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Abstract
Fossils represent invaluable data to reconstruct the past history of life, yet fossil-rich sites

are often rare and difficult to find. The traditional fossil-hunting approach focuses on small

areas and has not yet taken advantage of modelling techniques commonly used in ecology

to account for an organism’s past distributions. We propose a new method to assist finding

fossils at continental scales based on modelling the past distribution of species, the geologi-

cal suitability of fossil preservation and the likelihood of fossil discovery in the field, and

apply it to several genera of Australian megafauna that went extinct in the Late Quaternary.

Our models predicted higher fossil potentials for independent sites than for randomly

selected locations (mean Kolmogorov-Smirnov statistic = 0.66). We demonstrate the utility

of accounting for the distribution history of fossil taxa when trying to find the most suitable

areas to look for fossils. For some genera, the probability of finding fossils based on simple

climate-envelope models was higher than the probability based on models incorporating

current conditions associated with fossil preservation and discovery as predictors. How-

ever, combining the outputs from climate-envelope, preservation, and discovery models

resulted in the most accurate predictions of potential fossil sites at a continental scale. We

proposed potential areas to discover new fossils of Diprotodon, Zygomaturus, Protemno-
don, Thylacoleo, andGenyornis, and provide guidelines on how to apply our approach to

assist fossil hunting in other continents and geological settings.

Introduction
About 99% of all the species that have evolved on Earth are extinct [1], and fossils are the main
source of information we have to describe them [2,3]. Moreover, fossils are also valuable for
understanding how current ecological communities might respond to environmental changes
[4–6]. However, fossils of many species are exceedingly rare because their formation and per-
sistence depend on a series of unlikely events and conditions. Fossil formation is usually the
result of an organism’s remains being rapidly buried in sediments and preserved (e.g., by
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mineralisation or compression). Subsequent exposure by erosion or crust movement can pro-
mote fossil discovery, but intense erosion can also destroy the fossil itself [3].

The standard approach to find fossils is by prospecting at excavation sites and surrounding
areas that are already known for their fossil assemblages [3]. While these methods have led to
many successful fossil discoveries, most novel finds occur in sites previously unknown for their
fossil assemblages; identifying such new sites over potentially vast areas is technically challeng-
ing using the traditional approach. More recently, potential fossil sites have been identified
using remote sensing and machine-learning algorithms [7–11]. Machine-learning algorithms
can classify the pixels of a satellite image to identify the spectral properties of fossil sites and
infer potential site locations at fine scales (e.g., a Landsat 7 image has a pixel resolution of 30
m) [10]. Despite successful applications, these methods are limited to small areas (e.g., a single
catchment or geological formation) and neglect the climatic conditions that constrained spe-
cies’ distributions, and how these changed through time. Accounting for variations in distribu-
tional ranges could improve predictions of new fossil locations and allow fossil searches to be
targeted to species of particular interest.

We developed a new modelling approach for species-specific fossil hunting at continental
scales, taking into account species’ geographical range limits and their variation through time.
We coupled three statistical models that spatially predict the suitability for (i) species occur-
rence over the last 120 ka (ka = 103 years) given palaeo-climate conditions (mean annual tem-
perature and precipitation), (ii) fossil preservation given geological constraints, and (iii) the
suitability for fossil exposure given present-day environmental conditions. As an example, we
applied the method to find new potential fossil areas for five genera of Late Pleistocene mega-
fauna in Australia: Diprotodon, Zygomaturus, Protemnodon, Thylacoleo, and Genyornis. We
showed that averaging the ranking of these three suitability values can help identify areas in
which to focus future fossil-hunting, and that accounting for spatio-temporal variation in geo-
graphic range improves predictions of new fossil sites for some genera.

Methods
Wemodelled the likelihood of finding fossils of a given taxon (i.e., genus or species) in Austra-
lia at a grid cell resolution of 1 × 1°. In each grid cell, we assumed that the likelihood of finding
fossils of a given taxon depends on the following three criteria: (i) suitable climatic conditions
over the last 120 ka for the taxon to live (Fig 1A), (ii) suitable geological conditions for fossil
preservation (Fig 1B) and (iii) suitable present-day environmental conditions for fossil discov-
ery (Fig 1C). We built a separate statistical model for each criterion. We only had presence-
background data (i.e, we lacked reliable records of fossil absences), so we interpret the model
outputs as rankings of each grid cell’s suitability to meet each criterion, rather than true proba-
bilities of fossil occurrence [12]. Thus, we ranked each model’s raw outputs and calculated the
average of the three rankings to obtain a final value of a grid cell’s potential to yield new fossils
(i.e., the output of each model was equally weighted in the combination).

