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The last ten years have witnessed important advances in image stitching algorithms. Such ad-

vances have allowed the development of several commercial tools that are based on or incor-

porate image stitching. Amongst these tools there are well known image editing suites like

Adobe Photoshop, Microsoft’s Image Composite Editor which is part of the web-based photo

organization tool Photosynth, “dedicated” stitching software like Autostitch and its commercial

counterparts AutoPano and AutoPano Giga, the image stitching functionality of the iOS from

Apple, as well as the built-in stitching functionality of several off-the-shelf digital cameras.

The widespread availability of stitching tools often leads to the impression that image stitching

is a solved problem. The reality is: many of these tools often fail to produce convincing results

when given non ideal data, i.e., images that deviate from fairly restrictive assumptions of image

stitching; the main two being that the photos correspond to views that differ purely by rotation,

or that the imaged scene is effectively planar. Such assumptions underpin the usage of 2D

projective transforms or homographies to align the photos. In the hands of the casual user,

these conditions are often violated, yielding misalignment artifacts or “ghosting” in the results.

Accordingly, many existing image stitching tools depend critically on post-processing routines

to conceal ghosting.

This thesis proposes a novel estimation technique called Moving Direct Linear Transformation

(Moving DLT) that is able to “tweak” or fine-tune the projective warp to accommodate the devia-

tions of the input data from the idealised conditions. This produces “as-projective-as-possible”

image alignments that significantly reduce ghosting without compromising the geometric re-

alism of perspective image stitching. The Moving DLT technique lessens the dependency on

potentially expensive post-processing algorithms.
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In addition, this thesis also describes how Moving DLT can be performed in a “bundled” manner

to simultaneously align multiple images in order to generate “long” panoramas while reducing

the error propagation of the incremental stitching techniques. It is important to note that such

a bundle adjustment formulation, which we call Bundled Moving DLT, is the first of its kind.

There is no other bundle adjustment formulation that is able to simultaneously refine multiple

non-rigid warps for image stitching.

The experimental results show that Moving DLT (and Bundled Moving DLT) can produce much

better results than current state-of-the-art image stitching software and other recent methods for

image stitching.
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Chapter 1

Introduction

1.1 Background and Motivation

Image stitching is one of the earliest and long-standing problems in the computer vision and

photogrammetry communities. The task of stitching consists of aligning multiple overlapping

images of a scene into a common reference frame or canvas in order to generate seamless high

resolution mosaics.

During the last decade, people has been able to witness impressive advances in image stitch-

ing research. Such progress has probably been possible thanks to the growth and widespread

availability of computer-based technology like digital cameras, tablets and smart-phones, which

generate massive amounts of rich and diverse visual data. It is thanks to the combination of this

new technology and new research that users are currently able to organise, store, analyse, share,

discover, interact and “get immersed” in huge amounts of images in new and exciting ways.

For example, currently, it is possible to make use of photo organisation tools like Microsoft’s

Photosynth1 or Autostitch2, which allow the creation of ultra high resolution panoramas from

unordered collections of images that casual users obtain during their holidays and trips (Fig. 1.1

shows an example of a high resolution panorama). In fact, Microsoft is currently pushing the

boundaries of the image stitching technologies in Photosynth, in order to give users the ability

to generate 3D panoramas, which will add another level of realism to the panoramic mosaics

that people can generate (see http://photosynth.net/preview for more details).

1www.photosynth.net
2www.cs.bath.ac.uk/brown/autostitch/autostitch.html

1

http://photosynth.net/preview
www.photosynth.net
www.cs.bath.ac.uk/brown/autostitch/autostitch.html
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As another example, Google allows users to “virtually visit” and contemplate thousands of cities

around the world thanks to their street view technology embedded in Google maps3. A street

view is a seamless panorama generated by stitching the frames of videos captured by fleets of

specially adapted vehicles such as cars, tricycles, snowmobiles and boats. It is these panoramas

what gives the user the ability to navigate along the streets of remote and exciting places of the

world (Fig. 1.2 shows an example of a panorama generated by Google’s street view).

Figure 1.2: One of the panoramas generated by Google’s street views. The panoramas are gen-
erated by stitching frames of videos taken with specially adapted vehicles like cars, tricycles,
boats or snowmobiles.

It is also image stitching-related research what allows the stabilisation of shaky videos taken

with hand held cameras or smartphones [53, 55] so that they look as taken by professionals,

or taken by use of special stabilisation equipment; and it is also image stitching research what

led to the development of some the most commonly used, motion compensated, video compres-

sion algorithms [37, 47]4 so that it is possible to easily store and share videos in websites like

YouTube5.

Interestingly, most of the current image stitching solutions (including Autostitch, Photosynth

and Google’s street view) make use of 2D projective transformations or homographies (refined

by means of bundle adjustment [11, 12, 74]) in order to bring the images into alignment.

3maps.google.com
4The work of [47], constitutes Microsoft’s proposal to the MPEG [46] standardization process.
5www.youtube.com

maps.google.com
www.youtube.com
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However, (as detailed in the following Chapter) projective transformations are justified only if

the images to align come from views that differ purely by rotation, or if the imaged scene is

effectively planar, e.g., when the scene is sufficiently far away [76]. In fact, many commercial

image stitching tools specify the previous input conditions, at least implicitly; see for example

the FAQ pages on Autostitch6 and Photosynth7.

Realistically, these imaging restrictions are difficult for casual users to satisfy. Casual users

are, in general, not familiar with image stitching fundamentals or even if they are familiar with

image stitching, achieving a pure rotational or parallax free motion with a hand-held camera or

smart-phone is a difficult task. Secondly, the desire to stitch a collection of images may be an af-

terthought, i.e., when it is not possible to revisit the scene to reshoot under the required imaging

conditions. Lastly, for some particular applications that make use of image stitching, capturing

the images under the required imaging conditions is an impractical (or even impossible) task to

do.

Unfortunately, if the images to align deviate from the aforementioned imaging restrictions, a

projective model will not be able to adequately characterise the required warp, thus, producing

misalignments or ghosting effects in the final stitched results. Fig. 1.3 (row 1) shows a “raw”

stitching result (i.e., the mosaic is composited only with simple intensity averaging) from Au-

tostitch that exhibits significant parallax errors. Note that this problem is due primarily to the

inadequacy of the projective model in characterising the required warp, and not inaccuracies in

the warp estimation process.

In order to solve this issue, most of the currently available stitching tools often make use of post-

processing or de-ghosting techniques like seam cutting [2, 17], Laplacian pyramid blending [12,

13], Poisson image blending [67], multiband blending [11, 12] or patch synthesis [15] that try

to conceal the alignment errors. The problem is, if the image alignments are bad to begin with,

many state-of-the-art techniques cannot produce convincing results, even with advanced pixel

compositing or post-processing. Fig. 1.3 (rows 2 and 3) depicts the final postprocessed results

from Autostitch and Photosynth where unwanted artifacts evidently still exist.

Another example of a failed post-processing algorithm for image stitching appears in Fig. 1.2

(Fig. 1.4 offers a magnified and cropped view of this issue). By taking a close look to the

original figure it is possible to notice how the stitched contents of the image, in particular, the

first level of the Eiffel tower, was not aligned in a “satisfactory” way and, as consequence, the

post-processing routines introduced artifacts in the final composited mosaic. There are several
6www.cs.bath.ac.uk/brown/autostitch/autostitch.html#FAQ
7photosynth.net/faq.aspx

www.cs.bath.ac.uk/brown/autostitch/autostitch.html#FAQ
photosynth.net/faq.aspx
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examples like this in Google maps; the most probable cause of this issue is the parallax induced

by the inherent translation motion of the vehicles that capture the videos. Google’s street view

is one of the applications of image stitching where capturing the image data under controlled

conditions becomes an infeasible task.

Figure 1.4: A magnified (and cropped) view of Fig. 1.2 that shows some of the artifact errors
(circled in red) caused by failed post-processing routines in image stitching. This problem is
probably because most of the images used in Google’s street view are obtained with cameras
mounted on vehicles, undergoing translational motions.

Instead of focusing on concealing the image alignment errors, other work on image stitching

has been oriented towards improving the image alignment functions. Amongst the proposed

solutions there are methods that perform some form of 3D reconstruction in order to infer the

3D structure and camera matrices of the imaged scene [3, 99] and stitch the images by making

use of this information; methods that make use of two-step approaches for locally improving

over initial image alignments [72, 74]; methods that make use of plane+parallax approaches

that attempt at modelling the parallax motion caused by the image translations and varying

scene depths [16, 36, 89] and methods that aim at obtaining a “stitching order” for minimising

the visible image alignment errors and artifacts [40, 58]. However, most of these methods rely

on overly complicated, multi-stage, heuristic or computationally expensive solutions for image

alignment tasks. This is probably the reason why current stitching tools still prefer to make use

of the basic (and simple) projective transformation for performing the alignments.

Only in more recent years it is that the work on image alignment has focused on the generation

of methods for the direct estimation of flexible warps. Flexible warps constitute one of the most

recent advances in image stitching research. The goal of these methods is to directly adapt

the (2D) image warping function in order to stitch the uncooperative images, thus, discarding

the need for 3D reconstructions or other elaborate steps. Unfortunately, some of the current

solutions for flexible warps (e.g., [53]) either constrain the flexibility of the image alignments,
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or cannot be applied to general scenes (e.g., [23]), or are flexible and can be applied to (more)

general scenes but make use of affine regularisations [51, 52].

Affine regularisations may be suboptimal for image stitching since an affinity does not contain

sufficient degrees of freedom to achieve a projective warp [76] but, more importantly, affine

regularisations tend to introduce distortions in the areas where the images do not overlap. This

occurs because, in such regions, there is no data to guide the local deformation and the warp

reverts to global affinity (this point will be further discussed and demonstrated in Chapters 4

and 6 of this thesis).

The above problem raises a strong motivation for improving current methods for “flexible im-

age stitching”. In particular, the research in this thesis relies on the premise that a much better

approach for image stitching is to “give homographies” the ability to align the data that devi-

ates from the assumptions of the projective warp, thus, reducing the dependency on expensive

post-processing routines without compromising the geometric realism of the resulting mosaics.

Imposing projective regularisations for image stitching allows handling of more general scene

types over affine priors and (as shown in Chapter 4), extrapolations of homographic nature are

more amenable and, what is more important, are theoretically justified for image stitching. As

detailed in the following section, giving homographies such ability, is exactly the purpose of this

work.

1.2 Contributions of the Thesis

This thesis investigates projective estimation under model inadequacies. More specifically, this

work considers situations where the enabling assumptions for the projective model are not fully

satisfied by the data; thus, fundamentally limiting the achievable accuracy of the homography

fit.

The main argument underpinning this work is that, instead of relying on a projective model

which is often inadequate, and then trying to fix the resulting errors in subsequent post-processing

or compositing stages, homography-based alignments must flexibly account for images that de-

viate from the expected projective trend. To this end, this thesis makes the following contribu-

tions:

• This work proposes a new projective estimation method called Moving Direct Linear

Transformation (Moving DLT). Moving DLT is able to produce as-projective-as-possible

(APAP) warps, i.e., warps that aim to be globally projective, yet allow local non-projective
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deviations to account for violations to the assumed imaging conditions of image stitching.

