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Abstract 15 

Word Count (max 300): 210 16 

The male gamete, the spermatozoon, exhibits considerable interspecies morphological variation 17 

across mammals, especially among murid rodents.  In Australasia most murids in the Tribe 18 

Hydromyini have a spermatozoon with a highly complex head that has, in addition to an apical hook 19 

characteristic of most murids, two further projections that extend from its upper concave surface, 20 

the ventral processes. Here we performed a phylogenetically controlled comparison of sperm 21 

morphology across 44 species of hydromyine rodents to test the hypothesis that the length and 22 

angle of both the ventral processes and apical hook, as well as the dimensions of the sperm tail, 23 

increase with relative testes mass as a proxy for differences in levels of intermale sperm 24 

competition. Although both sperm head protrusions exhibited considerable variation in their length 25 

and angle across species, only the angles increased significantly in relation to relative testes mass.  26 

Significant positive relationships were also evident between relative testes mass and lengths of the 27 

sperm midpiece and flagellum. These results suggest that in the sperm head of hydromyine rodents, 28 

the angle of the ventral processes, as well as that of the apical hook, together with the sperm tail 29 

length, are likely to be under sexual selection.  The possible functional significance of these findings 30 

is discussed. 31 

  32 
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Word Count (max 5000): 3,601 33 

Introduction 34 

The spermatozoon is the most morphologically variable type of cell known to occur in vertebrates 35 

(Cohen 1977; Pitnick et al. 2009). The reason(s) for this are not clear although differences in both the 36 

mode of fertilisation and phylogeny have been suggested (Franzén 1970; Jamieson 1987).  It is, 37 

however, becoming increasingly evident that sexual selection also plays a major role in determining 38 

the species specific form of the spermatozoon (for reviews see Pitnick et al. 2009; Simmons and 39 

Fitzpatrick 2012) with mounting evidence suggesting that both sperm size and shape co-vary with 40 

differences in levels of intermale sperm competition (see Snook 2005; Pitnick et al. 2009; Simmons 41 

and Fitzpatrick 2012; Fitzpatrick and Lüpold 2014 for reviews).  Within a species, sperm morphology 42 

also appears to respond to experimentally manipulated levels of sperm competition (e.g. LaMunyon 43 

and Ward 2002; Palopoli et al. 2015), and has been found to contribute to fertilisation success under 44 

competitive conditions (e.g. LaMunyon and Ward 1998; Miller and Pitnick 2002; Oppliger et al. 2003; 45 

García-González and Simmons 2007; Firman and Simmons 2008; Lüpold et al. 2012; Bennison et al. 46 

2015). 47 

A spermatozoon consists of a head, with a nucleus housing a haploid set of chromosomes and an 48 

enzyme-filled acrosome, and a tail for motility with the energy-generating mitochondria being 49 

present in its midpiece.  Across species, the midpiece and total flagellum length tend to positively 50 

associate with sperm swimming speed (Gomendio & Roldan, 2008; Fitzpatrick et al., 2009; Lüpold et 51 

al., 2009; Gómez Montoto et al., 2011; Tourmente, Gomendio & Roldan, 2011) which is particularly 52 

evident when the size and shape of the sperm head is also taken into account (Higdon, 1979;   53 

Humphries et al. 2008).  54 

Compared to most mammalian taxa, the morphology of the spermatozoon in murid rodents is highly 55 

diverse across species in both its size and the shape of its head (Breed, 2004, 2005; Gomendio, 56 
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Tourmente & Roldan, 2011; Tourmente et al., 2011).  Within the subfamily Murinae most, but not 57 

all, species have a sperm head with an apical hook whereas most rodents of the Australasian old 58 

endemic tribe Hydromyini have an even more complex sperm form with two further extensions, the 59 

ventral processes, protruding from its upper concave surface. Suggested functions of the apical hook 60 

include facilitating temporary binding of the spermatozoon to the oviduct epithelium (Smith & 61 