We applied our approach to identify new fossils areas for five extinct genera of Australian
megafauna: Diprotodon, the largest marsupial that ever existed; Zygomaturus, sometimes called
the ‘marsupial rhino’; Protemnodon, the giant wallaby; Thylacoleo, the marsupial lion; and Gen-
yornis, the mihirung, an ostrich-sized, flightless bird. We selected these genera because we had
sufficient fossil records (n> 10) with good spatio-temporal coverage (i.e., present in at least
three grid cells). We extracted fossil records from the FosSahul database (Australian Ecological
Knowledge and Observation System Data Portal, doi: 10.4227/05/564E6209C4FE8) [13], in
which the quality of each fossil’s age was rated and assigned to one of four categories (A�, A, B,
or C, in decreasing quality). The quality rating is based on (1) the reliability of the dating and
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pretreatment protocols and (2) the association between the target fossil and the dated materials
[14]. There are different criteria for different dating techniques. For example, reliable radiocar-
bon ages can be obtained from well-preserved collagen pretreated with ultrafiltration, XAD-2,
or ninhydrin protocols to remove possible contaminants [15]; reliable uranium-series ages can
be obtained from materials that act as either chemically closed systems or as open systems
when combined with modelling of uranium-migration processes. When remains of the target
species are not directly dated, ages are only reliable if they come from contexts with strati-
graphic integrity [14]. The fossils of the five genera had reliable ages (categories A� and A)
ranging from 120 to about 40 ka ago and had a similar spatial distribution, with the exception
of Genyornis (S1 Fig). We calibrated radiocarbon ages using the Southern Hemisphere Calibra-
tion curve (SHCal13) from the OxCal radiocarbon calibration tool Version 4.2 [16].

Fig 1. Approach to identify potential fossil areas with combinedmodels. For a given taxon, the areas
with greatest potential to yield new fossils (red map) are those where the species used to live (brown map),
where its fossils could be preserved (blue map), and where it is now possible to find its fossils (green map).
(a) We used palaeo-climate data and fossil records with reliable ages to model the climate envelope of
different genera of the Australian megafauna, geological variables to model the suitability for fossil
preservation (b) and erosion proxies to model the suitability for fossil discovery (c). The average of the
suitability rankings predicted by the climate-envelope, preservation, and discovery models can be used as an
indicator of the potential of an area to yield new fossils of a given taxon. We cross-validated each model and
used an independent subset of the data to validate the final predictions of each model and their combination.

doi:10.1371/journal.pone.0151090.g001
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Palaeo-climate suitability for taxon occurrence
Besides rare translocation events (movement of fossils from the original place of an organism’s
death) [17], fossils of a given taxon are only found in places where the taxon once lived. By
pairing fossil records with palaeo-climatic conditions that coincide with the approximate time
at which the organism was alive (fossil age) we can estimate climatic suitability (i.e., a taxon’s
climate envelope) across space and time [18,19].

We used absolute values of mean annual temperature and total annual precipitation from
the Hadley Centre climate model (HadCM3) simulations for the last 120 ka, available at a spa-
tial resolution of 1° and at 1 ka time slices between 0 and 22 ka ago; 2 ka time slices between 22
and 80 ka ago; and 4 ka time slices beyond 80 ka ago [20]. These climate layers have been used
previously to estimate timing of megafauna extinction in Australia [21]. Although species’
ranges are likely constrained by a diverse suite of environmental conditions [22], we followed
the approach of previous studies by assuming that annual temperature and precipitation are
reasonable predictors of past ranges of megafauna [19]. As a response variable, we used fossil
presences of the five Australian megafauna genera (we could not use species-level information
because of the small size of our samples). To account for the uncertainty of fossil ages we only
used fossils with reliable ages (A� and A categories in [14])(S1 Fig) and selected the palaeo-cli-
mate slices nearest in time to the mean fossil age (± both 1 and 2 standard deviations), and cal-
culated the Gaussian-weighted average of climate values of these time slices (i.e., the closer a
time slice to the mean fossil age, the more it influenced the calculation of the average climate
values).