Fig. 1.3 row 4 shows a raw (i.e., without post-processing) image alignment result ob-

tained with Moving DLT. As can be seen in this figure, very few (if any) visible alignment

mistakes remain.

Moving DLT is based on the theory of Moving Least Squares (MLS) [45] but unlike

MLS and other state-of-the-art approaches for image stitching, Moving DLT makes use

of projective regularisation which gives the method the ability to flexibly adapt to the

uncooperative data while gracefully going back to a projective trend in the extrapolation

areas. Such characteristic gives Moving DLT the ability to reduce image alignment error

mistakes while maintaining the consistency of the scene.

• Two different techniques that allow fast and efficient implementations of Moving DLT are

also explored in this work. The current MATLAB/C implementation of Moving DLT is

able to estimate the parameters of an APAP warp for stitching a pair of high resolution im-

ages with 5068 keypoint matches in ∼6 seconds, using approximately 1 extra MegaByte

of RAM memory when compared against the memory used by the basic projective warp.

Other competing, state-of-the-art methods require large amounts of memory and minutes

or even hours of processing time (e.g., [51]).

• The bundle adjustment version of Moving DLT, which is called Bundled Moving DLT,

is also proposed in this work. Bundled Moving DLT allows the simultaneous refinement

of multiple APAP warps in order to accurately align multiple images for large panorama

creation.

It is worth noting that, for most of the current flexible warp estimation methods, no bundle

adjustment version has been proposed in the literature. Bundled Moving DLT is the first

method for the simultaneous estimation of multiple non-rigid8 warps for image stitching.

• Moving DLT and Bundled Moving DLT are compared against several state-of-the-art

methods and commercial software for image stitching. These experiments show the ad-

vantages of the proposed methods with respect to other, current solutions.

Even though, the focus of this work is on image stitching, the methods proposed in this thesis are

envisioned to be more widely applicable, for example, in video stabilisation, deformable surface

registration and reconstruction and non-rigid structure from motion. A discussion of these and

other possible applications of Moving DLT is presented in the final Chapter of this thesis.
8In the context of this work, “non-rigid” is employed as a synonym of “flexible” and not as a reference to Eu-

clidean or “rigid” transformations (unless stated otherwise).
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1.3 Thesis Structure

This thesis is organized into 7 chapters which are briefly described next.

1.3.1 Chapter 2

The goal of this Chapter is to describe the imaging assumptions under which projective trans-

formations are justified as image alignment functions for image stitching.

After explaining the characteristics of the projective warp, this Chapter explains the projective

transformation estimation process, which for the purposes of this thesis, is carried out by means

of one of the most popular estimation algorithms: the Direct Linear Transformation.

This Chapter also explains and illustrates how a projective warp is effectively able to fit “ideal”

image stitching data and how it fails when the data deviates from the projective warp assump-

tions, thus, generating image alignment errors or ghosting in the final stitched results.

1.3.2 Chapter 3

In Chapter 3 a review of the image stitching methods that are relevant to this thesis is presented.

This thesis is about stitching uncooperative data through the generation of “better” image align-

ment functions rather than through the use of post-processing or de-ghosting algorithms. Thus,

the review concentrates on methods for improving the image alignments in image stitching.

Such methods include 3D reconstruction and plane+parallax approaches, direct estimation of

flexible warps and methods for stitching image data under arbitrary camera motions. The pur-

pose of this review is to provide an analysis of the advantages and disadvantages of these meth-

ods, which will help to situate and contrast the proposed approach for image stitching (which is

given in Chapter 4) with respect to the other approaches.

1.3.3 Chapter 4

In Chapter 4 the proposed Moving DLT approach for image stitching is presented. Similar

to Chapter 2, this Chapter describes and illustrates the advantages of the novel APAP warps

(obtained through Moving DLT) as well as the main differences between projective and affine

regularisation for image stitching.
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This Chapter also provides two different techniques for speeding up the Moving DLT estimation

process. These techniques allow the previously mentioned fast generation times (in the order of

few seconds) of APAP warps for image stitching.

1.3.4 Chapter 5

Since (similar to a projective warp), the proposed APAP warps are only able to stitch pairs

of images, Chapter 5 presents the bundle adjustment version of Moving DLT which is able to

simultaneously refine multiple as-projective-as-possible warps for large panorama creation.

The purpose of Bundled Moving DLT is to minimise the dreaded amplification and propagation

of alignment errors, which is present in most of the pairwise or incremental stitching methods,

applied to more than two images.

1.3.5 Chapter 6

Comprehensive experiments and comparisons are carried out in Chapter 6. In particular, two

types of evaluations are performed: qualitative and quantitative.

The qualitative experiments show that Moving DLT and Bundled Moving DLT provide signifi-

cant improvements in image stitching quality and efficiency over other state-of-the-art methods

and software tools for image stitching. These results are supported by quantitative experiments,

which show how the proposed approaches are able to generate stitching results with much less

visible alignment error mistakes and less artifacts.

1.3.6 Chapter 7

Chapter 7 ends this thesis by discussing the limitations of the proposed projective estimation

methods for image stitching, provides a summary of this work and motivates possible, future

lines of work.



Chapter 2

Background

2.1 Introduction

One of the fundamental tasks in computer vision is to analyse and discover the relationships

between different images obtained from the same scene. These relationships enable the de-

velopment of computer vision algorithms that perform different tasks like 3D reconstruction,

augmented reality and, the main concern of this thesis: image stitching.

As mentioned during the introductory Chapter of this thesis, for the case of image stitching,

projective transformations have become the de-facto standard solution for modelling the rela-

tionship between images taken from different viewpoints. But, what exactly makes a projective

transformation the “weapon of choice” for the task of image stitching? A projective transfor-

mation is the most general of the 2D linear transformations in projective space that are avail-

able for image alignment; they include translations, Euclidean transformations, similarities and

affine transformations (Table. 2.1 shows this hierarchy of 2D linear transformations). Thus, in

principle, since projective transformations have more degrees of freedom than any of the other

transformations (a projective transform has 8 degrees of freedom while an affine transformation

has 6, similarities 4, Euclidean transforms have 3 and translations 2), they are able to achieve

better image alignments than the rest of the planar transformations, which is the ultimate goal in

image stitching.

However, besides the number of degrees of freedom, a much fundamental justification for a

homography as an image-to-image mapping function for stitching lies in the fact that projective

transformations are able to maintain the geometric consistency in the aligned images, which,

as opposed to the other planar transformations, provides perspective realism to the resulting

11
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Transformation Matrix Invariant properties Distortion

Translation T =

[
I t

0T 1

]
=

1 0 tx
0 1 ty
0 0 1

 orientations +

Euclidean E =

[
R t
0T 1

]
=

cos θ − sin θ tx
sin θ cos θ ty

0 0 1

 lengths +

Similarity S =

[
sR t
0T 1

]
=

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

 angles +

Affine F =

[
L t
0T 1

]
=

l11 l12 tx
l21 l22 ty
0 0 1

 parallelism +

Projective H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 straight lines

Table 2.1: Hierarchy of 2D linear transformations in projective space. The distortion column
shows the typical effects of the transformations on a square. The matrix I is a 2 × 2 identity
matrix, t = [tx ty]T is a 2D translation vector, 0 = [0 0]T is 2 × 1 vector of zeros, R is
a 2D rotation matrix (for a Euclidean transformation R should be orthonormal i.e., RRT =
I and ‖R‖ = 1), s is a scale factor and L is a 2 × 2 invertible matrix. Each one of the
transformations in this table preserves the properties of the transformations in the rows below.
The projective transformation is the most general of the 2D planar transformations, it includes
all of the other transformations above it. In this case, except for the projective transformation,
all of the matrices are augmented with a third row [0 0 1] to form a 3 × 3 matrix, which
allows homogeneous coordinate transformations. This table is based on the “Hierarchy of 2D
coordinate transformations” table presented in [77, Pp. 35].

image alignments. What is even more important about homographies is the fact that, in order

to achieve this goal, it is not necessary to obtain information about the 3D structure of the

imaged scene (therefore, the “image-to-image” mapping denomination), which is information

that is often unavailable for most of the digital cameras and pictures. On top of that, current

methods for estimating the parameters of a homography are very fast and reliable. Thus, making

homographies a very practical option for image stitching.

The current Chapter begins by describing the (two different) image formation processes which

justify the use of projective transformations as image aligning function. One of the main pur-

poses of this Chapter is to explain why, even though they are widely used by several state-of

the-art technologies and offer several advantages over other 2D transformations and other meth-

ods, homographic warps are a fundamentally limited choice for the task of image stitching: they
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only “succeed” when the images to align are obtained under very specific conditions and, un-

fortunately, such conditions are hard to satisfy in practice. However, it is actually because of

the properties underlying these limitations that it is possible to disregard the use of 3D data in

perspective image alignments.

This Chapter also describes the Direct Linear Transformation (DLT) method which is one of the

most popular (if not the most popular) projective warp estimation approach. Explaining “the

basics” of DLT is the second goal of this Chapter. Such a estimation method is fundamental for

understanding the underlying principles of the proposed Moving DLT approach, which aims at

relaxing the restrictions of the basic projective warp for image stitching.

2.2 The Homography Matrix

If two images I and I ′ are known to correspond to a planar scene or if the images are taken

with a camera undergoing a pure rotational motion, there is a geometric constraint that relates

the corresponding homogeneous points in the two views of the scene (for a description of ho-

mogeneous points, the reader is referred to Appendix B). Such a geometric constraint is known

as a projective transformation or homography and it is algebraically represented by an invertible

matrix, which is called the homography matrix.

Mathematically, this relationship is expressed via the equation

x̃′ ∼ Hx̃, (2.1)

where H is the 3 × 3 homography matrix, x̃ = [x y 1]T and x̃′ = [x′ y′ 1]T are corresponding

homogeneous points from I and I ′, respectively, and ∼ indicates equality up to scale. Homog-

raphy matrices differing by a non-zero scalar factor are considered to correspond to the same

projective transformation.

2.2.1 Plane Induced Homography

Suppose a scene plane Π is imaged from two different viewpoints. Let P = K[R −Rt] and

P′ = K′[R′ −R′t′] be the 3 × 4 camera matrices for the two views I and I ′ (the camera

matrix is described in Section B.1 of Appendix B). If none of the centres of projection t or t′ are

lying on Π, it is then possible to show that Eq. 2.1 holds true for any two corresponding image

points x̃ and x̃′.
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x = (x, y, 1) x' = (x', y', 1)~ ~

I'I
Π

p = (X, Y, Z, 1)~

Figure 2.1: A point in a 3D plane being projected into two image planes. p is the 3D point in
the plane and x and x′ are its corresponding “pictures” or projections in images I and I ′.

In order to show this, let p̃ be the homogeneous representation of a 3D point p = [X Y Z]T in

Π. The projections of this point into images I and I ′ are given by

x̃ ∼ Pp̃ and x̃′ ∼ P′p̃, (2.2)

(Fig. 2.1 illustrates this this scenario). Eq. 2.2 is equivalent to the following equations

λx̃ = Pp̃ and λ′x̃′ = P′p̃, (2.3)

where λ and λ′ are scale factors.

