
Terahertz Reflectarrays

by

Tiaoming Niu

B. Science (Electronic Science and Technology)
Lanzhou University, China, 2003

M. Science (Radio Physics)
Lanzhou University, China, 2011

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical and Electronic Engineering,

Faculty of Engineering, Computer and Mathematical Sciences

The University of Adelaide, Australia

2015



Supervisors:

Prof. Christophe Fumeaux, School of Electrical & Electronic Engineering

Dr. Withawat Withayachumnankul, School of Electrical & Electronic Engineering

© 2015

Tiaoming Niu

All Rights Reserved



Contents

Contents iii

Abstract vii

Statement of Originality ix

Acknowledgments xi

Thesis Conventions xv

Publications xvii

List of Figures xix

List of Tables xxv

Chapter 1. Introduction 1

1.1 Definition of the terahertz radiation . . . . . . . . . . . . . . . . . . . . . 2

1.2 Applications of terahertz radiation . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Challenges in terahertz technology . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Summary of original contributions . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2. Terahertz beamforming 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Polariser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Diffraction gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Leaky-wave antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Phased array antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Reflectarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Page iii



Contents

Chapter 3. Design of reflectarrays 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Radiating resonators for reflectarrays . . . . . . . . . . . . . . . . . . . . . 38

3.3 Analysis of rectangular patch . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Fringing effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Array theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Array factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Reflectarrray with angular deflection . . . . . . . . . . . . . . . . 53

3.5 Reflectarray in the terahertz regime . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Drude’s model for metals . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Material parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 4. Terahertz reflectarrays with resonant microstrip patches 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Specific design of terahertz reflectarrays . . . . . . . . . . . . . . . . . . . 61

4.2.1 Dimensions of patch radiating element . . . . . . . . . . . . . . . 61

4.2.2 Characteristics of patch elements . . . . . . . . . . . . . . . . . . . 62

4.2.3 Design and simulations of the reflectarray . . . . . . . . . . . . . 64

4.3 Fabrication and measurement . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Measurement system . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Measured reflection and deflection spectra . . . . . . . . . . . . . 67

4.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 5. Terahertz reflectarrays for polarisation beam splitting 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Page iv



Contents

5.2 Beam splitter with sparsely arranged dipoles . . . . . . . . . . . . . . . . 79

5.2.1 Unit cell with sparse arrangement . . . . . . . . . . . . . . . . . . 80

5.2.2 Design of dual-deflection reflectarray . . . . . . . . . . . . . . . . 81

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Beam splitter with compactly arranged dipoles . . . . . . . . . . . . . . . 86

5.3.1 Unit cell with compact arrangement . . . . . . . . . . . . . . . . . 86

5.3.2 Subarray arrangement for terahertz beam splitting . . . . . . . . 90

5.3.3 Reflectarray fabrication . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Reflectarray for asymmetric beam splitting . . . . . . . . . . . . . . . . . 98

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 6. Polarisation-dependent wire-grid reflectarray for terahertz waves 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Unit cell with metallic wire grids . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Design of the subarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Measurement and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 7. Broadband reflectarray with parallel elliptical dipoles 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 The preliminary broadband design . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Analysis of the unit cell . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.2 Design and performance of the reflectarray . . . . . . . . . . . . . 125

7.3 Improved design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.1 Optimization of the radiating element . . . . . . . . . . . . . . . . 127

7.3.2 Performance of the broadband reflectarray . . . . . . . . . . . . . 130

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Chapter 8. Thesis summary and conclusions 133

8.1 Thesis conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.1.1 Part I: Terahertz reflectarrays for beam deflection . . . . . . . . . 134

Page v



Contents

8.1.2 Part II: Terahertz reflectarrays for beam splitting . . . . . . . . . . 136

8.1.3 Part III: Design of a broadband terahertz reflectarray . . . . . . . 138

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.3 Concluding statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

References 143

Page vi



Abstract

R
EFLECTARRAY, the concept combining the principles of phased arrays

and geometrical optics, can produce predesigned radiation characteristics

without requiring a complicated feeding network. A free-space excitation

is used to illuminate reflectarrays with passive resonant elements made of metal and

dielectric structures, whose individual reflection phase is dependent on the size and

geometry of a radiating resonator. Reflectarrays offer the advantages of flat profile

and high efficiency, and therefore various reflectarray structures have been intensively

realised in the microwave region. With the development of integrated circuit lithog-

raphy processes, the application of the reflectarrays has been extended to the infrared

and even to the visible light regions. However, the realisation of the reflectarrays that

can manipulate beams in the terahertz regime still remains largely under-explored,

because of the high intrinsic material loss and due to the challenges associated with

measurement technology in this frequency range. In recent years, owing to emerging

solid-state sources and detectors in the terahertz spectrum, high-gain antennas have

become intensively required for constructing terahertz wireless networking or imag-

ing systems. Low-loss terahertz reflectarray antennas thus promise attractive potential

for enabling the manipulation of terahertz radiation. This thesis will first introduce

the background of terahertz technology, approaches for manipulating terahertz radi-

ation, and fundamental theories for reflectarray design. Following the introductory

chapters, the core of the thesis shows how several terahertz reflectarrays have been de-

signed, fabricated, measured and analysed for the aim of (Part I) beam deflection with

polarisation independence, (Part II) beam splitting with polarisation dependence, and

(Part III) broadband operation:

Part I involves a terahertz reflectarray that is composed of resonant microstrip gold

patches on a dielectric substrate. The relation between the patch size and the reflec-

tion phase is analysed for a realisation at 1 THz. A subarray is then configured based
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on a progressive and cyclic phase distribution to deflect an incident beam into a pre-

designed angle off the specular direction. Both the numerical simulation and the ex-

perimental measurement verify that the proposed reflectarray can efficiently deflect

the incident TM and TE polarised waves into the same desired direction at an opera-

tion frequency.

Part II focuses on reflectarray designs that can split an incident beam into two different

directions with polarisation dependence. In the first realisation, two sets of orthogo-

nal strip dipoles are arranged into interlaced triangular lattices, whereas the second

realisation is based on metallic wire grids patterned into square layout with variable

lengths backed with wire-grid ground layer. Both configurations of reflectarrays can

separate the two polarisation components into different designed directions by deflec-

tion or transmission. The designs are realised for experimental validation, and the

corresponding measurements are performed in a terahertz time-domain spectroscopy

system. The measurement results verify the designs and show acceptable efficiency

and high polarisation purity of these polarisation beam-splitters.

Part III concerns the design of novel radiating resonators for broadband reflectarrays.

Three parallel elliptical dipoles with variable lengths are proposed to enable broad-

band operation. A reasonably linear phase response with a wide enough range is ob-

tained by the proposed configuration while the phase curves for different frequencies

are nearly parallel each other over a wide frequency range. The simulated field distri-

butions and radiation patterns at different frequencies in the terahertz range demon-

strate that the designed reflectarray can perform as expected in a wide frequency band.

These original designs along with corresponding experimental validations offer a first

demonstration of reflectarray in the terahertz regime, with antennas composed of metal-

dielectric resonators. This is an important progress in expanding approaches for tera-

hertz wave manipulation. The designed reflectarrays with different structures can be

utilised as high-efficiency components for advancing the technologies of high-speed

communications and high-resolution imaging in the terahertz range.
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