Yanagimachi, 1990; Firman & Simmons, 2009; Gómez Montoto et al., 2011) and/or in aiding in the 62 

formation of sperm aggregates or “trains” to enhance motility under high levels of intermale sperm 63 

competition (Moore et al., 2002; Immler et al., 2007; Fisher & Hoekstra, 2010) whereas the function 64 

of the sperm ventral processes may be to facilitate sperm binding to, and penetration of, the coat 65 

that surrounds the egg, the zona pellucida (Breed and Leigh, 1991; Drew et al. 2014).  66 

In the current study, we tested the hypothesis that the length and angle of the sperm head ventral 67 

processes, that are characteristic morphological feature of the spermatozoon of most of the 68 

hydromyine rodents, are sexually selected traits and increase as the level of sperm competition is 69 

enhanced. We examined  morphological data of sperm obtained from 44 species of hydromyine 70 

rodents in a phylogenetically controlled framework using relative testes mass as a proxy for sperm 71 

competition (Soulsbury 2010).  72 

 73 

Materials and Methods 74 

The taxonomy of the Australasian Old Endemic rodents used in the current study follows that of 75 

Musser and Carleton (2005) and Lecompte et al. (2008).  Thus, within the Tribe Hydromyini six 76 

divisions are recognised: Hydromys, Xeromys, Uromys , Pogonomys, Lorentizmys, and Pseudomys. 77 

Specimens and Sample Preparation 78 

Sperm samples were obtained from 44 species that included representatives from all of the 6 79 

hydromyine divisions (for a full list of species and source of the material see Supplementary Table 1). 80 
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Sperm were obtained from the cauda epididymides that had been fixed in 10% buffered formalin. 81 

The testis weight was determined and, when only one testis was available, its weight was doubled to 82 

provide an approximate combined testes mass for the individual.  Slides of sperm smears were 83 

prepared by teasing apart the cauda epididymides with forceps under a dissecting microscope and 84 

extruding sperm from the ducts.  Body mass data came from either museum or laboratory records of 85 

the relevant individuals or from the literature (e.g. Breed & Taylor, 2000; see Supplementary Table 1 86 

for details). 87 

Sperm Parameters 88 

To indicate qualitative differences in sperm head morphology across species, and in particular the 89 

interspecific variation in the length and orientation of the apical hook and ventral processes, 90 

scanning electron microscopy of the sperm was carried out as previously described (see Breed, 1983, 91 

1984; Breed & Leigh, 2010).  92 

For quantification of trait variation, light microscopical images of morphologically intact sperm were 93 

captured with a Nikon digital camera (Olympus SC100) attached to a Nomarski light microscope 94 

(Olypus BH2), and 10 sperm per individual were measured using the image analysis program NIS-95 

Elements BR, calibrated to 0.09 µm/pixel.  Sperm were selected at random and photographically 96 

archived.  Sperm head length was measured from the base of the sperm head to the base of the 97 

apical hook, and head width across the widest part of the head perpendicular to head length.  The 98 

ventral process and hook length was determined by drawing a line at the base of the ventral 99 

processes, when present, and the apical hook.  The lengths of the apical hook and ventral processes 100 

were measured from the base to the tip by tracing the centre line using a segmented line tool.  101 

Where two ventral processes were discernible and differences in length were evident, the longer of 102 

the two processes was recorded.  The angle of the apical hook and ventral processes was measured 103 

as the reflective angle between the tangent of a line drawn through their rostral tip along the 104 

concave surface and the main longitudinal axis of the sperm head (see  Immler et al., 2007).  105 
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Midpiece length was measured from the connecting piece to either the cytoplasmic droplet and/or 106 

to a discernible narrowing of tail width.  The lengths of the principal and end pieces were combined 107 

and measured from the posterior end of the midpiece to the tip of the tail.  The total flagellum 108 

length was the sum of the midpiece, principal piece and end piece lengths.  Sperm with discernible 109 

breaks were precluded from the analysis. 110 

Statistical Analysis 111 

Statistical analyses were performed using the statistical package R v.3.1.1 (R Core Team, 2014).  Non-112 

normal data distributions were logarithmically transformed and relative testes mass (RTM) was used 113 

as a proxy for sperm competition (e.g. Soulsbury, 2010) by including both combined testes mass and 114 

body mass as predictor variables in all analyses of sperm traits against the level of sperm 115 

competition. 116 

Phylogenetic general linear models (PGLM) were used to account for statistical non-independence of 117 

the data due to shared common ancestry (Pagel, 1999; Freckleton, Harvey & Pagel, 2002), based on 118 

a molecular phylogeny of the Australasian old endemic rodents (P. Smissen & K. Rowe, unpublished; 119 

see Supplementary Fig. 1).  The phylogenetic scaling parameter λ, estimated by the PGLM, was used 120 

to determine the level of phylogenetic dependence of the relationships.  In brief, values of λ close to 121 