In addition to presence data, most climate-envelope models require data of the climatic con-
ditions in which the species has not been recorded (background data) or is assumed to be
absent (pseudo-absence data) [12]. We selected pseudo-absences from fossil sites where the
taxon of interest was absent because the accuracy of climate-envelope model predictions can be
improved by selecting pseudo-absences with the same biases as are inherent (but not necessar-
ily known) in the presence dataset [23]. However, the observation that a taxon is absent from a
fossil site does not necessarily mean that it never occurred in that area [24]. To reduce the risk
of including false absences, we only selected pseudo-absences from outside the climatic enve-
lope of the genus (climates with either temperature or precipitation values< the 5th or> the
95th percentiles of the climate values of the presence data) [25]. We selected ten times more
pseudo-absences than presences for all modelled genera except Genyornis, where we selected
all pseudo-absences that met the criteria due to a lack of fossil sites (1312 pseudo-absences for
148 presences).

We modelled climate envelopes using three different methods: Bioclim [26], MaxEnt [27]
and generalised linear models [28] (see details in S1 Appendix) because predictions can be sen-
sitive to the method used to estimate climate suitability (e.g., MaxEnt predictions tend to be
less sensitive to sample sizes) [29–31]. We evaluated each modelling method using (i) a ‘spatio-
temporal’ validation and (ii) a ‘temporal-only’ validation. In the spatio-temporal validation, we
pooled all the data and ran a five-fold cross-validation, so that data used for training and testing
came from different points in time and space. In each round of the temporal-only cross-valida-
tion, we excluded the data of one time-slice for model training and used it for validation. We
had as many rounds as time slices with fossils of the genus so that fossils from each time slice
were used for model training and validation. We assessed predictive accuracy using the true
skill statistic, which is the sum of the sensitivity (the proportion of presences predicted cor-
rectly) and specificity (the proportion of absences predicted correctly) minus one [32]. We pro-
jected climate suitability in each grid cell for each time slice in which the taxon was still alive
(i.e., the time-slice with the youngest fossil record and all the previous ones) by weighting the
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projections from each model by its true skill statistic [33]. Lastly, we averaged climate suitabil-
ity in each grid cell across all time slices. We used the R package dismo to generate all climate-
envelope models [34,35]. The code is available at https://github.com/seblun/Fossil-hunting-
models.

Geological suitability for fossil preservation
We used logistic regression to model the suitability of fossil preservation in each grid cell as a
function of three geological constraints: suitable-rock cover, lake cover, and cave presence. We
assumed that these variables are relevant predictors of fossil preservation because Australian
megafauna fossils are almost always found in sedimentary rocks and regoliths [3], and caves
and lakes (the richest localities of Late Quaternary fossils in Australia [13]) work as pit traps
leading to fossil accumulation and provide adequate conditions for their preservation [17,36].
We also assumed that geological conditions did not change over the time scale under consider-
ation (last 120 ka) and that certain environments are more conducive to fossilisation than oth-
ers [37].

We used freely available datasets to extract the geological predictors and calculated their val-
ues in each grid cell. We estimated sedimentary rocks and regoliths in each grid cell using the
surface geology of Australia 1:106 scale dataset [38] processed with QGIS [39]. We extracted
geospatial data of lakes and caves in Australia from the GEODATA TOPO 250k Series 3 topo-
graphic database [40] and quantified the area of lakes and the presence of caves (as a binary
variable) in each grid cell.

For the models of suitability for fossil preservation and discovery, we used all fossil records
disregarding their taxonomic identity and age quality, because the mere presence of a fossil at a
site demonstrates that fossils can be preserved and discovered there (i.e., irrespective of species
identity and the reliability of the fossil age). The response variable was the presence or absence
of fossils at the grid cell level (1 × 1°) rather than fossil density to avoid any bias due to the spa-
tial aggregation arising from prospecting (i.e., many fossil sites in the same grid cell can result
in a biased measure of fossil density) [10]. Of the 849 grid cells encompassing Australia, 103
had fossils (S2 Fig).

Suitability of the present-day environment for fossil discovery
Wemodelled the suitability for fossil discovery as a function of erosion proxies: mean slope,
rain intensity and bare soil cover in each grid cell. Our key assumption was that erosion can
expose fossils, and thus improve the chances of finding them while prospecting. We created a
slope map of Australia from a digital elevation model [41] with the Raster Terrain Analysis
plugin of QGIS [39], and calculated the rain intensity (as a proxy of its erosive power) by divid-
ing the mean annual precipitation [42] by the mean annual days of rain [43] (data from the
Australian Government’s Bureau of Meteorology – www.bom.gov.au). Finally, we calculated
the bare soil cover in each grid cell using a map of Australia’s vegetation in the mid-1980s [44]
that shows areas with no vegetation (bare soil).

