time difference to question, size, age numeric
answer attributes: whether it was accepted or edited, whether it contains a code block boolean
answer user attributes: reputation, acceptrate numeric
whether the answer user is registered boolean
relative rank of the answer among all answers to that question by score and age numeric

similarity cosine similarity between sentence and most similar sentence in API documentation numeric
average cosine similarity between sentence and all sentences in API documentation numeric

portant knowledge, they extract word patterns to automat-
ically find new fragments that contain similar knowledge in
unseen documentation. In a study involving independent
human participants, indispensable knowledge items recom-
mended for API types were judged useful 57% of the time
and potentially useful an additional 30% of the time.

Each knowledge pattern consists of a small number of
words, such as “specify, should, argument” or “not, exceed,
number, should”. To match a knowledge pattern, a sentence
must contain all of the words in the pattern, but not nec-
essarily in the order specified by the pattern. Instead of a
word, a pattern can contain a special wildcard for code ele-
ments which indicates that only sentences containing a code
element can match the pattern. An example is given by the
pattern “must, not, <code element>, null”.

We applied the 361 patterns for indispensable and valu-
able knowledge items extracted from the reference docu-
mentation of the Java 6 SE SDK to our development set
and calculated precision and coverage. To ensure that the
matching of sentences to patterns is not sensitive to differ-
ent grammatical forms, we applied stemming to each word in
the patterns and the sentences using Porter’s stemmer [27]
before calculating the matches. Similar to the attempts of
using text summarization techniques for the extraction of
insight sentences, the application of knowledge patterns to
our development set did not produce encouraging results—
we obtained a precision of 0.15 and a coverage of 0.8. This
can be explained by the patterns’ reliance on the systematic
writing style of reference documentation which is not used
in informal documentation formats such as Stack Overflow.

5. SISE: A SUPERVISED APPROACH
Considering the poor results achieved with traditional

summarization approaches, we developed SISE (Supervised
Insight Sentence Extractor), a novel approach specifically

for extracting insight sentences from Stack Overflow. A su-
pervised approach efficiently supports considering a large
amount of potential factors available for each sentence on
the Q&A website, such as the reputation of the user author-
ing a sentence or the score of the corresponding answer.

After the preprocessing steps described in Section 4, we
used the features shown in Table 7 for each sentence as input
for machine learning algorithms. We designed the feature set
to cover all meta data available on Stack Overflow as well
as basic syntactic and grammatical features. In addition,
we included two features for the similarity of a sentence to
the corresponding API documentation, following the idea
of update summarization [4]. Most of the features are ei-
ther boolean or numeric. For the two string features, we
used WEKA’s [15] StringToWordVector filter to turn the
corresponding text into separate features for single words,
bigrams, and trigrams. For example, the simple sentence
“List is slower than Arrays” would result in one feature for
each lemmatized word (“<code element>”, “be”, etc.), four
features for the bigrams (“<code element> be”, “be slow”,
etc.), and three features for the trigrams (“<code element>

be slow”, “be slow than”, etc.). For the part-of-speech tags
feature set, the same number of features would be produced
based on the part-of-speech text that corresponds to the sen-
tence, which in the example is “NN VBZ JJR IN NN” (a noun
followed by a verb in third person singular, a comparative
adjective, a preposition, and another noun).

We tested different machine learning algorithms that are
commonly used for text classification in software engineer-
ing (e.g., [10]) on our development set: k-nearest neighbour
(Ibk) [1], decision trees (J48) [28], Naive Bayes [16], random
forest [5], and support vector machines (SMO, the sequen-
tial minimal optimization implementation in WEKA) [23].
Apart from J48 and random forest, all classifiers belong to
different classes, ensuring a wide coverage of different pos-



Table 8: Features with highest Information Gain
# feature
1 cosine similarity between sentence and most similar

sentence in API documentation
2 average cosine similarity between sentence and all

sentences in API documentation
3 question user acceptance rate
4 answer score
5 answer age
6 answer time difference to question
7 question score
8 question favorites
9 question user reputation