0 indicate that the association between the traits under examination is largely independent of 122 

phylogeny, whereas λ values close to 1 suggest strong phylogenetic dependence.  Likelihood ratio 123 

tests were used to compare the maximum likelihood estimates of λ of a given PGLM to models 124 

where λ was set to 0 or 1, respectively, and the corresponding P-values are shown as superscripts 125 

following λ (first superscript for λ=0, second for λ=1).  We report the strength of all relationships 126 

(i.e., effect sizes) as the partial correlation coefficients, r, with 95% non-central confidence intervals 127 

(95% CI), calculated from the t-statistic of the PGLM (Nakagawa & Cuthill, 2007). 128 

 129 
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Results 130 

   131 

The species investigated exhibited marked differences in relative testes mass (RTM) (for details see 132 

Supplementary Table 1).  The smallest RTM occurred in the three species of Notomys (N. alexis, N. 133 

fuscus and N. mitchelli) which were between 0.14% and 0.16% of body mass, whereas the largest 134 

RTM occurred in Pogonomys species, Mastocomys, and several species of Pseudomys where it 135 

ranged from 2.7% to 5.5% of body mass.  Considerable interspecific variation in RTM was observed 136 

within the one genus Pseudomys where it ranged from 0.4% in P. novaehollandiae to 3.4% in P. 137 

fumeus hence spanning most of the interspecific variation for RTM throughout the hydromyine 138 

species investigated (see also Breed & Taylor, 2000). 139 

Scanning electron microscopy showed that in five out of six divisions of hydromyine rodents most 140 

species have a sperm head with two ventral processes (Figs. 1 and 2). However, their length and 141 

angle, as well as that of the apical hook, varied across species (e.g. compare Fig. 1 a-d, g-i with Fig. 142 

2a-e, g-i) even though they were generally fairly consistent within a species. Within the Pseudomys 143 

division, P. novaehollandiae (Fig. 1e) was the only species with no ventral processes but a single 144 

apical hook, whereas P. shortridgei had neither an apical hook nor ventral processes (see Fig. 1j). 145 

Furthermore, the presence of ventral processes was highly variable within N. alexis, but, when 146 

present, the apical hook and these processes were always very short (see Fig. 1j). The Pogonomys 147 

division also had interspecies  variation in the presence of ventral processes with some exhibiting 148 

clear processes (Fig. 2  g to i) whereas others lacked them (Table S1).  149 

Based on quantitative light microscopical measurements, the length of the sperm head ranged from 150 

around 4.3 µm in Hydromys chrysogaster to a mean of 9.2 µm in Abeomelomys sevia, and its 151 

maximum width ranged from 1.6 µm in Mallomys rothschildi to around 4 µm in Notomys fuscus (Fig. 152 

2i) and Anisomys imitator (see Suppl. Table 2). When the apical hook on the sperm head was 153 
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present, its length ranged from 2 µm, or less, in sperm of Notomys alexis (Fig. 1j) to 14 µm in A. 154 

sevia, with most sperm having an apical hook length of between 4 and 9 µm . The angle also varied 155 

across species and ranged from 218° in N. alexis (Fig. 1j) to exceeding 340° in two species of 156 

Paramelomys (e.g. Fig. 2c) (see Suppl. Table 2 for details).   157 

Ventral processes were present on the sperm head of 36 out of all 44 species (Figs. 1, 2). However, in 158 