Substituting the camera matrices P and P′ in (2.3) for their corresponding external and intrinsics

matrices produces

λx̃ = K[R −Rt]p̃ and λ′x̃′ = K′[R′ −R′t′]p̃, (2.4)

where K, K′, R, R′ and t, t′ are the calibration and rotation matrices and the centres of projec-

tion of the camera matrices P̃ and P̃′, respectively.

The left-hand side (LHS) of Eq. 2.4 can be written as

λx̃ = KR[I −t]p̃, (2.5)

(where I is a 3× 3 identity matrix) and since p̃ = [pT 1]T , (2.5) implies

p = λR−1K−1x̃ + t. (2.6)

If the imaged scene plane Π has a unit outward normal n = [nx ny nz]
T and it is situated at a

distance −c from the origin of the world coordinate system, then the point p should satisfy the
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equation

nTp + c = 0, (2.7)

(this is because the initial assumption was that the point p lies on the plane Π).

Substituting the value of p from Eq. 2.6 into (2.7) yields the following result

nT (λR−1K−1x̃ + t) + c = 0, (2.8)

which allows to obtain the following value of λ:

λ = (−nT t− c)(nTR−1K−1x̃)−1. (2.9)

Having obtained p and λ, it is possible to substitute their values into the right-hand side (RHS)

of Eq. 2.4, which allows to obtain the homography matrix H relating x̃ with x̃′. In order to do

so, it is necessary to write the RHS of Eq. 2.4 in the following form:

λ′x̃′ = K′[R′ −R′t′]p̃,

λ′x̃′ = K′R′[I −t′]p̃,

λ′x̃′ = K′R′(p− t′). (2.10)

Substituting p from Eq. 2.6 into (2.10) gives the following relation

λ′x̃′ = K′R′(λR−1K−1x̃ + t− t′)

= λK′R′R−1K−1x̃ + K′R′t−K′R′t′

= λK′R′R−1K−1x̃ + K′R′(t− t′). (2.11)

The term in the LHS of (2.11) is a linear combination of the vectors on the right, thus, such

relation will not change if the RHS is multiplied by the scalar λ−1 as follows:

λ′x̃′ = K′R′R−1K−1x̃ + K′R′(t− t′)λ−1. (2.12)
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n  p + c = 0

x = (x, y, 1) x' = (x', y', 1)

H

~ ~

I'I
Π

Figure 2.2: A homography matrix relating points from a planar view. Since it is not possible
to obtain the depth from the images, a planar homography (induced by the points lying on the
plane n̂ · p + c = 0) is able to relate the views.

Then, after replacing the value of λ from Eq. 2.9 into Eq. (2.12), it is possible to obtain the

following equation:

λ′x̃′ = K′R′R−1K−1x̃ + [K′R′(t− t′)][(−nT t− c)(nTR−1K−1x̃)−1]−1,

= K′R′R−1K−1x̃− (nT t + c)−1K′R′(t− t′)nTR−1K−1x̃,

= K′R′[I− (nT t + c)−1(t− t′)nT ]R−1K−1x̃, (2.13)

= Hx̃, (2.14)

x̃′ ∼ Hx̃.

where the homography matrix induced by a planar scene (2.13) is given by the generalisation of

the formula derived by Faugeras and Lustman [18].

Thus, the matrix H in Eq. 2.14, corresponds to the 3× 3 homography matrix that relates a point

x̃ from image I with a point x̃′ in the second image I ′, as long as I and I ′ correspond to images

of a planar scene. Fig. 2.2 illustrates this process.

2.2.2 Rotation Induced Homography

A homography of a simpler form is applicable in the situations where both of the cameras

have a common centre of projection. Such configuration appears when one of the cameras

rotates, thus, the two camera matrices represent the (same) rotating camera in two different

instants. If this is the case then both of the camera matrices have the form P = K[R −Rt̂]

and P′ = K′[R′ −R′t̂]. Note how the centres of projection are the same in both camera

matrices (t = t′ = t̂). Similar to the case of the plane induced homography, the camera
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matrices P and P′ are written as

P = KR[I −t̂] and P′ = K′R′[I −t̂], (2.15)

where I is a 3× 3 identity matrix. This allows to write the LHS of (2.15) in the following form

[I −t̂] = (KR)−1P = (KR)−1KR[I −t̂]. (2.16)

Thus, substituting (2.16) in the right hand side term of (2.15) gives the following equation

P′ = K′R′(KR)−1KR[I −t̂] = K′R′R−1K−1P, (2.17)

Eq. 2.17 is equivalent to

P′ = HP, (2.18)

where

H = K′R′R−1K−1, (2.19)

is a 3×3 matrix. If a point p̃ in the 3D scene produces two image points x̃ and x̃′ (as in Eq. 2.4),

then

x̃′ ∼ P′p̃ = HPp̃ = Hx̃, (2.20)

which shows that x̃′ is the image of x̃ via the homography associated with H. It is important to

note that, in this case, H is the limit of the plane induced homography matrix as c tends to −∞

with nT , t and t′ kept fixed. Thus, the rotation induced homography described by H in Eq. 2.19

coincides with the homography induced by the plane at infinity Π∞ (Fig. 2.3 illustrates).

The rotation induced homography is sometimes called the infinite homography. The infinity or

rotation induced homography is the second and final imaging process that justifies the use of a

projective transformation for relating points in two overlapping views.

If, in Eq. 2.19, the calibration matrices K and K′ have known aspect ratios and centres of

projection, the homography matrix can be parameterised by the rotation and the unknown focal

lengths of the two cameras. This particular formulation is commonly used in bundle adjustment

approaches for image stitching [11, 12, 74] (which are described in Section 3.3 of the following

Chapter).
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Figure 2.3: A 3D point projected into two views undergoing a pure (3D) rotation motion.

In order to estimate the parameters of a homography matrix, several methods have been proposed

in the literature ([31, Chapter 4] presents some of these methods). In the following section one

of the most popular approaches for homography estimation is reviewed, this method is called

the Direct Linear Transformation.

2.3 Direct Linear Transformation (DLT)

The typical way of estimating the parameters of a homography matrix through the Direct Lin-

ear Transformation [96] is by first establishing corresponding points (e.g., SIFT matches [56])

between the two images. In order to remove wrong matches or outliers, robust methods like

RANSAC [20] are usually employed. The homography matrix is then estimated by making use

of the remaining inliers.

Let x = [x y]T and x′ = [x′ y′]T be (inlier) matching points across overlapping images I and

I ′. Recalling from Section 2.2, a projective warp transforms x̃ to x̃′ following the relation from

Eq. 2.1 (which is copied below):

x̃′ ∼ Hx̃,

where (again) x̃ = [xT 1]T and x̃′ = [x′T 1]T are, respectively, points x and x′ in homogeneous

coordinates and H is the 3× 3 homography matrix.

In inhomogeneous coordinates,

x′ =
r1[x y 1]T

r3[x y 1]T
and y′ =

r2[x y 1]T

r3[x y 1]T
, (2.21)
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where rj is the j-th row of H.

The divisions in Eq. 2.21 cause the homography function to be non-linear (in affine coordinates),

which is crucial to allow a fully perspective warp (Fig. 2.5(a) in page 24 shows a 1D analogy

of a projective warp, as can be seen in the figure, a projective warp is a non-linear model).

Unfortunately, estimating the parameters of non-linear functions is, in general, a complicated

task that requires the use of complex and usually slow algorithms like Gauss-Newton [7] or

Levenberg-Marquardt [7, 48, 57].

However, the Direct Linear Transformation is a method that enables a simple linear solution for

H to be derived. Being able to estimate the parameters of a non-linear homography warp through

linear methods is an impressive property that makes DLT a very popular, fast and reliable method

for projective warp estimation (and, as it will be seen in subsequent Chapters, this property is

exactly what the proposed Moving DLT method exploits).

DLT estimates H from a set of N noisy of (inlier) point matches {xi,x′i}Ni=1 across I and I ′. In

DLT, Eq. 2.1 is rewritten as the implicit condition

03×1 = x̃′ ×Hx̃, (2.22)

(writing Eq. 2.1 in the form of (2.22) is what gives DLT the ability to estimate H through linear

methods). In order to solve Eq. 2.22, and obtain the parameters of H, it is necessary to rewrite

the right hand side of Eq. 2.1 as

Hx̃ =


rT1 x̃

rT2 x̃

rT3 x̃

 . (2.23)

By setting x̃′ = [x′y′1]T , the cross product in the right hand side term in Eq. 2.22, can be derived

explicitly as

x̃′ ×Hx̃ =


y′rT3 x̃− rT2 x̃

rT1 x̃− x′rT3 x̃

x′rT2 x̃− y′rT1 x̃

 , (2.24)
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and since rTj x̃ = x̃T rj , for j = 1, ..., 3, this produces a set of three equations in the entries of

H which can be written in the form

03×1 =


01×3 −x̃T y′x̃T

x̃T 01×3 −x′x̃T

−y′x̃T x′x̃T 01×3

h, h =


rT1

rT2

rT3

 , (2.25)

where h is a 9× 1 matrix (or more specifically, a vector) that is obtained by vertically stacking

each one of the rows from H (as shown in the right hand side of (2.25)).

Only two of the rows in (2.25) are linearly independent, thus, removing the last row from

Eq. 2.25 one can let

Ai =

01×3 −x̃Ti y′ix̃
T
i

x̃Ti 01×3 −x′ix̃Ti

 ∈ R2×9 (2.26)

be the first two rows of the left-hand-side matrix in Eq. 2.25 computed for the i-th point match

{xi,x′i}. Given an estimate h, the quantity ‖Aih‖ is the algebraic error of the i-th datum.

DLT minimises the sum of squared algebraic errors

ĥ = argmin
h

N∑
i=1

‖Aih‖2 s.t. ‖h‖ = 1, (2.27)

where the norm constraint prevents the trivial solution. DLT is, thus, also referred to as algebraic

least squares [96].

Stacking vertically Ai for all i into matrix A ∈ R2N×9, the problem in Eq. 2.27 can be rewritten

as

ĥ = argmin
h
‖Ah‖2 s.t. ‖h‖ = 1. (2.28)

The solution is just the right singular vector corresponding to the singular values of A. Algo-

rithm 1 summarises the DLT method for the estimation of a 2D homography.

2.4 Normalised Direct Linear Transformation

The results generated by the DLT algorithm depend on the origin and scale of the coordinate

system of the images. Since the matrix A in Eq. 2.28 consists of products of image coordinates

which can have very different scales, the algorithm as described so far, is unstable and sensitive
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Algorithm 1 Direct Linear Transform algorithm for the estimation of a 2D projective warp
(homography).
Require: A set of keypoint matches {xi,x′i}Ni=1 (with N >= 4) across images I and I ′.

1: Initialise matrix A: A = [ ].
2: for i = 1, . . . , N do
3: Generate matrix Ai (Eq. 2.26) from keypoint match {xi,x′i}.
4: Stack vertically Ai into A: A = [A; Ai].
5: end for
6: Perform SVD on A: [U,Σ,V] = svd(A).
7: The solution ĥ is the last column of V.
8: Obtain H reshaped from ĥ.

to noise [30]. In order to reduce noise sensitivity and avoid issues with numerical precision,

prior to DLT, the data can be normalised.

