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ABSTRACT 
 
The cone penetration test (CPT) provides a huge amount of data in comparison with other in 
situ test procedures - complete sets of readings every 10 mm or so of penetration. Some years 
ago a site in Albany was investigated with 30 closely spaced CPT soundings to a depth of 10 m. 
The intention of this paper is to take the analysis of the data gathered further in order to 
understand better the scale of the variability of the properties of the residual soil common 
around the Auckland region. We have data at two scales: vertical and horizontal. In the vertical 
direction, there are one thousand readings over the 10 m depth of each sounding. In the 
horizontal direction, there are 30 CPT soundings within a square of 8m side, the closest being 
at 1 m spacing. We will present our explorations of the properties in terms of an autocorrelation 
function and by determining the average distance between zero crossings of the de-trended qc 
data.  
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1 INTRODUCTION 
 
Much of Auckland is covered with residual soil derived from the in situ weathering of the 
Waitemata group sandstones and siltstones. Unlike soils of sedimentary origin the properties of 
these materials cannot be understood within a framework based on effective stress history. 
Given that the process of forming residual soil is one of chemical alteration of the Waitemata 
group sandstones and siltstones (“soft” rocks with unconfined compressive strengths up to a 
few MPa), one might expect that this is a random process and will result in soils which exhibit 
variability from point to point over quite short distances. As evidence for this suggestion we offer 
the observation that the shear strength properties of these materials, at low effective confining 
pressures, from a number of sites around the Auckland region are extremely variable, (Kikkawa 
et al 2008), and also that the Atterberg limits extend over a wide range plotting roughly along 
the A-line in the Casagrande classification chart (although this may also be a consequence of 
whether the original material is of sandy or silty composition). 
 
The purpose of the original  investigation work, reported by Holland and Pender (2008), was  to 
perform an intensive investigation using  closely spaced CPT profiles to develop a better feeling 
for the inherent variability of the material. The purpose of this paper is to take the analysis if the 
data further and quantify the scale of variability of the cone penetration resistance in the vertical 
direction. Variability observed in cone penetration profiles will be reflected in variability of 
strength and stiffness of the soils, which in turn is of significance for soil-structure interaction 
and other foundation design considerations.   
 
 
 



 
 
 
 

 
 

Figure 1.  Layout of the cone penetration soundings 

 

As far as we are aware intensive investigations of this type have not been done previously in 
Auckland residual clay.  Further similar investigations are needed to round out the conclusions 
of this paper.  
 
The site investigated was near Corinthian Drive in Albany north of Auckland. A total of 30 CPT 
probings were done to a depth of about 10 m from the ground surface. The layout of CPT 
probings is shown in Figure 1 with soundings on a 1 m grid.  The CPT recording interval was 10 
mm.  The CPT work was done with one rig and one operator over a two day period, March 13 
and 14, 2002. 
 

 
2 MEAN AND STANDARD DEVIATION 
 
At each depth the mean values of the 30 penetration records were calculated. All records 
showed a very distinct spike at a depth of about 2.1 m, this was taken as a marker and all 
depths herein are expressed in relation to the position of this spike. The interpretation of the 
penetration resistance focussed on vertical variability within the CPT records as the geological 
origin of the material, and the CPT records themselves, indicate changes in the material with 
depth. The lowest friction ratio readings are associated with the soil near the ground surface, so 
this region will be ignored as it is probably fill. The spike in the qc at about 2 m depth is assoc- 
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Figure 2. CPT data averaged at each depth. Left: qc, middle: fs, right: coefficients of variation of 
qc and fs. 

 
iated with a low friction ratio and so this “marker bed” is probably a granular layer. Figure 2 
shows that there is a more or less constant friction ratio of about 6% between about 4 m and 9.5 
m.  Such a value is associated, using the Douglas and Olsen (1981) classification chart, with 
fine grained cohesive soil yet the cone resistance towards the bottom of the soundings is too 
high for such materials and is more suggestive of coarser non cohesive soil. Perhaps this 
indicates that the CPT based classification system (Douglas and Olsen (1981) is of limited value 
for residual soils. In a similar vein calculating the soil behaviour type index (Robertson 2010) 
shows that the material is cohesive over the full depth. 

fs 
 
 
qc 



 
 
 
 

 
Figure 2 presents a number of aspects of the data. On the left of the diagram the mean of the 
cone resistance at each depth is plotted as well the mean value plus and minus 1.96 standard 
deviations at that level (if the data fits a normal distribution then these lines give the bounds 
within which 95% of the data can be expected to lie). The middle graph does the same for the 
friction ratio. The right hand graph in the figure gives the coefficients of variation for the cone 
penetration resistance and sleeve friction.  
 
The left hand side of Fig. 2, as well as indicating that the cone resistance varies with depth, also 
shows that the process of calculating the average qc value at each, that is each 10 mm of 
penetration, has a smoothing effect on the data. This is apparent from the lines in which 1.96 
times the standard deviation is plotted and even more so if the extremes of the CPT data are 
plotted (not included here). Below about 6 m depth the cone resistance increases gradually with 
depth till it reaches 7 or 8 MPa at depths of about 9 m. Values such as this would be expected 
to represent sandy horizons rather than clayey soil, yet from the middle plot in Figure 2 it is 
apparent that the friction ratio is surprisingly constant from about 4 m down, at a value which 
indicates cohesive soil. As explained above this may be a limitation of applying qc – fs 
classification methods to residual soils. However, the spike in the profile at about 2 m would 
appear to be a thin lens of cohesionless soil in which the cone resistance increases whilst the 
friction ratio decreases. We have yet to recover samples from the site so cannot give any direct 
comparison between the CPT data and other soil classification data. 
 