N. alexis, when present, they measured no more than 1.0 µm. By contrast the ventral processes 159 

exceeded 6 µm in several species including those of Pseudomys desertor (Fig. 1a), P. australis, P. 160 

gracilicaudatus, P. higginsi, Leporillus conditor, and Mastocomys fuscus (see Suppl. Table 2). The 161 

angle of these processes varied from 204° in N. alexis to 360° in Paramelomys levipes, although the 162 

majority fell between300° and 330° (see Suppl. Table 2).   163 

Finally, midpiece lengths ranged from about 20 µm in H. chrysogaster to 55 µm in Chiruromys vates, 164 

whereas the principal and end piece lengths varied between about 70 µm in N. fuscus and 126 µm in 165 

Abeomelomys sevia. 166 

Phylogenetically controlled general linear models revealed several statistically significant 167 

relationships between sperm traits and relative testes mass (RTM) (see Table 1 for details).  For 168 

example, the ratio of head length to width, a measure of how streamlined the sperm head is, 169 

covaried positively with RTM (N = 44, partial r = 0.58, p < 0.001) (Fig. 3a). The length of both the 170 

apical hook and ventral processes  also tended to increase with RTM. Both these associations were, 171 

however, largely driven by N. alexis and, after removing this species from the analysis, neither P-172 

values were statistically significant (partial r ≤ 0.18, P ≥ 0.25).  The angles of both the apical hook and 173 

ventral processes were also positively correlated with RTM (partial r ≥ 0.63, P < 0.001) with these 174 

effects remaining statistically significant after removing the three influential data points (apical hook 175 

angle: N = 44, partial r = 0.71, P < 0.001; ventral process angle: N = 36, partial r = 0.63, P < 0.001) (see 176 

Fig. 3 b, c).  In addition, midpiece length tended to increase with RTM, albeit not significantly so 177 

(partial r = 0.27, P = 0.07), whereas the lengths of the combined principal and end pieces and the 178 
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total flagellum length were positively associated with RTM (partial r ≥ 0.50, P < 0.001) (Fig. 3d).  179 

None of the ratios between sperm components were significantly correlated with RTM (partial |r| ≤ 180 

0.25, P ≥ 0.09). 181 

 182 

Discussion 183 

Most of the old endemic hydromyine rodents of Australasia have a highly complex sperm head in 184 

which two cytoskeletal processes, the ventral processes, extend from its upper concave surface. 185 

There are differences in length and orientation of these processes across the species and here we 186 

tested the hypothesis that their length and orientation have evolved as a result of sexual selection.  187 

Most murid rodents have elongated sperm heads with an apical hook into which the nucleus, 188 

acrosome with an elongated region of cytoskeleton, the perforatorium into which part of the 189 

nucleus, acrosome and cytoskeleton extend (Fawcett, 1975; Oko & Clermont, 1988; Breed, 2004), 190 

and it has previously been found that the length and angle of this apical hook increases in length 191 

with increase of RTM (Immler et al. 2007, Sandera et al 2013). Our current study using 44 species in 192 

the murid tribe, Hydromyini, shows that, in addition to the apical hook, most species have a sperm 193 

head that has, in addition to an apical hook, two ventral processes which, unlike the apical hook, are 194 

largely composed of cytoskeletal material (Flaherty and Breed 1983, 1987; Breed et al., 2000). The 195 

present results show that these ventral processes have a more reflective angle in species with a high 196 

RTM. A finding that suggests that their angle, like that of the apical hook, is a sexually selected trait 197 

that has evolved under high levels of intermale sperm competition.  198 

Across the species of hydromyine rodents there are, nevertheless, marked differences in overall 199 

sperm head size and shape, as well as in the length of the apical hook and ventral processes. For 200 

instance in Notomys fuscus, unlike most hydromyines, the sperm head is around half as wide as it is 201 

long with the apical hook being relatively much shorter than that of most other species  with the 202 
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ventral processes also being either very short or nonexistent.  These divergent features were even 203 

more evident in the sperm of a closely related species, that of N. alexis, which has a highly variable 204 

sperm head shape (e.g. see Suttle et al., 1988; Bauer and Breed, 2006) with the ventral processes 205 

often being absent and the curvature of the apical hook being considerably less than that of the 206 

other species. These two species of Notomys have the smallest relative testes mass of all species 207 

investigated and, at least in N. alexis, the efficiency of production of sperm per gram testis is 208 

comparatively low (Peirce and Breed, 2001; Bauer and Breed, 2008). These features suggest that 209 

intermale sperm competition in these species is weak or even lacking, and this has resulted in highly 210 

variable sperm morphology that occurs within and between males in these species similar to the 211 

situation in the greater bandicoot rat Bandicota indica (Thitipramote et al 2011) and naked mole rat 212 