The data normalisation process usually involves transforming the coordinates of the keypoint

matches of each image so that their centroid is at the origin and scale the keypoint coordinates

so that the average distance from the origin is equal to
√

2 [31]. Thus, instead of applying

DLT to {xi,x′i}Ni=1, DLT is applied to the normalised data {zi, z′i}Ni=1 which are obtained from

multiplying

z̃ = Nx̃ and z̃′ = N′x̃′, (2.29)

with the matrix N generated from the keypoint coordinates x = [x y]T in image I and defined

as

N = g


1 0 −x̄

0 1 −ȳ

0 0 1/g

 . (2.30)

From Eq. 2.30, x̄ =
∑N

i=1 xi
N and ȳ =

∑N
i=1 yi
N are the mean values of xi and yi and serve

for translating the coordinates of the keypoint matches to the origin, and g scales the keypoint

coordinates and is written as

g =

√
2N∑N

i=1

√
(xi − x̄)2 + (yi − ȳ)2

. (2.31)

The matrix N′ is obtained in a similar way, making use of the keypoint matches from image I ′.

Applying DLT to the normalised data {zi, z′i}Ni=1 will produce a “normalised” homography

Ȟ which maps z̃ to z̃′. In order to recover the homography H from Ȟ (thus, recovering the

projective warp that transforms x̃ to x̃′), it is necessary to de-normalise Ȟ.
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Substituting the unnormalised data x and x′ in Eq. 2.1 with the normalised z and z′ from

Eq. 2.29, one can derive the following equation

z̃′ ∼ N′HN−1z̃. (2.32)

Eq. 2.32 implies Ȟ = N′HN−1, thus, the homography de-normalisation process can be achieved

via the following equation:

H = N′
−1

ȞN. (2.33)

Algorithm 2 presents the normalised DLT algorithm for 2D homography estimation.

Algorithm 2 Normalised Direct Linear Transform algorithm for the estimation of a 2D projec-
tive warp (homography).
Require: A set of keypoint matches {xi,x′i}Ni=1 (with N >= 4) across images I and I ′.

1: Generate normalisation matrices N and N′ (Eq. 2.30) with x and x′ respectively.
2: Normalise data: z̃ = Nx̃ and z̃′ = N′x̃′.
3: Initialise matrix A: A = [ ].
4: for i = 1, . . . , N do
5: Generate matrix Ai (Eq. 2.26) from normalised keypoint match {zi, z′i}.
6: Stack vertically Ai into A: A = [A; Ai].
7: end for
8: Perform SVD on A: [U,Σ,V] = svd(A).
9: The solution ĥ is the last column of V.

10: Obtain (normalised) Ȟ reshaped from ĥ.
11: Obtain (de-normalised) H from Ȟ: H = N′−1ȞN.

2.5 Image Stitching with Projective Transformations

Once the estimated homography matrix H has been obtained (either with Alg. 1 or Alg. 2), in

order to align the images I and I ′, an arbitrary pixel x̃∗ in the source image I can be warped to

the position x̃′∗ in the target image I ′ via the equation

x̃′∗ ∼ Hx̃∗, (2.34)

then, in order to recover the inhomogeneous image or pixel coordinates it is necessary to apply

Eq. 2.21 to the contents of vector x̃′∗, thus, aligning image I with I ′.

Fig. 2.4 presents a raw stitching result obtained with this process. In this case the images were

obtained with a rotating camera mounted on a tripod. The image alignments were performed by
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(a) Target image I′. (b) Source image I .

(c) Image alignment results obtained by means of a basic homography warp. Since the images are obtained with a rotating
camera, no visible alignment mistakes are visible.

Figure 2.4: Demonstrating image stitching with the Direct Linear Transformation method. The
input images correspond to views that differ only by rotation. The images are both of size
1280 × 690 pixels. The number of SIFT matches {xi,x

′
i}Ni=1 (not shown) after RANSAC is

1007.

means of a 3×3 homography matrix H estimated with the Direct Linear Transformation method

from Alg. 2. As can be seen in the figure, under these controlled conditions, the homography

warp is able to align the images with no evident geometric alignment mistakes, thus, (without

accounting for image exposure differences) solving the image stitching problem.

Fig. 2.5(a) shows a 1D analogy of this image stitching process. To generate this 1D analogy

of image stitching, a set of 1D correspondences {xi,x′i}Ni=1 are generated by projecting a 2D
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Fitted warp

(a) A 1D analogy of a projective warp stitching data from two
views that differ only by rotation.

x
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1D correspondences
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(b) A 1D analogy of a projective warp stitching data from two
views that differ by rotation and translation.

Figure 2.5: A 1D analogy of image stitching with projective warps. To generate a 1D analogy
of image stitching, a set of 1D correspondences {xi,x

′
i}Ni=1 are generated by projecting a

2D point cloud onto two 1D image planes. (a) The two views differ only by rotation, which
justifies the use of projective warps. The red line corresponds to the estimated 1D projective
warp, parametrised by a 2 × 2 homography. (b) The views differ by rotation and translation.
The 1D homography warp is unable to model the local deviations of the data. Note that these
deviations are caused purely by model inadequacy since there is no noise in the data.

point cloud {pi}Ni=1 onto two 1D image planes. This projection process is performed via Eq. 2.2

by means of two 2 × 3 camera matrices P and P′. For the camera matrix P: K =

f cx

0 1

,

R =

cos θ − sin θ

sin θ cos θ

 and t =

tx
ty

, where f is the focal length of P, cx is the position of the

principal point of the 1D image I , θ is the camera rotation angle and tx and ty are the camera

translations (and similarly for P′).

Similar to the stitching example from Fig. 2.4, the image data or correspondences are obtained

with a camera undergoing pure rotation (i.e., in both of these cameras matrices the 2× 1 trans-

lation vectors are set to t = t′ = [0 0]T ) which fulfils the prescribed imaging conditions of the

projective warp for successful image stitching. In order to obtain the 1D (2 × 2) homography

matrix H for this 1D analogy, Alg. 2 was used but, in this case, each matrix Ai is defined as:

Ai =
[
−x̃Ti x′ix̃

T
i

]
∈ R1×4 (2.35)

As can be seen in Fig. 2.5(a), under a pure rotational motion, the 1D homography warp is able to

successfully fit (i.e., align) the image data, which is the reason why, for the 2D case in Fig. 2.4,

such process generates “successful” image alignments for image stitching.

Unfortunately, given images that deviate from the assumptions of the projective warp, a simple

homography will not be able to model the local deviations of the data, thus, producing alignment

errors or ghosting in the stitched results. These alignment errors are caused either by unmodelled

camera motion or by multiple depths in the imaged scenes, which (as seen in Sections 2.2.1
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and 2.2.2) are elements that a homographic warp is not able to characterise. Fig. 2.5(b) illustrates

this condition. In this case the 1D image data was generated with a camera undergoing rotation

and translation (i.e., the translation vectors from the camera matrices a set to non-zero values,

e.g., t = [tx 0]T and t′ = [t′x 0]T with tx or t′x or both 6= 0), which clearly violates the

assumptions of projective estimation. In particular, note how, because of the camera translations

or parallax, the image data deviates from the homographic fit (please note that, in this synthetic

example, there is no noise in the data or errors in the warp estimation process).

For the 2D case, Fig. 2.6 provides an example of a mosaic stitched from the data in Figs. 2.6(a)

and 2.6(b). As can be seen in this image, alignment mistakes are evident since the images also

differ by rotation and translation (Chapter 6 of this thesis provides more examples of non-ideal

images that were stitched with a basic projective warp, as expected, in all of those examples

alignment mistakes remain obvious). The, just discussed, problem motivated a vast amount

of novel research in the areas of image alignment, image stitching, image processing and 3D

reconstruction during the last decade. The purpose of the following Chapter is to provide an

analysis of the advantages and disadvantages of the most relevant work that attempts to produce

better image alignments for image stitching when given non-ideal data. This analysis will help

exhibit the advantages and improvements of the proposed approach for image stitching over

other, similar intentioned research.

2.6 Summary

The main contribution of this Chapter was to explain under which set of conditions a homogra-

phy warp is justified as a image alignment function (for image stitching) and what happens to

the image data if such conditions are not fully satisfied.

This Chapter also presented the Direct Linear Transformation. DLT has the ability to estimate

the parameters of a (non-linear) projective transformation from a set of noisy corresponding

keypoint matches across two images. But the most important aspect of DLT is the fact that the

method is able to achieve this task by making use of simple linear methods, specifically, the

singular value decomposition.

As a final note from this Chapter, it is important to mention that DLT is a feature based method

(i.e., it makes use of keypoint matches in order to perform). Other (non feature based) for-

mulations estimate the parameters of the homography matrix by minimising the pixel intensity

differences between the images to align. Such methods (which were developed in the early days

of image alignment research) are often called direct or pixel based methods. However, direct
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(a) Target image I′. (b) Source image I .

(c) Image alignment results obtained by means of a basic homography warp. As can be seen in this image, due to the images
deviating from the idealised conditions of the homography warp, several alignment mistakes (circled in red) can be observed.

Figure 2.6: Demonstrating image stitching with the Direct Linear Transformation method. The
input images correspond to views that differ by rotation and translation. The images are both of
size 2000×1500 pixels. The number of SIFT matches {xi,x

′
i}Ni=1 (not shown) after RANSAC

is 2753.

methods generally involve Non-Linear Least Squares formulations which are usually solved by

means of the aforementioned Gauss-Newton or Levenberg-Marquardt algorithms, which operate

on all of the pixel data of the images to align. In general, such algorithms are slow and require

“good” initial estimates of the homography matrix. Nowadays this type of approaches are com-

monly used as an extra step for the refinement of feature based solutions. Direct approaches are

not the focus of this thesis, however, [74], [5] and [76, Section 3] are excellent sources for direct

homography estimation methods.



Chapter 3

Related Work

3.1 Introduction

While the fundamentals of image stitching are well studied (see [76] for an excellent survey),

how to produce good results when the data is noisy or uncooperative is still an open problem.

In this thesis, previous works on image stitching are categorised into two groups: (1) methods

that reduce alignment errors or (parallax induced) ghosting by constructing better alignment

functions, and (2) methods that reduce ghosting after alignment using advanced methods in

compositing, pixel selection or blending.

Chief amongst the second group are the seam cutting methods [2, 17, 44] that optimize pixel

selection across the overlapping section of the images in order to minimise visible seams; patch-

based methods [6, 15, 32, 91] which synthesize the transition region to smoothly transform from

one image to another; advanced pixel blending techniques such as Laplacian pyramid blend-

ing [12, 13] and Poisson image blending [67, 79] that minimise blurring due to misalignments or

exposure differences. Though vital to produce visually acceptable results, such post-processing

routines are nevertheless imperfect and may not work all the time (see [39] for examples). It is

thus strategic to attempt to reduce errors as much as possible during the image alignment step

which is the goal of this research. Thus, this review concentrates on methods that attempt to

produce better alignments for image stitching. Ideally, methods from both groups should be

jointly used for best results.

Amongst the works that perform better image alignments for image stitching, four main cate-

gories are distinguished: (1) two-step methods that perform an initial “rigid” image alignment,

27
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which is obtained by means of a projective transformation (or any of the other 2D planar trans-

formation from Table 2.1), and then make use of a further refinement process for improving the

alignment results; (2) methods that make use of 3D reconstruction techniques for inferring the

structure of the scene and the location of the cameras in order to stitch the images; (3) meth-

ods for arbitrary camera motion, which are based on the manifold mosaicing work or [65], and

(4) methods that are able to directly generate flexible warps for image stitching. Moving DLT

belongs to this last category.