10 question views
11 number of nouns followed by verb in present tense,

third person singular in sentence
12 question age
13 sentence starts with noun followed by verb in

present tense, third person singular
14 number of tokens in sentence
15 position of API element in sentence (or 0)
16 number of occurrences of API element in sentence
17 answer score
18 answer size
19 number of nouns in sentence
20 sentence starts with noun
21 number of characters that are code
22 number of occurrences of the verb “be” in sentence

sible algorithms. We used WEKA’s default setting for each
classifier except for the k-nearest neighbour classifier which
we instantiated with values of one, five, and ten for k.7 Be-
cause of the large number of features generated by our treat-
ment of string features, we calculated the information gain
of each feature and used attribute selection [14, 40] to reduce
the data set in order to improve classifier performance.

To calculate the precision and coverage of each classifier,
we applied what we call “ten-type cross validation”, i.e., we
trained the algorithms on sentences belonging to nine API
types in our development set, and we tested them on the
tenth type. Each type was used once as the test type. We
used five different settings for filtering out features based on
low information gain: no filtering as well as filtering at a
0.01, 0.02, 0.03, and 0.04 threshold, respectively.

Only four cases achieved a precision of above 0.5: the
random forest classifier without attribute selection achieved
a precision of 0.60 with a coverage of 0.7 (i.e., the classifier
produced at least one sentence for seven out of the ten types
in our development set). The support vector machine classi-
fier showed a similar performance in terms of precision at a
value of 0.64 when combined with an information gain filter
for features at thresholds of 0.02 and 0.03, with the same
coverage. Finally, the random forest classifier with an at-
tribute selection threshold of 0.03 achieved perfect precision,
but only covered a single type in the development set. Bal-
ancing precision and coverage using the harmonic mean, we
conclude that the most promising performance was shown
by the support vector machine classifier at information gain
thresholds of 0.02 and 0.03. We use the 0.02 setting for the
remainder of the paper.

7Tuning machine learning parameters is part of our future
work.

Table 9: Sentences in the Comparative Study
Lex MMR KP SISE (unique)

Applet 1 1 1 1 (3/4)
AppletCont. 1 1 1 2 (4/5)
Event 1 1 6 0 (8/8)
Component 1 1 3 7 (11/12)
PropertyCh. 1 1 3 1 (6/6)
File 1 1 4 4 (10/10)
PropertyD. 1 1 1 0 (2/3)
Object 1 1 12 4 (18/18)
InputStream 1 1 7 4 (13/13)
URL 1 1 4 2 (8/8)
Thread 1 1 11 5 (18/18)
AccessContr. 1 1 7 2 (10/11)
Socket 1 1 2 2 (6/6)
Connection 1 1 3 1 (5/6)
Principal 1 1 4 1 (7/7)
List 1 1 11 15 (28/28)
ResultSet 1 1 4 0 (5/6)
JComponent 1 1 1 0 (3/3)
Map 1 1 21 22 (43/45)
JFrame 1 1 3 0 (5/5)
sum 20 20 109 73 (213/222)

Table 8 shows the features in this setting. The features
are diverse, ranging from a sentence’s similarity to the API
documentation and part-of-speech tags to attributes of the
answer, question, and the user asking the question.

In answering our first research question regarding the abil-
ity of different approaches to identify meaningful insight sen-
tences, we conclude that only the supervised approach was
able to identify insight sentences with reasonable precision
and coverage.

6. COMPARATIVE STUDY
To investigate our second research question, i.e., whether

practitioners find these insight sentences useful, we con-
ducted a comparative study. We selected the most com-
monly used type and the third most commonly used type
from each of the ten most commonly used Java packages, as
indicated by Apatite [12] (cf. Table 3). The motivation for
this stratified sampling was to cover a wide range of types
while avoiding ones that are rarely used.