Fossil presence data are often spatially biased because sampling is concentrated in the areas
most accessible to humans. To account for this potential bias, we investigated the relative role
of slope, rain intensity, and bare soil cover in predicting fossil presence without the confound-
ing effect of site accessibility. We modelled the sampling probability in every grid cell and used
its reciprocal to weight the observations in the fossil-discovery model, so that grid cells with
high probabilities of being sampled (and where fossil prospecting has arguably been more
intense) were less important in the model [45]. As proxies of accessibility (and thus of sampling
effort), we calculated the human population and road density per grid cell, and the distance of
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each grid cell’s centroid to the centroid of large and medium cities (> 1 million and> 50 thou-
sand people, respectively) [46]. Using fossil presence as the response variable, we fitted 16 logis-
tic regressions with all combinations of these four explanatory variables and ranked them
based on their Bayesian information criteria [47]. This resulted in incorporating only human
population density and distance to large cities as explanatory variables in the most parsimoni-
ous model (S1 Table). Using the reciprocal of this model’s output to weight the observations in
the fossil discovery model, we reduced the importance of (potentially) heavily sampled grid
cells, so that the estimated coefficients for slope, rain intensity, and bare soil cover represented
the role of these variables as predictors of fossil presence when accounting for sampling bias.
We then used these coefficients to predict the suitability of fossil discovery without using sam-
pling-bias weights because there was no intrinsic reason why the suitability of fossil discovery
should change with the accessibility to the site (i.e., sampling-bias weights are useful to eluci-
date the role of predictors of fossil-discovery suitability, but not to make the predictions).

Validation and analyses
For each of the three statistical models, we did a five-fold cross-validation and in each valida-
tion round we calculated the true skill statistic and area under the receiver operating character-
istic curve. In addition, we trained the climate-envelope, preservation, and discovery models
excluding grid cells with unreliably dated fossils of the five megafauna genera, and using them
to test the skill of model predictions (and their combinations) in two ways. The first test vali-
dated the continuous output of the models and the second was based on binary (suitable or
unsuitable) output.

In the first validation, we used a Kolmogorov-Smirnov test to compare the cumulative dis-
tribution of the suitability predictions at independent validation sites against randomly selected
grid cells. The Kolmogorov-Smirnov statistic ranges from 0 to 1 and denotes the maximum dif-
ference between the two cumulative distributions being compared (i.e., 1 means that all suit-
abilities predicted in grid cells with fossils are larger than the suitabilities predicted in
randomly selected grid cells) [48].

In the second validation, we compared the probabilities of finding grid cells with fossils in
‘suitable’ areas identified by the models versus the probability of finding them at random. In
particular, we compared probabilities in (i) the overlap of areas suitable for preservation and
discovery (the focus of previous modelling attempts to find fossils)[49], (ii) areas of suitable
palaeo-climate, and (iii) the overlap of the three areas (palaeo-climate, preservation, and dis-
covery). We used thresholds that maximised the true skill statistic to transform the continuous
output of the models into binary predictions. By using a threshold that maximised the true skill
statistic, we obtained areas that included as many presences and as few absences as possible.
Although using thresholds based on specificity with presence-only data is problematic because
it is impossible to determine if background points are true absences [50], for our purposes the
true skill statistic offered an acceptable solution to the trade-off between maximising sensitivity
and minimising predicted area (a condition necessary to focus fossil hunting) [51].

Results

Model validation and predictive performances
The three climate-envelope models we developed can accurately predict fossil occurrence, as
shown by high median values of the true skill statistic and area under the receiver operator
characteristic curve obtained by cross-validation (all values> 0.65 and 0.82, respectively;
Table 1). The predictive performance of different models varied among genera. MaxEnt had
the best performance for genera with small sample sizes, like Zygomaturus and Thylacoleo,
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whereas the generalised linear model had the worst (Table 1). For other genera, like Genyornis,
the three models performed similarly.

Validation using independent data (i.e., unreliably dated fossils) showed that the projections
of palaeo-climate suitability averaged through time predicted fossil occurrence better than ran-
dom (median Kolmogorov-Smirnov statistics 0.43–0.75, median true skill statistics 0.43–0.75,
Table 2). The model of fossil preservation had poor predictive capacity (median true skill

Table 1. Climate-envelope models cross-validations.