The following sections present the most relevant works on image stitching from these four cat-

egories. However, this review begins by providing a glimpse of some of the “classical” ap-

proaches that make use of basic projective transformations for image stitching. It is worth

mentioning that most of these methods assume “ideal” imaging conditions or are used as initial-

isation for further image aligning refinement methods.

3.2 Pairwise Stitching

The previous Chapter explained how, by means of a projective transformation, it is possible to

align a pair of overlapping images. In order to align a long sequence of images, earlier work on

image stitching made use of pairwise homographies which are “chained” or multiplied in order

to incrementally generate long panoramas.

Fig. 3.1(a) shows a set of four overlapping images. The first step of the incremental stitching

process consists of obtaining a homography between each pair of overlapping images. In this

case, Hkl is a 3 × 3 homography matrix that maps points from image I l to image Ik. These

homographies can be estimated e.g., by means of the DLT method from Chapter 2 or by means

of Gauss-Newton or Levenberg-Marquardt algorithms. Then, each image that overlaps with the

reference frame IR, which, in this example, is selected as image I3, can be stitched or warped by

making use of the estimated pairwise homographies, as shown in Fig. 3.1(b). Since, for all of the

other images, there is no homography that aligns them with the reference frame, a homography

chaining process is performed. The chaining process consists on multiplying the homographies

of all of the images that “lead” to the reference frame. In Fig. 3.1(a), image I1 is not overlapping

with the reference frame, however, image I2 overlaps with I1 and it also overlaps with the

reference frame I3, thus, in order to align I1 with I3, a new homography H31 = H21H32

is generated. This homography brings I1 into alignment with image I3 (Fig. 3.1(c) shows an

example). For all of the other images, a similar chaining process is performed.
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(a) A set of 4 overlapping images of a scene. In order to stitch the images with
the reference frame, a homography between each pair of images is obtained.
In this case there are 3 homographies, namely H21, H32 and H34
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(b) All of the images that overlap with the ref-
erence frame I3 can be aligned by means of
the estimated pairwise homographies.
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(c) Since image I1 does not overlap with the reference
frame I3, a homography chaining process is used. This
chaining process consists on generating a homography
H31 = H21H32 that brings I1 into alignment with image
I3.

I
1

H
R'1 

I
R'

(d) An alternative to the homography chaining process is
to augment the reference frame with the (warped) contents
of the overlapping images. The next step is to obtain the
set of homographies and align the images that overlap with
this augmented reference frame and continue this process
until there are no more images to align.

Figure 3.1: Stitching long panoramas through incremental, i.e., pairwise approaches. I3 is
selected as the reference frame.

A variant of the previous approach consists on only obtaining the homographies of the images

that overlap with the reference frame. Then, after performing the alignment of these images

with the reference frame (like in Fig. 3.1(b)), the resulting stitched mosaic is labelled as the

new reference frame IR
′
. The next step is to identify the new set of images that overlap with

this augmented reference frame, and repeat this process until the reference frame contains all

of the images to stitch (Fig. 3.1(d) illustrates). This form of incremental stitching is sometimes

referred to as “threading”.

A notable work that makes use of incremental stitching approaches is that of Irani et al. [37].

The goal of such work is to perform video compression and the idea was to generate a panorama

by registering the frames that compose the video so that, instead of storing all of the contents of

each video frame, regions of this panorama can be used for recovering the contents of several of

the original video frames.

In that particular work the pairwise homographies are estimated via the equation

E(H) =
∑
x

(I(x)− I ′(f(x,H)))2. (3.1)



Chapter 3 - Projective Transformations 30

Eq. 3.1 is a (pixel based) cost function that aims at obtaining the homography H that minimises

the pixel error between two images I and I ′. x is a pixel coordinate defined over the area of I

that overlaps with I ′. f is a function that warps point x to image I ′ using the homography H.

Using Eq. 3.1 (which is solved by means of the iterative Gauss-Newton algorithm), [37] incre-

mentally generates panoramas with two video compression applications in mind: video storage

and low bit-rate video transmission. For a video storage application, a scene change detection

algorithm (such as the one in [95]) is first applied to the video. Then, an independent panorama

is generated by aligning all of the images in each one of the automatically detected scenes.

Once the images have been aligned a compositing stage removes ghosting and blurring artifacts

so that the contents of the video frames can be recovered with the lowest possible loss. The data

that corresponds to moving objects that were not stitched to the panorama are coded separately.

For low-bit rate video transmission applications, the panorama cannot be generated in a batch,

i.e., the panorama must be constantly updated with the contents of the current image frame;

thus, ensuring that the panorama contains only the most recent information. In order to do this,

each new frame is aligned with the current contents of the panorama and composited in order to

reduce alignment errors and quality loss.

Another approach that makes use of incrementally generated panoramas is that of [47]. In such

work, the authors proposed a video encoding system that is based on a layered representation:

a set of layers are responsible for encoding the pixel-data of the dynamic objects in the video

while another layer encodes the information that corresponds to the static objects, e.g., the video

background. For the encoding of static objects in the video, “sprites” are generated by means

of projective transformations. Similar to the previously mentioned work of [37], a sprite is a

mosaic obtained by incrementally stitching the pixels of the static objects that appear in several

frames in the video. By making use of these sprites each static object can be recovered in each

video frame. Fig. 3.2(a) shows a panorama generated by incrementally stitching the frames of

a video sequence of a tennis match. Fig. 3.2(b) shows the recovered background on four video

frames (the moving objects do not form part of the panorama, thus, their pixels are not recovered

by this approach).

In order to encode the data of the dynamic objects, affine transformations [76] (refer to Table 2.1)

are used. The goal of the affine transformation is to warp the pixels of the dynamic objects from

one frame to another, thus, reducing the amount of pixel-data that needs to be encoded per video.

However, instead of using one single affine transformation per moving object (which is often

insufficient) the authors make use of a set of affine transformations. To generate this set of affine

transformations, a dense feature matching process is applied to each moving object so that dense

motion vectors are obtained between frames. The motion vectors are then clustered in patches
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(a) An example of a panorama generated from the video sequence of a tennis match.

(b) 4 video frames recovered by making use of the contents of the sprite from Fig. 3.2(a)

Figure 3.2: An example of a (stitched) sprite and 4 recovered video frames. The “missing
regions” in the video frames correspond to dynamic objects. This example appears in [76].

or “blocks” of 32 × 32 pixels and, by making use of the dense motion vectors in each block,

an affine transformation is obtained. The output from this process is a set of piecewise affine

transformations that describe the motion of a moving object between consecutive frames. It is

important to note that this approach does not consider smoothness between neighbour blocks.

Other similar incremental stitching approaches led to the development of important applications

in the areas of video compression and encoding [46], video indexing [36, 42], video stabilisa-

tion [29], medical image registration [14, 38, 72, 82] and even the generation of storyboards

from videos [27]. However, an important drawback of most of the incremental image stitching

frameworks is the fact that small image alignment mistakes are amplified and propagated to

subsequent images [76], thus, “drifting” the images that compose the panoramas. Such drifting

problem becomes more evident when generating 360◦ panoramas or every time a part of a scene

is revisited when stitching video frames. In order to solve this problem, Szeliski and Shum [78]

propose what they call “gap closing” techniques. In [78], the homography matrix H that relates

two views I and I ′ is written as:

H = K′R′R−1K−1 = K′R(Ω)R′R−1K−1, (3.2)

where the left-hand side of Eq. 3.2 corresponds to the rotation induced homography matrix from

Section 2.2.2. In such work, the process of estimating the homography matrix H begins by

providing an initial set of values to the matrices R and R′ and, assuming the values of f and
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(a) A section of a 360◦ panorama generated with pairwise align-
ments. Note how, because of the chained alignment errors, the
ends of the panorama do not match.

(b) The ends of the panorama after gap closing. No gap is
visible after the correct focal length estimation.

Figure 3.3: An example of the panorama gap closing technique from [78]. This image appears
in [78].

f ′ in K = diag([f, f, 1]) and K′ = diag([f ′, f ′, 1]) are given1, estimating the final parameters

of the homography H is achieved by performing incremental updates to the values of R by

means of the rotation matrix R(Ω). Such incremental updates are performed until convergence

or until some image alignment error criteria is matched, and this same process is performed

with each pair of images in the panorama. Fig. 3.3(a) shows a circular panorama generated

with these pairwise projective alignments, note how the ends of the panorama are not properly

aligned. The authors solve this problem by matching the first image in the sequence with the

last image. The difference in the rotation matrices (or more specifically, the quotient) associated

with these two images indicates the amount of registration error. The gap closing technique aims

to make use of the registration error between the first and last image of the panorama in order to

perform incremental updates to all of the rotation matrices and focal lengths of the homography

estimates, thus, distributing the registration error evenly across the panorama. This is done by

converting the difference in the rotation matrices of the first and last image into a quaternion,

and dividing this quaternion error by the number of images in the panorama (which is equivalent

to assuming relatively constant inter-image rotations).

In a similar way, the focal length of each camera matrix can also be updated. In order to do so,

the error quaternion is converted into a gap angle θg and then the focal length is updated through

the equation fnew = fold(360
◦ − θg/360

◦). Fig. 3.3(b) shows the panorama from Fig. 3.3(a),

after this gap closing process of [78].
1diag(·) is a function that creates a diagonal matrix with the elements given in the input vector.
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Two major issues of the gap closing approach are that the method needs to estimate the focal

lengths of the cameras and that the approach only works for panoramas where the camera is

panning in one direction. The issues behind most of the pairwise image stitching approaches

and the inability of the gap closing techniques for working under more general camera motions

is what motivated one of the most important developments in image alignment research: the use

of bundle adjustment techniques for image stitching.

3.3 Bundle Adjustment and Local Refinements

Given a set of overlapping images, state-of-the-art methods and tools for image stitching (like

Autostitch [12], Photosynth and Street View) perform bundle adjustment [84] in order to opti-

mise the focal lengths and camera poses, which then give rise to inter-image homographies to

perform the alignments. In particular, [12] proposes minimising the following energy function:

E(Θ) =
K∑
k=1

∑
l∈N(k)

∑
i∈F (k,l)

h(rkli ) (3.3)

where Θ = [K1,...,K ,R1,...,K ] is the set of parameters to optimise, K is the number of images,

N(k) is the number of images that overlap with image Ik and F (k, l) is the set of keypoint

matches between image Ik and I l. rkli = xki −xkli is the residual function that measures the error

between the i-th point xki in image Ik and the (inhomogeneous) projection of its corresponding

match from image I l; such point projection is defined as:

x̃kli = KkRkRlTKl−1x̃lj (3.4)

with K = diag([f, f, 1]) and R being, respectively, the camera intrinsics and the rotation matri-

ces.

In Eq. 3.3, h(·) is a Huber robust function [33]. The purpose of this function is to make the

process robust to any remaining outliers after RANSAC. The Huber robust function is defined

as:

h(r) =

|r|
2, if |r| < σ

2σ|r| − σ2 if |r| ≥ σ
(3.5)
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Figure 3.4: An example of a panorama generated by means of Brown and Lowe’s Bundle
Adjustment method [12]. The panorama is composited with simple pixel average blending.
This panorama was taken from [12].