Heterochephalus glaber (Van der Horst et al 2011) in which it has been suggested that due to 213 

minimal sperm competition “degenerative” sperm traits and high levels polymorphism has evolved  214 

(Van der Horst and Maree 2014).  215 

Previous work on the functional and evolutionary significance of the apical hook of murine sperm 216 

has suggested that in the wood mouse, Apodemus sylvaticus, the hook may facilitate the formation 217 

of highly progressive motile groups of sperm, or “sperm trains”, with sperm attaching to each other 218 

by way of their apical hook (Moore et al., 2002). This finding was subsequently observed in sperm of 219 

the laboratory rat, Rattus norvegicus (Immler et al., 2007) as well as in a species of deer mouse, 220 

Peromyscus maniculatus (Fisher & Hoekstra, 2010).  Within the hydromyine rodents, the only 221 

published study addressing this question is that of Firman et al. (2013) using sperm from the Sandy 222 

Inland mouse, Pseudomys hermannsburgensis, in which no sperm grouping was observed in spite of 223 

a well-developed apical hook being present. However, more recent observations on sperm with 224 

similar morphology, those of P. australis, have indicated that sperm do indeed aggregate upon 225 

release from the epididymis into culture medium, but this was not found to occur in sperm of N. 226 

alexis, which lack lack a long hook and ventral processes (Kathrine Ferres and Bill Breed, unpublished 227 

observations). Based on the comparison between these two species it may be that the ventral 228 
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processes facilitate sperm aggregation although further evidence of the ventral processes being 229 

involved in sperm behaviour is clearly needed. 230 

Apart from supporting sperm aggregation, the sperm head ventral processes may also facilitate 231 

sperm binding to the egg coat. For example, studies on sperm–egg interactions in vitro show that in 232 

P. australis the ventral processes enhance the area of sperm binding to the egg coat (Drew et al., 233 

2014), and in vivo observations indicate that these processes enlarge the size of the penetration slit 234 

in the zona (Breed & Leigh, 1991).  The significance of variation in the angle of the ventral processes 235 

in relation to zona pellucida binding and penetration is unknown but it may be that sperm with more 236 

reflective ventral processes form tighter initial attachment to the egg coat. Even though the function 237 

of these processes remains unclear at the present time, the present study clearly shows that their 238 

length and orientation are generally similar to that of the apical hook; a feature that suggests that 239 

these structures have coevolved. 240 

In addition to sperm head variation, a significant positive relationship between relative testes mass 241 

and the sperm flagellum length was also evident, a finding that is consistent with a broader range of 242 

rodents (Gomendio et al., 2011).  The prevailing explanation for a positive association with relative 243 

testes size is that sperm with a relatively long flagellum and/or larger midpiece are favoured by 244 

sexual selection because they have a competitive advantage by achieving greater swimming velocity 245 

than sperm with relatively shorter tails (Katz, Drobnis & Overstreet, 1989; Cardullo & Baltz, 1991; 246 

Gómez Montoto et al., 2011).  Despite relatively little evidence within species (reviewed in 247 

Humphries et al., 2008; Simmons & Fitzpatrick, 2012), such a link between sperm morphology and 248 

sperm velocity is supported by comparative studies using various vertebrate taxa, including cichlid 249 

fishes (Fitzpatrick et al., 2009), passerine birds ( Lüpold et al., 2009, but see Kleven et al., 2009), and 250 

mammals (Gomendio & Roldan, 1991; Tourmente et al., 2011; Gómez Montoto et al., 2011).  If such 251 

a link between sperm form and function also holds for hydromyine sperm, our comparative data 252 
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would suggest that selection on sperm tail length through sperm competition may be mediated by 253 

its effects on the speed of sperm swimming. 254 

In conclusion, our results suggest that the complex sperm morphology of hydromyine rodents is, at 255 

least in part, a result of postcopulatory sexual selection.  These findings extend previous reports of 256 