We then used all four approaches (LexRank, MMR, pat-
terns, and SISE) to extract insight sentences for these 20
API types. For LexRank and MMR, we used the configura-
tion that achieved the highest precision on the development
set (i.e., we considered only the sentence with the highest
score). Table 9 shows the number of sentences that each
approach extracted. LexRank and MMR extracted exactly
one sentence per API type, while patterns extracted between
1 and 21 sentences per API type and SISE extracted be-
tween 0 and 22 sentences per API type.8 As the last column
shows, the overlap between sentences extracted by different
approaches was very low: 213 of the 222 sentences selected
by all approaches for all API types were unique. Seven of
the nine overlaps occurred between LexRank and MMR, one
occurred between LexRank and patterns, and one involved
patterns and SISE. To keep the number of sentences man-

8This variation is explained by the length of the Stack Over-
flow threads linked to each API type. Devising algorithms
for ranking sentences is part of our future work.



Table 10: Participants in the Study
job title exp. area
Technical Consultant 4 years automation, mobile
Software Engineer 4 years web
Research Assistant 10+ years embedded, system
Postdoc Researcher 10+ years web, systems
Software Engineer 5 years data engineering
Student 2 years web
Android Developer 3 years mobile
Software Developer 3 years web, systems

Table 11: Comparative Study Results
meaningf., meaningf., more no
added inf. no added inf. context sense

Lex 9 5 15 11
22.5% 12.5% 37.5% 27.5%

MMR 13 4 17 6
32.5% 10.0% 42.5% 15.0%

KP 34 21 46 23
27.4% 16.9% 37.1% 18.6%

SISE 38 18 12 12
47.5% 22.5% 15.0% 15.0%

ageable for a study, we randomly selected up to four sen-
tences per approach and per API type. This resulted in at
most ten sentences per API type (one for LexRank, one for
MMR, at most four for patterns, and at most four for SISE).
Duplicate sentences (selected by more than one approach)
were only shown to participants once.

We recruited eight participants from GitHub, randomly
selecting from the 68,949 GitHub users who had made at
least one contribution in the previous twelve months, used
Java in at least one of their projects, and had published
their email address. We randomly selected email addresses
in batches of ten. It took 40 emails to recruit these eight
participants (response rate 20%). The study was conducted
using Google Forms and there were no time constraints. To
minimize bias, we did not explain the research goal to par-
ticipants. Each participant was shown sentences belonging
to five API types, leading to a maximum of 50 sentences
per participant. All sentences were rated by exactly two
participants. We asked each participant whether developing
software was part of their job, about their job title, for how
many years they had been developing software, and what
their area of software development was. Table 10 shows the
answers. All participants indicated that developing software
was part of their job.

For each pair of an API type and a sentence, we asked the
participants to choose one of the following options:

• The sentence is meaningful and adds useful informa-
tion not found in the API documentation.

• The sentence is meaningful, but does not add useful
information to the API documentation.

• The sentence requires more context to understand.

• The sentence does not make sense to me.

These options were motivated by Binkley et al.’s [3] ob-
servation that summaries should be judged based on their
usefulness rather than their quality alone.

Table 11 shows the results of the comparative study. SISE
resulted in most ratings indicating a meaningful sentence,

Table 12: Inter-rater Agreement
(1) (2) (3) (4)

(1) meaningf., added inf. 27 12 16 8
(2) meaningf., no added inf. – 8 12 6
(3) req. more context – – 17 22
(4) no sense – – – 6

both in absolute numbers and relatively. In total, 70% of
the sentences identified by SISE were considered meaningful
(the first two answer options), compared to 44% for patterns,
43% for MMR, and 35% for LexRank. When comparing
SISE to each of the other approaches, the difference between
meaningful sentences and not meaningful sentences (the last
two answer options) is statistically significant (Pearson’s chi
square, p < 0.005). In addition, SISE resulted in the highest
number of sentences which were considered to add useful
information not found in the API documentation.