(a) Image matches. (b) Connected components of the image matches.

Figure 3.5: Identifying sets of connected images with the panorama recognition process of
Brown and Lowe [12].

It is important to note that the multiplications of K and R in the right hand side of Eq. 3.4, can

be re-written in the following form

Hkl = KkRkRlTKl−1
. (3.6)

This homography formulation, which is expressed in terms of camera intrinsics and rotation

matrices, was previously defined in Eq. 2.19 from Chapter 2 of this thesis.

Bundle adjustment avoids the error propagation issue of the incremental approaches since it

distributes the errors evenly across all the images. While Brown and Lowe [12] use SIFT key-

point correspondences [56] in order to define the error term, Shum and Szeliski [74] propose a

similar bundle adjustment stitching approach, that use the difference of pixel values at regularly

sampled patch positions instead of keypoint matches. Fig. 3.4 shows an example of a panorama

generated with the feature based bundle adjustment approach of Brown and Lowe [12], in this

case, the panorama has been composited with simple pixel average blending.

A second refinement stage is also conducted in [74] to account for local misalignments (i.e.,

regions that deviate from the projective model) in the mosaic. For each patch position, the

average of the backprojected rays from each view is taken, which is subsequently projected

again onto each view to yield the desired patch position in 2D. The differences between the
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original and desired patch positions are then interpolated, e.g., using Thin-Plate-Splines [8],

to form a correction field for parallax error removal. However, such two step approaches are

cumbersome and raise questions regarding the optimality of the overall process, e.g., how to

regularize the correction field from overly distorting the original projective warps. It is also

worth noting that similar two step methods have also being used for pairwise image registration,

e.g., [72]. By directly estimating as-projective-as-possible warps, the method proposed in this

thesis avoids a separate refinement step as it will be described in Chapter 4 of this thesis.

Brown and Lowe [12] also introduce a panorama recognition step based on SIFT matching that

is able to determine the subsets of images that belong to the same panorama, given an unordered

collection of photos. The process consists on identifying overlapping images by making use of

the number of inlier matches (after RANSAC) between each image pair. For a set of images

found to overlap with each other, a panorama can then be constructed with them. Isolated

images are ignored from the panorama creation process. Fig. 3.5 shows four different sets of

overlapping images that have been identified as belonging to four different panoramas.

Instead of estimating relative image rotations and camera matrices, other works directly esti-

mate inter-image homographies, then thread the homographies to stitch multiple images onto a

common reference frame [40]. But, contrary to the methods in Sec. 3.2, the focus of these works

is on finding the optimal order of threading such that the errors are not propagated and amplified

excessively.

Under this framework [58] proposes an energy term where, for each patch position, the overall

registration error is distributed amongst all possible triplets of images that contain (or match)

such patch (Fig. 3.6 illustrates this process).

In particular, the work of [58] aims at minimising the function

E(H1, ...,HK) =
N∑
i=1

1

|Li|
∑

(k,l)∈Li

‖xi − f(xi,H
kHklHl−1)‖2, (3.7)

whereN is the total number of points in the reference frame or canvas IR, xi is a point in IR, Li

is the set of images where point xi appears, Hk is a homography that maps a point from image

Ik to the reference frame and Hkl is a homography that maps points from image I l to image

Ik. Similar to (3.1), f(x,H) is a function that returns the inhomogeneous coordinates of x after

being warped with the homography H. Eq. 3.7 is solved by means of the Levenberg-Marquardt

algorithm.
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Figure 3.6: The bundle adjustment process of Marzotto [58] for panorama creation. This pro-
cess aims at estimating the parameters of the inter-image homographies that minimise the align-
ment error between all triplets of images. Ĩk is image Ik after being warped to the reference
frame IR. This image appears in [58].

The process in (3.7) ensures a uniform distribution of the misalignment error in the mosaic and

since it computes the alignment errors in a reference frame (instead of the individual image

frames) it minimises a quantity which is more closely related to the perceived misalignment in

the mosaic.

Unfortunately, the dependence on projective alignments means that none of the previous bundle

adjustment or threading methods can handle non-ideal data. Thus, other, more recent approaches

attempt at solving this problem either by recovering the 3D structure of the scene and stitching

the images by making use of this 3D information, or by directly estimating flexible image warps

that smoothly adapt to the data that deviates from the projective model. Such methods are re-

viewed in the next sections but before doing that, it is important to analyse a different application

of image alignment which is the generation of collages [60] or “joiners” [94].

Collages and joiners are basically mosaics where the seams of the images are purposely left

visible, and the images to align should not undergo any type of distortion caused by the aligning

warps (a projective warp introduces “perspective distortion” in the images, that is why projective

warps are not used for the generation of collages and joiners). The main difference between a

joiner and a collage is the fact that the images that compose a joiner are usually taken from mul-

tiple viewpoints and multiple time instances, thus, increasing the number of incorrect matches

(outliers) and, in general, making the image alignment process a much harder task.
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In order to generate a joiner [94] aims to simultaneously align all of the images with a (common)

reference frame by minimising the following weighted sum of projection errors:

E =
K∑
k=1

∑
l∈N(k)

∑
i∈F (k,l)

wikl h(x̃ki − Sklx̃li) (3.8)

whereN(k) is the set of images that overlap (have keypoint matches) with image Ik and F (k, l)

is the set of feature matches between image Ik and image I l. x̃ki −Sklx̃li is the residual between

the position of keypoint i in image Ik and the projection of its corresponding match from image

I l. In this case, Skl is a similarity transformation [86] that brings image I l into alignment with

image Ik (refer to Table 2.1).

Similarities are used in order to avoid the introduction of “deformations” to the aligned images

which can be caused by the more general affine or projective transformations. wikl is the weight

assigned to the i-th keypoint match between images Ik and I l. In order to make the image

alignment robust to outliers, Eq. 3.8 also makes use of a robust error function h(·) [33] which is

similar to the robust error function in Eq. 3.5.

Eq. 3.8 is a non-linear least squares problem which is solved iteratively by means of the Levenberg-

Marquardt algorithm.

A very important aspect of the image alignment process presented in Eq. 3.8 is the fact that

different keypoint matches can have different weights wikl. The goal of these weights is to

give more (or less) importance to some keypoint matches, thus, “guiding” the image alignment

results. For example, the left column in Fig. 3.7 shows examples of joiners obtained by giving

equal weights to all of the keypoint matches. The right column from Fig. 3.7 shows the results

obtained by assigning higher weights to the keypoints near the image boundaries. As can be

seen in these figures, better image alignment results can be obtained by giving more importance

to the keypoint matches that lie around the overlapping regions of the images.

The purpose of presenting this method for collage generation is to show another approach for

improving the image alignment processes. The Moving DLT approach for image stitching pre-

sented in this thesis also makes use of weights that give more importance to the keypoint matches

around particular areas of the images to align. It is probably worth saying that Moving DLT does

not simply replace the similarity transformations in Eq. 3.8 by homographies nor is based in any

way on Eq. 3.8. Moving DLT is more fundamental; it does not use the weights only for guiding

the 2D parametric warp in order to improve the (still rigid) image alignments. Thus, instead

of using the weights for “tilting” the image plane, Moving DLT’s weights are used for locally
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Figure 3.7: Joiner examples from [94] obtained by means of Eq. 3.8. The left column shows
joiners obtained by assigning equal weights to all of the keypoint matches from Eq. 3.8. The
right column shows the alignment results obtained by giving higher weights to the keypoint
matches that lie around the image boundaries. As can be seen, better alignment results can be
obtained by giving higher importance to the keypoint matches on the image boundaries.

deforming the projective plane in order to align or adapt the warp to the non-projective data.

Other, similar, non-rigid approaches are reported in Section 3.5.

3.4 3D Reconstruction and Plane-Plus-Parallax

Theoretically, it is possible to first recover the 3D structure of the scene from overlapping views

in arbitrary poses (e.g., via structure from motion and dense stereo), and then re-project each

scene point onto a larger reference image or plane in order to yield the mosaic (this process

is described in Section B.2 of Appendix B). This is the approach followed, e.g., by the multi-

viewpoint panoramas of [3].

In such work the authors make use of structure from motion algorithms to recover the 3D struc-

ture of the scene and the camera matrices for each image. Then, by making use of these camera

matrices, all of the images are aligned (projected) into a common surface or reference frame

which is defined by the user on the reconstructed 3D scene, as Fig. 3.8(a) illustrates.
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(a) A top view of the reconstructed scene from the images that compose the panorama in Fig. 3.8(c). The red dots denote the
recovered camera positions. The blue line corresponds to a user defined reference frame/plane.

(b) A panorama generated by projecting a set of images into a user defined reference plane. This panorama is composited with
simple image average blending.

(c) The final postprocessed panorama from Fig. 3.8(b).

Figure 3.8: An example of the multi-view panoramas presented in [3].

Once all of the images are projected, a panorama where the images are composited by simple

average blending is generated, see Fig. 3.8(b). Then, in order to obtain a final smooth and

seamless panorama a Markov Random Field (MRF) optimisation process (which is based on

seam cutting [2]) for eliminating ghosting and other artifacts is used. This MRF also aims

at rendering each one of the objects in the panorama from a viewpoint roughly in front of it.

According to the authors, such characteristic reduces perspective distortion. A final panorama,

generated with this approach, can be seen in Fig. 3.8(c).

The most interesting functionalities of [3] include allowing the user to select the reference frame

and to interact with the pixel compositing process.

Another approach that makes use of 3D reconstruction techniques for image stitching is that

of [99]. The goal of that work is to generate a thin strip panorama (reviewed in Section 3.6)

from a sparse set of images, which is a hard task to do since such processes often require a

large amount of data (e.g., a video stream) for building the panorama. The method begins by

obtaining the camera intrinsic and extrinsic parameters of the available images (through Zhang’s

method [97]) and the camera poses by means of Structure from Motion algorithms. In order

to generate the required dense sampling that the strip panoramas require, virtual cameras are

generated between the estimated camera positions. Each observed image is then projected into

these virtual cameras. The output from this process is a set of images which is then used for

generating the thin strip panorama. Fig. 3.9 provides an example of this method.
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Figure 3.9: The 3D reconstruction approach for image stitching of [99]. The method generates
synthetic images in order to produce dense data that is used for generating a thin strip panorama.
This image is taken from [99]. In this image the authors also compare their stitching results
against the results obtained by Autostitch.

Even though methods based on 3D reconstruction are useful for the generation of mosaics, a

full 3D approach can be “overkill” if the goal is just to stitch images; in fact, many advanced

compositing methods [2, 67] simply focus on creating perceptually good mosaics with little

regard to 3D structure. Also, 3D reconstruction only works for scene points in the overlapping

regions. Further, structure from motion algorithms may be brittle in views with small (but not

exactly zero) baselines, which represents many of the image stitching cases in practice.

Other methods that attempt to stitch images when the camera undergoes more general camera

motions are those of Irani and Anandan [36] and Dornaika and Chung [16]. They propose to

account for the camera translations and multiple scene depths (which are, often, the main cause

of misalignments) by making use of the plane+parallax approach [35, 41, 70, 73].