Genus Model Spatio-temporal validation Temporal validation

Median true skill
statistic (1st–3rd

quartiles)

Median area under the receiver
operator characteristic curve
(1st–3rd quartiles)

Median true skill
statistic (1st–3rd

quartiles)

Median area under the receiver
operator characteristic curve
(1st–3rd quartiles)

Diprotodon Bioclim 0.78 (0.70–0.96) 0.90 (0.86–1.00) 0.98 (0.75–1.00) 1.00 (0.88–1.00)

MaxEnt 0.78 (0.71–0.89) 0.93 (0.89–0.97) 0.97 (0.85–1.00) 0.98 (0.90–1.00)

Generalised
linear model

0.68 (0.63–0.74) 0.86 (0.81–0.90) 0.80 (0.63–1.00) 0.85 (0.80–1.00)

Zygomaturus Bioclim 0.66 (0.50–0.96) 0.83 (0.75–0.99) 0.95 (0.00–1.00) 0.98 (0.50–1.00)

MaxEnt 0.93 (0.86–0.96) 0.96 (0.93–0.99) 1.00 (0.95–1.00) 1.00 (0.95–1.00)

Generalised
linear model

0.79 (0.64–0.86) 0.82 (0.77–0.88) 0.90 (0.85–1.00) 0.90 (0.88–1.00)

Protemnodon Bioclim 0.83 (0.69–0.86) 0.95 (0.89–1.00) 1.00 (0.80–1.00) 1.00 (0.90–1.00)

MaxEnt 0.90 (0.84–0.95) 0.97 (0.94–0.98) 1.00 (0.95–1.00) 1.00 (0.95–1.00)

Generalised
linear model

0.73 (0.66–0.82) 0.87 (0.83–0.90) 0.90 (0.80–0.95) 0.90 (0.80–0.95)

Thylacoleo Bioclim 0.80 (0.67–0.87) 0.89 (0.86–0.98) 1.00 (0.78–1.00) 1.00 (0.89–1.00)

MaxEnt 0.94 (0.86–0.98) 0.98 (0.96–0.99) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

Generalised
linear model

0.69 (0.62–0.77) 0.78 (0.74–0.82) 0.80 (0.70–0.90) 0.80 (0.70–0.90)

Genyornis Bioclim 0.87 (0.84–0.90) 0.98 (0.97–0.99) 0.96 (0.88–1.00) 1.00 (0.95–1.00)

MaxEnt 0.89 (0.87–0.92) 0.99 (0.98–0.99) 1.00 (0.90–1.00) 1.00 (0.98–1.00)

Generalised
linear model

0.85 (0.83–0.88) 0.94 (0.94–0.95) 0.91 (0.87–0.97) 0.95 (0.92–0.97)

Median (1st–3rd quartiles) of true skill statistic and area under the receiving operator characteristic curve for three climate-envelope models resulting from

100 rounds of 5-fold cross-validation.

doi:10.1371/journal.pone.0151090.t001

Table 2. Data used to train climate-envelope models and validation steps forDiprotodon, Zygomaturus, Protemnodon, Thylacoleo, andGenyornis.

Training Validation

Genus Presences Pseudo-
absences

Age range
(ka ago)

Presences Median Kolmogorov-Smirnov
statistica (1st–3rd quartiles)

Median true skill statisticb

(1st–3rd quartiles)

Diprotodon 23 230 44–112 14 0.43 (0.36–0.57) 0.43 (0.41–0.46)

Zygomaturus 14 140 44–120 9 0.67 (0.56–0.67) 0.45 (0.42–0.47)

Protemnodon 31 310 40–120 15 0.60 (0.53–0.67) 0.55 (0.53–0.58)

Thylacoleo 26 260 44–120 8 0.75 (0.75–0.88) 0.76 (0.74–0.79)

Genyornis 148 1312 36–120 8 0.63 (0.50–0.63) 0.55 (0.53–0.58)

In the training step, presence data describe fossils with reliable ages (black circles in Fig 3) whereas in the validation step, presences were fossils with

unreliable ages (black crosses in Fig 3)
a We did a Kolgomorov-Smirnov (KS) test compare the predicted suitabilities at fossil sites with the suitabilities predicted at 1000 sets of random points.
b We calculated the True Skill Statistic (TSS) using unreliable fossils as independent presence points and 1000 sets of randomly selected pseudo-

absences (10 times more than presences).

doi:10.1371/journal.pone.0151090.t002
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statistic = 0.30; median area under the receiver operating curve = 0.63), but still performed bet-
ter than random (mean Kolmogorov-Smirnov statistic = 0.34; S4 Table). The discovery model
had only a slightly higher predictive capacity than the preservation model (median true skill
statistic = 0.35; median area under the receiver operating curve = 0.67) and predictions were
better than random (mean Kolmogorov-Smirnov statistic = 0.53; S4 Table).