Table 12 shows the inter-rater agreement. Out of a total
of 134 pairs of ratings, 58 (43%) were in perfect agreement.
The highest number of disagreements (22) was related to
sentences that either require more context to understand or
make no sense.

In answering our second research question on the useful-
ness of insight sentences as perceived by practitioners, we
conclude that our participants found more sentences which
contained useful information in the output of SISE compared
to the output of other approaches.

7. DISCUSSION
This section discusses the implications of our work, in

particular related to user interface design for insight sen-
tence presentation and to the role that meta data on Stack
Overflow can play for the extraction of insight sentences.
In addition, we discuss the inter-rater agreement from our
comparative study in more detail and review the threats to
validity.

7.1 Sentence Meta Data
This work shows that the large amount of meta data on

Stack Overflow can be used for the extraction of insight sen-
tences. Compared to state-of-the-art summarization tech-
niques or pattern-based techniques which do not take any
meta data into account, SISE achieved higher precision and
usefulness. Out of the 22 features with the highest infor-
mation gain used in the classifier, half of them (and eight
out of the first ten) represent Stack Overflow meta data,
such as the number of views on a question or the score of
an answer (cf. Table 8). Interestingly, the features with the
highest information gain also suggest that the meta data of
the person asking the question is possibly more important
than the meta data of the person authoring the answer. For
example, the feature with the third highest information gain
is the acceptance rate of the person asking the question.
We hypothesize that the acceptance rate of a user reflects
the kinds of questions that such a user would ask, and that
insight sentences are more likely to come from answers to
questions that ask about basic information instead of spe-
cific use cases. Future work will have to be conducted to
investigate this hypothesis.

Another interesting finding is that the two features that
represent the similarity of a potential insight sentence to the
corresponding API documentation were the features with



the highest information gain. This finding suggests that
there is an advantage to interpreting sentences on Stack
Overflow in the context of other documentation sources.
Our current hypotheses regarding the positive correlation
between sentence similarity and meaningful insights is that
a “somewhat similar” sentence combines content from the
API documentation with new information, while less sim-
ilar sentences contain information completely unrelated to
an API type.

7.2 User Interface
The results of our evaluation suggest that the context

of sentences will play an important role when complement-
ing API documentation with sentences from Stack Overflow.
In fact, only 15% of the ratings for sentences extracted by
SISE indicated that the sentence did not make sense. An-
other 15% of the ratings indicated that more context was
required for the sentence to be understandable. Since this
context (e.g., surrounding code snippets, the complete an-
swer, or the corresponding question) is available on Stack
Overflow, it would be possible to display it along with an
insight sentence. For example, each insight sentence could
be accompanied by an expandable widget which shows the
entire thread on Stack Overflow from which the insight sen-
tence originated. In addition, user input similar to the one
we gathered as part of our comparative study could be used
to continuously improve the extraction of insight sentences.

Figure 2 shows the current version of our interface for
SISE. In the top left corner of the API documentation, a
widget is added that shows up to five insight sentences for
the API type. Upon selection of one sentence, the sentence
is expanded to show the surrounding paragraph from the
original source, along with a link to the corresponding Stack
Overflow thread.

7.3 Inter-rater Agreement
Since the inter-rater agreement in our comparative study

was relatively low, we analyzed the disagreements in more
detail.

For the twelve cases where both raters agreed that the sen-
tence was meaningful but disagreed as to whether it added
useful information not contained in the API documentation,
we manually verified whether that information could indeed
be found in the API documentation. In nine out of the
twelve cases, the information in the sentence was available
in the API documentation. However, the insight sentence of-
ten summarized information in a more succinct way than the
API documentation did, e.g., “List is an ordered sequence of
elements whereas Set is a distinct list of elements which is
unordered”, which was extracted by SISE for Java’s List. In
some contexts, such sentences could still be useful since they
provide a more succinct version of content that is available
in the API documentation.