Since a homography transformation is able to account for the effects of camera rotation, zoom

and calibration (without explicitly modelling each one of these elements), the remaining image

motion is due to unmodelled translation motions of the camera and deviations of the scene

structure from the planar surface. The idea behind plane+parallax is to model this “remaining”

translation motion. So, in order to align points x̃ and x̃′ in two images, the methods make use

of the following equation:

x̃′ = KRK−1x̃ + zKt (3.9)
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(a) A video summary created by stitching represetative frames of a video sequence. The video summary also
shows the trajectories of the two moving objects: a car and airplane, in yellow and green colours respectively.

(b) Selected representative frames of a video sequence of a flying airplane. In these images, only the airplane is visible, although,
the whole sequence also contains a moving car.

Figure 3.10: A video summary created with the plane+parallax approach of [36].

where R and t describe the rotation and translation from the first to the second camera frame,

K contains the camera intrinsics and z = 1
d is the parallax component to be estimated where d

is the projective depth of point x (as described in Section B.2).

In Eq. 3.9, the term H = KRK−1 defines a homography matrix and Kt is the epipole in the

second image, thus, the plane+parallax equation can be rewritten as:

x̃′ = Hx̃+ ze2 (3.10)

where e2 is the epipole in the second image.

Wang et al. [89] make use of the plane+parallax approach for incrementally stitching sequences

of x-ray images while Irani and Anandan [36] use plane+parallax in order to generate panoramas

for video indexing. The goal in video indexing is to generate an image that summarises a whole

video sequence. Fig. 3.10(a) shows an example of a video summary obtained with a one-minute-

long video sequence of a flying airplane. Fig. 3.10(b) shows some representatives frames from

the video.
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Unfortunately, plane+parallax approaches either need to estimate the focal length for each one

of the cameras of the images that compose the scene, or they need dense matches so that a

dense parallax map can be obtain, or they need to obtain the epipolar geometry of the scene (for

obtaining the 3D position of each point) in order to recover the parallax component z for all

pixels in the images to be aligned. Failing to estimate the focal lengths will lead to incorrect

parallax estimates, which will lead to alignment errors.

Aiming at simplifying the parameter estimation task of the plane+parallax approaches, [16] pro-

poses two heuristics. For each pair of images to stitch, the first heuristic makes use of an extra

“intermediate” frame. In order to build a mosaic from two images with parallax, all pixels of the

image to be warped are mapped into this third frame using a homography plus an approximated

parallax. Then, the original pixels are transferred into the reference frame using 3D projective

reconstruction followed by a projection. In the second heuristic, the entire scene viewed by the

image to be registered is segmented into several planar patches in the projective space. The

geometrical transfer of the original pixels is performed using projective mappings between the

projective structure of the scene and the image plane, thus, estimating the 3D projective coordi-

nates of the target image pixels without having to compute their 2D location in the intermediate

image frame. Even though the authors managed to generate satisfactory stitching results on

several image sets , heuristic approaches are often sub-optimal and hard to generalise.

3.5 Direct Estimation of Flexible Warps

Allied to the Moving DLT method proposed in this thesis, there are several recently proposed ap-

proaches that directly improve or adapt the 2D warping function in order to reduce misalignment

errors. Before this section begins describing them, it is crucial to note that the bundle adjust-

ment version of these approaches has not yet been proposed in the literature. Thus, the methods

reported in this Section are limited to performing sequential or incremental warp estimation in

order to stitch a set of images, which may cause error propagation issues. As a consequence,

when creating large panoramas, the quality of the results of those methods is highly dependent

on the accuracy of pairwise stitching and the chaining order of alignment functions.

A smoothly varying affine warp was proposed by [51] for image stitching. Starting from the mo-

tion coherence-based point-set registration method of [59], in order to stitch two images, a global

affine initialization is introduced by [51]. The next step of the process involves performing local

deformations to the affine model, which minimises registration errors while maintaining global

affinity (Fig. 3.11 illustrates).
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(a) The two images to stitch (base image and target image)
and its corresponding detected SIFT keypoints.

(b) The stitching process consists on locally deforming a global
affine transformation in order to adapt to data that deviates from
the affine model.

(c) The final, stitched images.

Figure 3.11: An overview of the Smoothly Varying Affine Image Stitching method from [51].
This figure appears in [51].

Mathematically, under the smoothly varying affine stitching framework, the affine transforma-

tion that relates point x̃i in image I with point x̃′i in I ′ is expressed as:

Fi = F + ∆Fi (3.11)

where ∆Fi is the deviation of the i-th feature’s affine transformation from the global affine

model F. The local deviations ∆Fi are represented by a continuous affine stitching field. It is

important to note that, in this framework, x and x′ are formed with the concatenation of the 2D

vector with the coordinates of the points in the images along with the SIFT descriptor vector.

Since the framework of [51] can make use of other types of information besides the coordinates

of the keypoint matches, [52] also incorporated the orientation of the SIFT descriptors into the

same optimisation framework. The authors of [52] showed that by refining the smoothly affine

warps by making use of the orientation of the SIFT descriptors, the method is able to cope

with wider baselines for image registration and even align images with several illuminations

changes. Fig. 3.12 illustrates this refinement process which is built on top of the “original”

smoothly varying affine warps.

Contrary to most of the image aligning and stitching methods that make use of keypoint matches,

one important aspect of the optimisation framework presented in [51, 52] is the ability to dis-

regard outliers, thus, eliminating the need of other “external” processes like RANSAC [20] for

outlier removal.

Even though such a characteristic is very important since it makes the method resilient to match-

ing errors, it also makes the overall optimisation process computationally expensive and slow;
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Figure 3.12: The hierarchical non-rigid image alignment process of [52]. This process extends
the Smoothly Varying Affine Image Stitching method from [51] by adding an extra step which
refines the affine warp by making use of the orientation information of the SIFT descriptors.
This image was taken from [52].

[51] reports a total time of ∼8 minutes for stitching a pair of images with 1200 SIFT keypoint

matches, which is in practice, a very long time for image stitching since the process usually

involves stitching more that two images. On top of that, affinities are inadequate to achieve a

perspective warp [76], e.g., an affine warp may counterproductively preserve parallelism in the

areas where the images do not overlap. Therefore, while this stitching method can, in principle,

interpolate flexibly and accurately due to local adaptations, the warps will (incorrectly) main-

tain global affinity when there is no data to guide the local deformation, thus, introducing severe

distortions to the aligned results. This problem will be further explained in Section 4.4 from

Chapter 4 of the present thesis and demonstrated in the experiments in Chapter 6.

In the context of video stabilization, Liu et al. [53] proposed content preserving warps. Given

matching points between the original and stabilized image frames, the novel view is synthesized

by warping the original image using an as-similar-as-possible warp [34] that jointly minimises

the registration error and preserves the rigidity of the scene. The content preserving warp is

obtained by minimising the following equation:

E = Ed + αEs (3.12)

where Ed is the data term which aims at minimising registration errors and Es is the similarity
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Figure 3.13: An example of the content preserving warps for video stabilisation. The top row
shows the final cropped result. The second row shows the warped results. The bottom row
shows the corresponding grid and the points that guide the warp. For each one of the cells in
this grid a similarity transformation that aligns the cell in the original image with the stabilised
image, is generated. As the camera displacements increase (right hand side of the image) the
warps start to become unstable. This example image appears in [53].

transformation term. α is a free parameter which balances the influence of the data and similarity

terms.

Imposing scene rigidity as in [53] minimises the dreaded “wobbling” effect in video stabiliza-

tion. However, in image stitching where there can be large rotational and translational difference

between views, their method does not interpolate flexibly enough due to the rigidity constraints

or the warps become visibly distorted for large image displacements (Fig. 3.13 illustrates). This

may not be an issue in [53] since the original and smoothed camera paths are close ([53, Sec. 4]),

i.e., the motion between the views to align is small.

Before applying the content preserving warp, the method pre-warps the original image with

a homography, thus effectively yielding a locally adapted homography. However, the local

adaptation of content preserving warps is performed by means of similarity transformations and,

with Moving DLT, this process is performed with locally adapted homographies which gives the

method more flexibility and accuracy as it will be shown in the experiments in Chapter 6.

By assuming that the scene contains a ground plane and a distant plane, Gao et al. [23] proposed

dual homography warps for image stitching. In such work, the idea is to perform a clustering

process which generates two sets of keypoint matches: keypoints that belong to the ground
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plane and keypoints that belong to the background or distant plane. Making use of these two

sets of keypoints, two basic homography warps are estimated independently (by means of the

DLT algorithm). The two homography warps are then combined in order to stitch the images.

Fig. 3.14 illustrates this process.

(a) The images to stitch and the clustered ground and distant plane SIFT matches (in yellow and green
colour, respectively).

(b) The homography warp obtained with the key-
points from the distant plane.

(c) The homography warp obtained with the keypoints
from the ground plane.

(d) The dual homography warp obtained by combining the ground and distant
plane homographies.

Figure 3.14: The dual homography warps for image stitching from [23].

Basically a dual homography warp is a special case of a piece-wise homographic warp, which is

more flexible than using a single homography. While the method performs well if the required

setting is true, it may be difficult to extend this approach for an arbitrary scene. Even with recent

research advances like the ones from [80, 81, 92, 93], how to estimate the appropriate number

models (homographies) and their parameters remains a challenging and open problem.
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3.6 Arbitrary Camera Motions

There exist methods that consider image stitching under arbitrary camera motions. A notable

example is manifold mosaicing [65] that is based on slit or pushbroom cameras.

The imaging process of the pushbroom camera can be modeled by a multi-perspective projec-

tion: for each strip the projection is perspective, while different strips may be acquired from

different viewpoints. Thus, in the direction of the strips, the projection is perspective, while

in the scanning direction the projection is parallel. Since under parallel projection there is no

parallax, the strips in the resulting mosaic are aligned at the seams. Using a standard perspec-

tive camera, a pushbroom camera can be approximated by continuously “sweeping” the scene

in video. This is done by extracting and aligning thin strips from the images of the video onto

a manifold such that the optical flow becomes approximately uniform. The width of each one

of these strips is proportional to the camera motion. Fig. 3.15 shows two panoramas generated

with this stitching technique.

Figure 3.15: Two panorama examples generated with the adaptive manifold mosaicking tech-
nique of Peleg et al. [65]. This example appears in [65].

This method has also been used for the generation of stereo mosaics [62, 64, 66]. A stereo

mosaic consists of two panoramas where one of the panoramas is for the left eye and the other

panorama is for the right eye. These panoramas are used for creating an anaglyph image, which

when viewed with anaglyph glasses, generates a visual 3D effect.

Since, in order to build the anaglyph image, there must be some disparity between the two

panoramas, instead of taking the central strip of each one of the video frames (which is the

process for building an “ordinary” panorama), the method takes strips from each side of each

frame. By taking strips from the left side of the images, the viewing direction is tilted counter-

clockwise from the image surface, generating the panorama for the right eye. When the strips

are taken from the right side of the images, the panorama for the left eye is obtained (Fig. 3.16

illustrates this process).
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Figure 3.16: The imaging process of the pushbroom camera modeled by the multi-perspective
projection process of [62, 64, 66]. When the strips are taken from the center of the images an
ordinary panorama is obtained. When the strips are taken from the left side of each image,
the viewing direction is tilted counterclockwise from the image surface, obtaining the right-eye
panorama. When the strips are taken from the right side of each image, the left-eye panorama
is obtained. This image is taken from [63].

