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The last ten years have witnessed important advances in image stitching algorithms. Such ad-

vances have allowed the development of several commercial tools that are based on or incor-

porate image stitching. Amongst these tools there are well known image editing suites like

Adobe Photoshop, Microsoft’s Image Composite Editor which is part of the web-based photo

organization tool Photosynth, “dedicated” stitching software like Autostitch and its commercial

counterparts AutoPano and AutoPano Giga, the image stitching functionality of the iOS from

Apple, as well as the built-in stitching functionality of several off-the-shelf digital cameras.

The widespread availability of stitching tools often leads to the impression that image stitching

is a solved problem. The reality is: many of these tools often fail to produce convincing results

when given non ideal data, i.e., images that deviate from fairly restrictive assumptions of image

stitching; the main two being that the photos correspond to views that differ purely by rotation,

or that the imaged scene is effectively planar. Such assumptions underpin the usage of 2D

projective transforms or homographies to align the photos. In the hands of the casual user,

these conditions are often violated, yielding misalignment artifacts or “ghosting” in the results.

Accordingly, many existing image stitching tools depend critically on post-processing routines

to conceal ghosting.

This thesis proposes a novel estimation technique called Moving Direct Linear Transformation

(Moving DLT) that is able to “tweak” or fine-tune the projective warp to accommodate the devia-

tions of the input data from the idealised conditions. This produces “as-projective-as-possible”

image alignments that significantly reduce ghosting without compromising the geometric re-

alism of perspective image stitching. The Moving DLT technique lessens the dependency on

potentially expensive post-processing algorithms.
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In addition, this thesis also describes how Moving DLT can be performed in a “bundled” manner

to simultaneously align multiple images in order to generate “long” panoramas while reducing

the error propagation of the incremental stitching techniques. It is important to note that such

a bundle adjustment formulation, which we call Bundled Moving DLT, is the first of its kind.

There is no other bundle adjustment formulation that is able to simultaneously refine multiple

non-rigid warps for image stitching.

The experimental results show that Moving DLT (and Bundled Moving DLT) can produce much

better results than current state-of-the-art image stitching software and other recent methods for

image stitching.
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