There were 28 cases where one rater indicated that more
context was required to understand the sentence while the
other rater indicated that the sentence was meaningful. In
many of these cases, the background of the users seems to
determine whether they understand a sentence or not. We
found a similar situation in our previous work [36] when
we asked developers to rate the meaningfulness of task de-
scriptions that we had automatically extracted from their
software documentation. In those cases, we argue that dis-
playing such sentences does little harm if some users do

not understand them while other users find them useful.
An example for such a sentence from our data set is “Yes
you should close a ResultSet”, which was extracted by the
pattern-based approach for Java’s ResultSet. Arguably,
this sentence should be accompanied by a question to be
more meaningful, yet the message from the sentence is un-
derstandable without the specific question.

In 14 cases, one participant indicated that a sentence did
not make sense while the other participant found it mean-
ingful. A manual inspection of those 14 cases suggests that
in most cases, the problem was missing context. An exam-
ple is “I don’t know what’s your problem, but if you have
some problems to run this code, you can try to close con-
nection and open other to make the second query”, a sen-
tence that was extracted by LexRank and MMR and is re-
lated to Java’s ResultSet. While the sentence does require
more context about the questioner’s problem to be under-
standable, it might be helpful without such context if a user
is troubleshooting a connection issue related to a Result-

Set. As mentioned before, we are addressing the context
issue with a user interface that shows more context when
requested.

7.4 Threats to Validity
A threat to the validity of our results is the manual con-

struction of the development set since we did not attempt
to validate the annotated data. However, it would have
been practically impossible for us to annotate sentences in a
way that would favour specific approaches. When the devel-
opment set was constructed, we were not aware that SISE
would be based on machine learning, thus our development
set was not biased towards certain features.

The size of the development set is another limitation since
the sentences were related to only ten Java API types. How-
ever, for each API type, we considered ten different ques-
tions on Stack Overflow, and for each question, we con-
sidered up to ten answers. In total, the 1,574 sentences
originated from 309 different answers. In addition, our find-
ing that SISE outperformed state-of-the-art summarization
techniques and a pattern-based approach was confirmed in a
comparative study with sentences related to another twenty
Java API types.

The agreement about insight sentences between our study
participants was relatively low. It is natural for software de-
velopers with different backgrounds and different experience
to disagree on what information is useful. Despite the dis-
agreements, the comparative study clearly showed that SISE
produced the most meaningful and useful insight sentences.

The evaluation of the usefulness of the insight sentences
was based on subjective assessment from the study partic-
ipants. Although all sentences were judged by two partici-
pants to eliminate the threat of individual bias, it is never-
theless possible that the responses may be affected by col-
lective bias. There was no mechanism to ensure participants
read the API documentation before rating sentences, and we
acknowledge this threat to validity.

We cannot claim that SISE generalizes beyond Java. How-
ever, none of the features used in SISE are specific to Java,
and we are optimistic that we can achieve similar results for
other programming languages in future work.

We also cannot make claims regarding generalizability be-
yond Stack Overflow. However, with more than 17 million
answers, Stack Overflow is a big enough data source to war-



Figure 2: Screenshot of Java’s Map documentation, with insight sentences produced by SISE

rant specialized tools to utilize its data. SISE will only work
if a topic is discussed on Stack Overflow. Since all insight
sentences used in this paper were obtained from sets of ten
Stack Overflow threads associated with an API type, we
would expect comparable results for any API type with at
least ten threads on Stack Overflow. As we found in our
previous work [21], 77% of the types of the Java API are
discussed on Stack Overflow (Android: 87%) – thus, we do
not expect library popularity to be a major limitation.

8. RELATED WORK
Work related to our approach for insight sentence extrac-

tion can be divided into work on harnessing Stack Overflow
data and work on improving API documentation.