Averaging the output of the three models led to higher Kolmogorov-Smirnov values com-
pared to estimates from separate models (S4 Table). The only exception was Diprotodon, for
which the discovery model had a slightly higher median Kolmogorov-Smirnov statistic than
the combined models (0.57 and 0.50, respectively). The probability of finding fossils of Diproto-
don, Protemnodon, and Genyornis was higher in the overlapping areas suitable for fossil preser-
vation and discovery, while it was higher in areas of suitable palaeo-climate for Zygomaturus
and Thylacoleo (Fig 2). However, the highest probabilities for all genera were always where the
three areas overlapped (S6 Fig).

Model application
The projected climate suitabilities showed a similar pattern for all genera except Genyornis
(Fig 3). The areas of highest suitability for Diprotodon, Zygomaturus, Protemnodon, and Thyla-
coleo were concentrated in south-eastern and south-western Australia (Fig 3A–3D). Genyornis
had the most reliably dated fossils (148), but 93% were concentrated in the Lake Eyre region of
central Australia. The projected area of highest suitability for Genyornis was the Lake Eyre

Fig 2. Effect of combiningmodels on probability of finding fossils. Probability of finding a grid cell with
independent fossil sites of five genera in areas predicted by the climate-envelope models (blue bars), in the
area predicted by fossil preservation and discovery models (green bars), and in the area predicted by all
models (i.e., climate-envelope, preservation, and discovery). Each probability is divided by the probability of
finding the grid cells in all of Australia to emphasise usefulness of model combinations compared to finding
fossils by chance. For example, a value of one (horizontal dashed line) would mean that the probability of
finding a fossil using the model is the same as the probability of finding it by chance.

doi:10.1371/journal.pone.0151090.g002
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basin and the climatically similar area of Western Australia near Shark Bay (Fig 3E), but it is
unlikely that we captured the entire climate envelope of the genus.

The areas with greatest potential for yielding new fossils of the four marsupial genera are
concentrated in the southern half of mainland Australia and in central Tasmania (Fig 4). Gen-
yornis was the only genus for which there are sites of good potential around Shark Bay, in
Western Australia and around Lake Eyre, but not in the mountainous region of northern New
South Wales (Fig 4E).

Discussion
Combining climate-envelope, fossil preservation, and fossil discovery models is likely to
improve the identification of new fossil-rich areas at continental scales. The highest probabili-
ties of finding fossils are invariably at the intersection of the most suitable areas projected by
the three models (Fig 2). This pattern is particularly strong for genera with spatially restricted
data, such as Genyornis and Zygomaturus, for which areas of suitable climate differed from
areas suitable for fossil discovery and preservation (S6 Fig).

Fig 3. Multi-temporal climate suitability forDiprotodon, Zygomaturus, Protemnodon, Thylacoleo, and
Genyornis.Maps display the climate suitability rankings (rescaled between 0 and 1) for each genus
averaged across all time-slices during which the genus was still alive. Darker colours correspond to higher
climate suitability. We used fossils with reliable ages (black circles) for model training and those without
(black crosses) for validation. Diagonal lines indicate areas of extrapolation in model predictions (i.e., where
there are values outside of the climate envelope used to train the model).

doi:10.1371/journal.pone.0151090.g003
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In contrast to recent modelling approaches applied to fossil hunting [7,9–11,49], our
method predicts potential fossil locations across an entire continent, which is useful to identify
potential fossils areas far from already known sites. Despite having low spatial resolution
(1 × 1°), our method narrowed the potential areas of interest more effectively than picking loca-
tions by chance (Fig 2). As such, combined with the expertise of palaeontologists, our method
is a good initial ‘exploration filter’ for identifying potential fossil areas, after which remote-
sensing approaches (e.g., [10,11]) and fine-scale expert knowledge could complement the
search.