The right hand diagram in Figure 2 has the coefficient of variation of qc and fs plotted against 
depth. It is of interest that the coefficient of variation of the friction ratio is generally less than 
that of the cone resistance.  Also of note is the observation that the coefficient of variation of the 
cone resistance is in the range specified by Lumb (1974) for the coefficient of variation for the 
undrained shear strength of clays (this comment assumes the usual assumption of a constant 
relationship between cone penetration resistance and undrained shear strength in clays). 
 
 
3 SCALE OF VARIABILITY IN THE VERTICAL DIRECTION 
 
The standard deviation tells us how much the data is scattered about the mean value, but it tells 
us nothing about the distances over which these variations occur. The parameter giving this is 
known as the scale of variability. Since the CPT records so much data, it is possible for each 
sounding to estimate the scale of variability in the vertical direction. The CPT layout shown in 
Figure 1 does not have enough soundings over a large enough lateral distance to give the scale 
of variability in the lateral direction. Figure 2 shows that the upper 2 to 2.5 m of each CPT 
record varies in a complex manner and there is a “spike” in the data at a depth of about 2 m. 
Also it is not known to what extend the upper part of the soil profile is fill rather than natural 
ground. Consequently the upper 2.5 m of the soil profile was not considered in the estimates of 
the scale of variability.  
 
On left hand side of Figure 2 the mean value at each recording depth for the 30 CPT records is 
plotted. For the investigation of the scale of variability all the CPT data were processed as 
deviations from these mean values, below we refer to these as qc deviations. This conversion to 
deviations from the mean was not an essential step in estimating the scale of variability, but it 
does give a convenient appreciation of the variability of the penetration resistance. All the 
calculations in the paper were done using Mathcad (PTC 2012). 
 
Two methods were used herein to determine the scale of variability in the vertical direction. 
First, the use of the autocorrelation calculated for each vector of qc deviations and then the 
Bartlett limit is used to indicate the scale of variability (Jaksa et al 1996 and 2000). Second, the 
method based on finding the average spacing between zero crossings of the de-trended data 
(Phoon and Kulhawy,1999). Both of these approaches need first to fit a least squares 
regression curve to the data. Herein both second and third order polynomials were considered. 
It was found that the sum of the squares of the residuals after the least squares calculation was 
always smaller for the third order curves, so these were used in the estimation of the scale of 
variability in the vertical direction. 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.  Data for CPT 04 and CPT 30:recorded qc data minus the mean value at each level (qc 
deviations) along with the  third order polynomial regression curve. 
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Figure 4. De-trended plots for qc deviations for CPT 04 and CPT 30 
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Figure 5. Autocorrelation functions for CPT 04 and CPT 30 showing the scale of variability in the 
vertical direction of 460 and 210 mm respectively. 
 
The differences between the pairs of curves in Figure 3, that is the de-trended qc deviations, are 
plotted in Figure 4 and are used in the estimation of the scales of variability. The autocorrelation 
of this vector is calculated and the function plotted as shown in Figure 5. Jaksa (2000) explains 
how the so-called Barlett’s limits are used to estimate the scale of variability, where this limit 
intersects the autocorrelation function determines the scale of variability. In Figure 5 these 
intersections give a scale of variability in the vertical direction of 460 mm for CPT 04 and 210 
mm for CPT 30.  
 
In the second method of estimating the scale of variability also uses the data plotted in Figure 4.  
For this method the number of zero crossings is calculated and the average distance between 
the zero crossings is used as another measure of the scale of variability (Phoon and 
Kulhawy,1999). From this we obtain scales of variability in the vertical direction of 229 mm for 
CPT 04 and 470 mm for CPT 30.  
 
 
4 SCALE OF VARIABILITY IN THE HORIZONTAL DIRECTION 
 
The scale of variability in the horizontal direction is the other parameter that we need to fully 
characterise the properties of the material at this site. Generally it is thought that the scale of 
variability in the horizontal direction is rather larger than that in the vertical direction, in fact 
several metres is what has been found in other studies (Jaksa 2000). So rather than a number 
of CPTs clustered close together, as in Figure 1, a more appropriate approach would be have 
the soundings in a straight line at, say, one metre spacing.  
 
 
5 CONCLUSIONS 
 
Data from 30 closely spaced CPT soundings to depths of about 10 m have been analysed to 
improve understanding of the variability in properties of Auckland residual soils. We have three 
main conclusions:  

 Generally the coefficient of variation for the CPT sleeve resistance is less than that of 
the cone resistance. 

 The coefficients of variation of the qc values at each level are in the range given by 
Lumb (1974) for the coefficient of variation for the undrained shear strength of clay.  

 The scale of variability in the vertical direction is of the order of 200 to 500 mm. 

0 1 2 3 4
0.5

0

0.5

1

Lag distance (m)

A
ut

oc
or

re
la

ti
on

 

 
460 mm 

210 mm 

04   
    30 



 
 
 
 

 The scale of variability in the vertical direction determined from the autocorrelation 
function for each sounding and that determined by calculating the number of zero 
crossings in the de-trended qc data, are similar to within a factor of about 2. 
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