8.1 Harnessing Stack Overflow data
Seahawk by Bacchelli et al. [2] is an Eclipse plug-in that in-

tegrates Stack Overflow content into an integrated develop-
ment environment (IDE). Seahawk automatically formulates
queries from the current context in the IDE and presents a
ranked and interactive list of results. The tool lets users
identify individual discussion pieces and import code sam-
ples through drag & drop. In addition, users can link Stack
Overflow discussions and source code. An evaluation of Sea-
hawk showed that the tool can produce surprising insights
that aid a developer in program comprehension and soft-
ware development [25]. A related tool called Prompter was
later proposed by Ponzanelli et al. [26]. Given the IDE con-
text, Prompter automatically retrieves pertinent discussions
from Stack Overflow, evaluates their relevance and notifies
developers about the available help if a given threshold is
surpassed.

Other approaches have focused on harnessing Stack Over-
flow data for explaining stack traces in the IDE. Cordeiro
et al. [8] developed a tool that integrates the recommen-
dation of Q&A web resources related to stack traces into
Eclipse. Their preliminary evaluation showed that their ap-

proach outperformed a simple keyword-based approach. In a
similar line of work, Rahman et al. [29] developed a context-
aware IDE-based meta search engine for recommendations
about programming errors and exceptions. The Stack Over-
flow API is one of the search APIs used in their work, and
their approach captures the context in a similar fashion to
the work by Cordeiro et al. In an evaluation, the authors
found that the inclusion of different types of contextual in-
formation associated with an exception can enhance the ac-
curacy of recommendations.

Arguably the work that is most similar to ours is Au-
toComment, the automatic comment generation approach
introduced by Wong et al. [39], since it also harnesses the
natural language text available on Stack Overflow. Auto-
Comment extracts code-descriptions mappings, which are
code segments together with their descriptions, from Stack
Overflow, and leverages this information to automatically
generate descriptive comments for similar code segments in
open-source projects. The authors applied AutoComment
to Java and Android projects, and they were able to au-
tomatically generate 102 comments for 23 projects. In a
user study, the majority of participants found the generated
comments to be accurate, adequate, concise, and useful in
helping them understand the code. Our work differs from
that by Wong et al. in that we focus on single sentences from
Stack Overflow that are relevant to an API type instead of
a code snippet.

Related to our solution for linking Stack Overflow threads
to API types is the work by Rigby and Robillard [30]. Their
traceability recovery approach discovers essential code ele-
ments in informal documentation such as Stack Overflow.
Our linking approach for linking Stack Overflow threads to
API types works the other way around. We start from an
API type, and then use the Stack Overflow API as well as
a number of regular expressions to find threads that are re-
lated to that API type.



In terms of using machine learning to discover content
on Stack Overflow, there are some common themes between
SISE and the work of de Souza et al. [10]. They developed
an improved search engine for content on Stack Overflow
which recommends question-and-answer pairs (as opposed
to entire Q&A threads) based on a query. The ranking cri-
teria used by their approach consists of the textual similar-
ity of the question-and-answer pairs to the query and the
quality of these pairs. In addition, their search focuses on
“how-to”threads. In an evaluation of their work, the authors
found that their approach was able to recommend at least
one useful question-and-answer pair for most queries, many
of which included a reproducible code snippet. In compar-
ison, the goal of SISE is the extraction of insight sentences
from Stack Overflow that add useful information to API
documentation. Our catalogue of machine learning features
is also more extensive and includes features that bridge the
gap between different documentation formats.

8.2 Improving API documentation
Several researchers have contributed efforts for the im-

provement of API documentation. Stylos et al. [33] intro-
duced Jadeite, which displays commonly used classes more
prominently and automatically identifies the most common
ways to construct an instance of any given class. eMoose
by Dekel and Herbsleb [11] improves API documentation
by decorating method invocations whose targets have asso-
ciated usage directives, such as rules or caveats, of which
authors of invoking code must be aware. In a similar effort,
Pandita et al. [20] proposed to infer formal specifications
from natural language text.