Fig 4. Combined-model prediction of where to search for fossils ofDiprotodon, Zygomaturus,
Protemnodon, Thylacoleo, andGenyornis. The places most likely to yield fossils of a given genus are the
grid cells with the highest suitability. Maps display the climate suitability, suitability for fossil-preservation, and
suitability for fossil-discovery rankings (rescaled between 0 and 1 and averaged) for each genus. Darker
colours correspond to places more likely to yield new fossils. We used fossils with reliable ages (black circles)
for climate-envelope model training and those without (black crosses) for validation of all models. Diagonal
lines indicate areas of extrapolation in climate-envelope model predictions (i.e., where there are values
outside of the climate envelope used to train the model). The yellow starts in map ‘e’ show the location of
recent findings of newGenyornis eggshell remains [52], which provide an additional independent validation of
our approach.

doi:10.1371/journal.pone.0151090.g004
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Our approach revealed several areas with a higher-than-random potential of yielding new
fossils. In South Australia, south of Lake Eyre and west of Lake Torrens, there is an area of high
potential to yield new fossils for all the genera we examined, especially for Diprotodon (Figs 3
and 4). For Genyornis, there is a large area in western Australia around Shark Bay where
palaeo-climate suitability is high (Fig 3); there has recently been a discovery of new Genyornis
eggshell remains in that region [52], thus providing an independent confirmation of our
approach. For Diprotodon, Zygomaturus, Protemnodon and Thylacoleo, there are also several
grid cells with high fossil-yielding potential in south-western Australia (Fig 4A–4D). All these
areas, and especially the last two, are far from all known fossil sites, and hence it is unlikely that
they would have been identified as potential sites based on traditional fossil-hunting
approaches.

A taxon’s palaeo-distribution is relevant for fossil hunting and it might be the best single
indicator of where to look for its fossils at continental scales (Fig 2). The probability of finding
grid cells with fossils in areas of suitable palaeo-climate was more than twice the probability of
finding them over the entire grid of Australia, and was nearly the same as in the areas with the
highest potential for fossil preservation and discovery (i.e., where previous modelling
approaches to fossil hunting have focused) [9–11,49].

Areas with the highest climatic suitabilities for all the genera we examined were mainly in
the southern half of Australia. This might reflect true climatic suitability for the genera we
examined here, but we cannot entirely discount taphonomic and sampling biases in the fossil
records used to train the models. There are fossil records of Diprotodon, Protemnodon, and
Thylacoleo in the Australian tropics but we could not include them in the climate-suitability
models because their age estimates are unreliable [13]. Another limitation of our method is
that our estimation of a taxon’s climate envelope is based on the known fossils with reliable
ages, and thus it will do poorly at predicting fossil sites in different climates were the taxon
could have lived. To avoid this we would have to use a mechanistic model based on the taxon’s
inferred climatic tolerances [53]. The climate suitability probably represents an unknown com-
bination of each taxon’s true climate envelope and of the likelihood of fossil preservation and
discovery [12]. Although this would be undesirable if the main objective was to quantify the
true palaeo-distributions of each taxon, such biases could in fact be advantageous for improv-
ing the probability of fossil discovery.

The predictive capability of the climate-envelope models is remarkable (median true skill
statistic = 0.43–0.76, Table 2) considering that we only used mean annual temperature and pre-
cipitation as predictors. Including non-climatic environmental information such as topogra-
phy could improve model performance [54]. Considering biotic interactions could further
improve model accuracy [55]. Interactions with humans strongly modified the realised distri-
butions of many megafauna species of Australia’s Late Pleistocene [21], an association that is
not explicitly captured by our models. For example, Genyornis newtoni occurred sympatrically
over much of its climatic range with Dromaius novaehollandiae (emu) until around 36 ka ago,
when G. newtoni went extinct while D. novaehollandiae persisted (S7A Fig) [56]. Since the cli-
mate envelopes of both species overlapped considerably (S7B Fig), our results suggest that
something other than climate (i.e., annual temperature and precipitation), such as human
hunting, lead to a rapid contraction of Genyornis’ distribution [52,56].

Our three-step method could easily be modified to assist fossil-site identification on any
continent. We show that the area of suitable palaeo-climate for taxa (or fossil) occurrence can
be successfully modelled with as few as 14 records from different points in space and time (e.g.,
Zygomaturus). For small sample sizes, MaxEnt performs particularly well, in agreement with
previous findings [29,31]. Genetic algorithms have been used to model palaeo-distributions
with as few as five fossil records [57], so they could be incorporated into the method to deal
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with small sample sizes. We gave the same weight to the climate-envelope, preservation, and
discovery models when calculating the final likelihood of finding fossils, but weighting models
by their predictive performance could potentially yield better results in some circumstances.
Global circulation model-based palaeo-climate reconstructions constrain the temporal window
to which the method can be applied. At this stage, the method is only useful for identifying
potential fossil areas of Late Pleistocene and early Holocene fauna. Using other proxies of envi-
ronmental conditions could potentially adapt the method for use with older fossils [18,57]. As
suitable climate proxies and reconstructions pierce ever-backward in time [58,59], the capacity
to model palaeo-distributions of both extinct and extant species will become more powerful
and ecologically realistic [18].