Immler et al., (2007) and Šandera et al. (2013) on the apical hook of murine sperm and show that 257 

the additional ventral processes on the sperm head of the Australasian old endemic rodents may 258 

also have evolved under sexual selection.  Similarly, sperm tail dimensions co-vary positively with 259 

relative testes mass, which might be the result of sperm competition selecting for faster sperm, 260 

mediated by relatively longer tails.  Further studies are now required to gain more in-depth insight 261 

into the adaptive significance of the ventral processes that are such a characteristic feature of the 262 

sperm head of most of the hydromyine species of Australasia. 263 
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Table 1: Phylogenetically controlled associations between sperm morphological traits and 

testes mass corrected for body mass; all variables are log-transformed.  Effect sizes(?) are 

shown as the partial correlation coefficients r along with their lower (LCL) and upper (UCL) 

95% confidence limits. 

Sperm Trait Predictors df partial r (LCL, UCL) t P λa 

Head Length: Width 
Ratio 

Testes Mass 42 0.41 (0.13, 0.61) 2.89 0.006 0.76<0.001, <0.001 

Body Mass 42 -0.27 (-0.51, 0.03) -1.81 0.08 

Apical Hook Length Testes Mass 41 0.29 (-0.01, 0.52) 1.94 0.06b 0.380.12, <0.001 

Body Mass 41 -0.08 (-0.36, 0.22) -0.51 0.61 

Apical Hook Angle Testes Mass 41 0.72 (0.55, 0.82) 6.68 <0.001 <0.0011.0, <0.001 

Body Mass 41 -0.50 (-0.67, -0.23) -3.66 <0.001 

Ventral Process Length Testes Mass 33 0.36 (0.03, 0.59) 2.22 0.03b 0.240.31, <0.001 

Body Mass 33 -0.16 (-0.45, 0.18) -0.93 0.36 

Ventral Process Angle Testes Mass 33 0.63 (0.39, 0.77) 4.72 <0.001 <0.0011.0, <0.001 

Body Mass 33 -0.32 (-0.57, 0.01) -1.95 0.06 

Midpiece Length Testes Mass 42 0.08 (0.22, 0.36) 1.84 0.61 1.00<0.001, 1.0 

Body Mass 42 -0.40 (-0.47, 0.08) -1.46 0.15 

Principal and End Piece 
Length (PEL) 

Testes Mass 42 0.34 (0.05, 0.56) 2.35 0.02 0.820.001, 0.05 

Body Mass 42 -0.22 (-0.47, 0.08) -1.49 0.14 

Total Flagellum Length 
(TFL) 

Testes Mass 42 0.34 (0.05, 0.56) 2.33 0.02 0.91<0.001, 0.22 

Body Mass 42 -0.27 (-0.51, 0.03) -1.81 0.08 

PEL:TFL Ratio Testes Mass 42 0.23 (-0.07, 0.47) 1.52 0.14 0.94<0.001, 0.39 

Body Mass 42 -0.04 (-0.32, 0.26) -0.24 0.81 

Midpiece:TFL Ratio Testes Mass 42 -0.24 (-0.49, 0.06) -1.62 0.11 0.90<0.001, 0.22 

Body Mass 42 -0.04 (-0.25, 0.33) -0.29 0.77 

Flagellum:Head Ratio Testes Mass 42 0.24 (-0.06, 0.49) 1.63 0.11 <0.0011.0, 0.05 
Body Mass 42 -0.30 (-0.53, 0.00) -2.04 0.05 

a Superscripts following the phylogenetic scaling parameter λ estimates denote significance 
levels of likelihood ratio tests (first superscript: against λ = 0; second superscript: against λ = 
1). 
b These positive trends are not statistically significant after removal of a single influential data 
point (Notomys alexis; both partial r ≤ 0.18, P ≥ 0.25). 
Statistically significant P-values (at α = 0.05) are highlighted in bold. 
 

Commented [SL1]: Yes, this is correct. This is a 
statistical term referring to a statistic (in this case partial 
r) that expresses the strength (and direction) of an 
effect (or relationship). 