More closely related to SISE is the proposal for integrating
crowdsourced FAQs into API documentation by Chen and
Zhang [6]. They propose to connect API documentation and
informal documentation through the capture of developers’
Web browsing behaviour. In contrast, we connect different
forms of documentation through heuristics that match Stack
Overflow threads to API types, and instead of FAQs, SISE
produces insight sentences.

Other work has focused on detecting and preventing
API documentation errors. Zhong and Su [41] introduced
DOCREF, an approach that combines natural language pro-
cessing techniques and code analysis to detect and report
inconsistencies in documentation. The authors successfully
used DOCREF to detect more than one thousand docu-
mentation errors. Dagenais and Robillard [9] introduced
AdDoc, a technique that automatically discovers documen-
tation patterns, i.e., coherent sets of code elements that are
documented together, and that reports violations of these
patterns as the code and the documentation evolve.

Previous work has successfully identified natural language
text that is potentially important for a programmer using a
given API type. Chhetri and Robillard [7] categorized text
fragments in API documentation based on whether they con-
tain information that is indispensable, valuable, or neither,
using word patterns. When we applied their patterns to
content on Stack Overflow, we were not able to repeat their
positive results in terms of precision and usefulness (see Sec-
tion 4.3). Petrosyan et al. [22] proposed an approach to dis-
cover tutorial sections that explain a given API type. They
classified fragmented tutorial sections using supervised text
classification based on linguistic and structural features and
they were able to achieve high precision and recall on dif-

ferent tutorials. Their work differs from ours in that we
use Stack Overflow’s meta data for SISE. In addition, un-
like Petrosyan et al., we focus on the extraction of single
sentences instead of entire documentation fragments.

Several researchers have focused on augmenting API docu-
mentation with code examples. For example, Kim et al. [17]
proposed a recommendation system that returns API docu-
ments embedded with code example summaries mined from
the Web. Their evaluation results showed that the approach
provides code examples with high precision and boosts pro-
grammer productivity. In a similar effort, Subramanian et
al. [34] introduced Baker, an iterative, deductive method for
linking source code examples to API documentation. In con-
trast to these tools, SISE links natural language sentences
from Stack Overflow to API documentation.

9. CONCLUSION AND FUTURE WORK
While the rise of social media and Q&A sites such as Stack

Overflow has resulted in a plethora of information for soft-
ware developers available in many different formats on the
Web, it can be difficult to determine where a particular piece
of information is stored. In an effort to bring documentation
from different sources together, we presented an evaluation
of different techniques for extracting insight sentences from
Stack Overflow. We define insight sentences as those sen-
tences on Stack Overflow that are related to a particular
API type and that provide insight not contained in the API
documentation of the type.

In a comparative study with eight software developers to
evaluate the meaningfulness and usefulness of the insight
sentences, we found that our supervised approach (SISE)
resulted in the highest number of sentences which were con-
sidered to add useful information not found in the API doc-
umentation. We conclude that considering the meta data
available on Stack Overflow along with natural language
characteristics can improve existing approaches when ap-
plied to Stack Overflow data.

We believe that we are the first to investigate augmenting
natural language software documentation from one source
with that from another source. Our work is a first step to-
wards a vision of presenting users with combined documen-
tation from various sources rather than users having to look
through different sources to find a piece of information. We
plan to extend this work beyond the Java API and we plan
to experiment with more features that capture the grammat-
ical structure of sentences on Stack Overflow. Determining
whether a sentence is meaningful on its own is non-trivial,
and while our evaluation showed that a supervised approach
can detect such sentences based on part-of-speech tags with
a higher precision than summarization or pattern-based ap-
proaches, we expect that the precision can further be im-
proved with a deeper understanding of each sentence and
its dependencies on other sentences or code snippets. In ad-
dition, we intend on applying the idea of insight sentence
extraction to other textual artifacts produced by software
developers, such as bug reports, commit messages, or code
comments.
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