Supporting Information
S1 Appendix. Description of methods used to model climate envelopes.
(PDF)

S1 Fig. Spatial (a) and temporal (b) distribution of fossils used to train and validate cli-
mate-envelope models for Diprotodon, Zygomaturus, Protemnodon, Thylacoleo, and Gen-
yornis. For model training, we used only fossils with reliable ages (black circles and red grid
cells in a)[14]. For validation, we used grid cells that had only unreliably dated fossils (black
crosses and blue grid cells in a). Each cross in b represents the estimated age of a fossil, and the
line is a confidence interval of one standard deviation. Crosses are randomly spread away from
the line to show the density of fossil records at different times.
(PDF)

S2 Fig. Map of fossil sites (a) and density of fossils per grid cell (b).
(PDF)

S3 Fig. Maps of variables used in the fossil-preservation model.We considered sedimentary
rocks and regoliths as suitable for fossil preservation (a), and calculated their area in each grid
cell (b). The large amounts of sediments transported by changes in water level in lakes (c) facili-
tate the burial of dead organisms and their subsequent fossilisation. Hence, we calculated the
area of lakes in each grid cell (d). Caves serve as pitfall traps (e), so we used the presence/
absence of caves in each grid cell (f) as a binary predictor of its suitability for fossil preservation
(grey = suitable and white = unsuitable).
(PDF)

S4 Fig. Maps of variables used in the fossil-discovery model.We used maps of slope across
Australia (a), bare soil (c) and rain intensity (annual rainfall divided by annual days of rain, e)
and calculated their values in each grid cell (b,d,f). Areas of steep slope are represented by
white in ‘a’ and by dark reds in ‘b’. Areas of bare soil are shown in red in ‘c’. In ‘d’, grid cells
with darker colours have larger areas of bare soil. In ‘e’, high and low values of annual rainfall
are represented with yellow and green, respectively, while white represents areas with more
days of rain per year. In ‘f’, darker blues show grid cells with higher values of rain intensity.
(PDF)

S5 Fig. Maps of the suitability for fossil preservation (a) and discovery (b). Fossil-preserva-
tion suitability is a function of the presence of caves and the cover of lakes and suitable rocks
per grid cell. Fossil-discovery suitability, corrected for sampling bias, is a function of erosion
proxies: mean rain intensity, mean slope, and cover of bare soil per grid cell. Suitability values
were ranked and rescaled between 0 and 1. Darker colours represent higher suitabilities. Black
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crosses represent fossil sites.
(PDF)

S6 Fig. Maps of the overlap of suitability areas predicted by climate-envelope, preservation
and discovery models for Diprotodon, Zygomaturus, Protemnodon, Thylacoleo, and Gen-
yornis. These areas are the result of converting the continuous output into binary (presence/
absence), using a threshold that maximised the true skill statistic. Hence, if a grid cell is outside
the ‘presence’ area, it is still possible to find fossils there. Even if average conditions across the
grid cell area are not optimal for finding fossils, there still might be a place where the right con-
ditions exist. Rather, the binary output shows the grid cells where palaeo-climate history and
conditions associated with fossil preservation and discovery are optimal. The chances of find-
ing fossils in this area are higher than in any other randomly selected grid cell, and thus it is
there where future fossil hunting could focus.
(PDF)

S7 Fig. Climate envelopes of Genyornis newtoni and Dromaius novaehollandiae. (a) Com-
parison of climate-envelope dynamics at 56, 46, 34 and 32 ka ago. Circles show fossil locations
for each species and darker reds represent higher climatic suitabilities. (b) Overlap of climate-
envelopes of both species.
(PDF)

S1 Table. Generalised linear models ranked by information criterion.
(PDF)

S2 Table. Summary of fossil preservation model. Estimated coefficients of logistic regression
of fossil occurrence as a function of the presence of caves, area of lakes, and area of rocks suit-
able for fossil preservation.
(PDF)

S3 Table. Summary of fossil discovery model. Estimated coefficients of a logistic regression of
fossil occurrence as a function of the area of bare soil, mean rain intensity, and mean slope.
(PDF)

S4 Table. Validation results for the predictions of the single climate-envelope, preservation,
and discovery models, as well as their combined predictions.We compared the suitability
values predicted for grid cells containing fossils with unreliable ages of a given genus (not used
to train the models) with the suitability values predicted for 1000 sets of randomly selected grid
cells from across Australia using a Kolmogorov-Smirnov test.
(PDF)
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