Fig. 3.17 shows an anaglyph image obtained from a stereo panorama. This example appears in

[63]. If this figure is seen with anaglyph glasses, a 3D panorama effect can be observed.

Figure 3.17: An anaglyph image constructed from a stereo panorama generated with the
panoramic stereo imaging method of [66]. This example appears in [63].

Unfortunately, even though manifold mosaicking has been successfully used for the generation

of panoramas under general (but smooth) camera motions, the method requires streams of im-

ages i.e., videos for approximating the pushbroom camera model, otherwise, the images must

be “hallucinated” or synthesised like in the method of [99], reviewed in Section 3.4. Thus, this

method has not shown to be applicable to stitch still images in a “discrete” photo collection,

such as those handled by Autostitch and Photosynth.

3.7 Summary

This Chapter presented the most relevant work oriented towards the generation of better image

alignments for stitching uncooperative data. Some of these works proposed the use of two-step

approaches where, after an initial “rigid” image alignment process, a refinement stage attempts
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at locally aligning the regions of the images that deviate from the 2D parametric model. Unfortu-

nately, such two-step approaches are often cumbersome and raise questions about the optimality

of the image alignments.

Other approaches tackle the parallax problem in image stitching by reconstructing the scene and

estimating the parameters of the camera matrices. Once the 3D structure of the scene has been

recovered, all of the scene points can be projected into a common reference frame by means

of the estimated camera matrices. Unfortunately, 3D reconstruction processes overcomplicate

the image stitching task if the goal is “only” to align images and what is worse, Structure from

Motion algorithms are not particularly suitable for scenes with small baselines, which is the

case for most of the casual stitching imagery. In fact, one of the purposes of the projective

transformation is to avoid the 3D reconstruction process in order to align the images, even

though (as it is already known), it is necessary to constrain the image formation process, thus,

limiting the applicability of the homographic warp.

Attempting to solve this issue, the most up-to-date research in image stitching aims to directly

estimate non-rigid (image-to-image) warps in order to bring the images into alignment. How-

ever, aligning non-ideal image data through flexible methods is a challenging problem, which

usually involves the use of complex algorithms (e.g., [51, 52]), and some of those algorithms are

generally slow. On top of that, some of the currently available methods are either restricted to

certain particular scene types [23] or make use of as-similar-as-possible warps [53] or smoothly

varying affine warps which either constrain the flexibility of the image alignments or compro-

mise the integrity of the stitched results. These are probably the reasons why most of the current

stitching technologies do not make use of this type of flexible approaches yet.

The main purpose of the following Chapter is to introduce Moving DLT: the first method for the

generation of as-projective-as-possible (i.e., smoothly varying projective) warps. The purpose

of these warps is to perform projective image alignments that impose less constrains in the

image formation processes while (similar to a basic projective warp) disregarding the use of 3D

reconstructions or epipolar geometry estimates or multi-step or heuristic processes. For the case

of image stitching, Moving DLT seamlessly bridges image regions that are inconsistent with the

projective model. On top of that, Moving DLT is a very simple and fast method and it can also

be implemented in parallel.

The second purpose of the next Chapter is to explain the main differences and advantages of

projective regularisation over affine regularisation for image stitching.





Chapter 4

As-Projective-As-Possible Warps

4.1 Introduction

The Moving Direct Linear Transformation is this thesis’ main contribution to knowledge. The

method is inspired by the elegant and simple framework of Moving Least Squares (MLS) [49],

inheriting its approximating capabilities and efficiency. Unlike any method for non-rigid image

stitching, Moving DLT is able to directly produce flexible warps that make use of projective

regularisations. Such property results into highly accurate image stitching with significantly re-

duced ghosting effects, which lowers the dependency on post hoc de-ghosting while also main-

tains the plausibility of the alignment results.

The first part of this Chapter presents the theory behind the novel Moving DLT method. In

particular, this first part covers how to formulate and solve projective estimation problems with

Moving DLT. This also explains how the as-projective-as-possible (APAP) warps are able to

relax the restrictive assumptions of the basic projective warp, thus, making the proposed method

particularly suitable for image stitching (and general projective estimation) tasks.

The second part of this Chapter presents two techniques that allow a fast computation for Moving

DLT. These methods are very simple and effective. For example, one of these two methods

allows the generation of an APAP warp for stitching a pair of images1 (of size 2000 × 1329

pixels) with 5068 keypoint matches in ∼5 seconds + ∼1 second for compositing. Compared

with the significant improvements in the image alignment results, this is an impressively low

computational time.
1The pair of images belongs to the construction site image set. From all of the images used in this work, this

image pair contains the highest number of keypoint matches. These images along with the corresponding stitching
results will be shown in Chapter 6 of this thesis.

51



Chapter 4 - Moving Direct Linear Transformation (Moving DLT) 52

This Chapter ends by explaining the differences between Moving DLT and Moving Least Squares

(which also allows to explain the differences between smoothly varying affine and the newly

proposed: smoothly varying projective warps).

4.2 Moving Direct Linear Transformation (Moving DLT)

Recalling from Section 2.5, a homography H is an image-to-image mapping that is able to relate

an arbitrary homogeneous pixel position or point x∗ from image I with a corresponding point

x′∗ in I ′ via the following equation

x̃′∗ ∼ Hx̃∗. (4.1)

Then, recovering the inhomogeneous pixel coordinates x′∗ = [x′∗ y
′
∗]
T can be achieved by

x′∗ =
r1[x∗ y∗ 1]T

r3[x∗ y∗ 1]T
and y′∗ =

r2[x∗ y∗ 1]T

r3[x∗ y∗ 1]T
, (4.2)

where rj is the j-th row of H. However, when the views I and I ′ do not differ purely by rotation

or are not of a planar scene, using a basic homographic warp inevitably yields misalignment or

parallax errors.

In order to alleviate this problem, the idea in this thesis is to warp each x∗ using a location

dependent homography

x̃′∗ ∼ H∗x̃∗ (4.3)

where H∗ is estimated from the following weighted (DLT) problem

ĥ∗ = argmin
h

N∑
i=1

‖wi∗Aih‖2 s.t. ‖h‖ = 1, (4.4)

with Ai defined as in Eq. 2.26 (copied below)

Ai =

01×3 −x̃Ti y′ix̃
T
i

x̃Ti 01×3 −x′ix̃Ti

 .
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The goal of the scalar weights {wi∗}Ni=1 in (4.4) is to give higher importance to data that are

closer to x∗. These weights are calculated as

wi∗ = exp(−‖x∗ − xi‖2/σ2), (4.5)

which is a Gaussian weighting function, although, other weighting functions can be used. In

this function, σ is a scale or bandwidth parameter, and xi is the coordinate in the source image

I of one-half of the i-th point match {xi,x′i}.

Intuitively, since the weighting function in (4.5) assigns higher weights to data closer to x∗,

the projective warp H∗ better respects the local structure around x∗. By contrasting this new

approach with respect to Eq. 4.1 one can realise that (4.1) uses a single and global H for all

x∗, whereas the proposed formulation uses one locally weighted homography H∗ per each x∗.

Moreover, as x∗ is moved continuously in its domain I , the warp H∗ also varies smoothly [49].

This produces an overall warp that adapts flexibly to the data, yet attempts to preserve the pro-

jective trend of the warp, i.e., an as-projective-as-possible warp. This new method is called

Moving DLT.

The problem in Eq. 4.4 can be re-written in its corresponding matrix form as

ĥ∗ = argmin
h
‖W∗Ah‖2 s.t. ‖h‖ = 1, (4.6)

where the weight matrix W∗ ∈ R2N×2N is composed as

W∗ = diag([ w1
∗ w

1
∗ w

2
∗ w

2
∗ . . . w

N
∗ wN∗ ]) (4.7)

and diag(·) creates a diagonal matrix given a vector. This is a weighted SVD (WSVD) problem,

and the solution is simply the least significant right singular vector of W∗A.

Problem (4.6) may be unstable when many of the weights are insignificant, e.g., when x∗ is in a

data poor (extrapolation) region. To prevent numerical issues in the estimation, the weights are

offset with a small value γ within 0 and 1

wi∗ = max
(
exp(−‖x∗ − xi‖2/σ2), γ

)
. (4.8)

This also serves to regularise the warp, whereby a high γ reduces the warp complexity. In fact

as γ approaches 1 the resultant warp loses its flexibility and reduces to the original homographic

warp. Fig. 4.1(b) illustrates a 1D as-projective-as-possible warp without regularization, while

Fig. 4.1(a) shows the regularized warp using the weight offsetting on the same data (in order to
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1D correspondences
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(a) A 1D analogy of an as-projective-as-possible warp for
stitching data from two views that differ by rotation and
translation.

x
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1D correspondences
Fitted warp

(b) Results from Moving DLT without regularisation for
the 1D synthetic image stitching problem.

Figure 4.1: A 1D analogy of image stitching with as-projective-as-possible warps. (a) The red
line shows a 1D as-projective-as-possible warp estimated by means of Moving DLT. The as-
projective-as-possible warp interpolates the local deviations flexibly and extrapolates correctly
following a global projective trend. (b) An as-projective-as-possible-warp without regularisa-
tion.

Algorithm 3 Moving Direct Linear Transform algorithm for the estimation of a 2D as-
projective-as-possible warp.
Require: A pair of images to stitch (image I and image I ′).

1: Obtain keypoint matches between image I and image I ′.
2: Remove mismatches i.e., outliers (refer to Section 4.3). This process will produce a set of
N correct keypoint matches {xi,x′i}Ni=1.

3: Generate normalisation matrices N and N′ (Eq. 2.30) with x and x′ respectively.
4: Normalise data, i.e., obtain normalised keypoint matches: z̃ = Nx̃ and z̃′ = N′x̃′.
5: Generate matrix A with the set of normalised keypoint matches {zi, z′i}Ni=1 (refer to

Sec. 2.4).
6: for each point (or pixel position) x∗ in image I do
7: Obtain matrix W∗ which contains the weights between x∗ and all xi for i = 1, ..., N .
8: Perform SVD on matrix W∗A: [U,Σ,V] = svd(repmat(W∗,1,9) .∗A).
9: The solution ĥ∗ is the least significant right singular vector of W∗A (i.e., the last column

of V).
10: Obtain (normalised) Ȟ∗ reshaped from ĥ∗.
11: Obtain (de-normalised) H∗ from Ȟ∗: H∗ = N′−1Ȟ∗N.
12: end for

generate these 1D analogies, an instance of (4.4) with Ai defined as in (2.35) is solved for each

x∗ position along the x axis).

Algorithm 3 summarises the Moving DLT method for the estimation of 2D as-projective-as-

possible warps. From Alg. 3, the size of matrix A is 2N × 9 and the size of W∗ is 2N × 1,

the “.∗” operator in line 6 of Alg. 3 means element-wise multiplication and repmat(·, ·, ·) is

MATLAB’s replicate and tile2 array function.

Fig. 4.2(a) presents a raw stitching result obtained with Alg. 3. The input images I and I ′

correspond to the data in Figs. 2.6(a) and 2.6(b). As can be seen in this result, the locally
2www.mathworks.com.au/help/matlab/ref/repmat.html

www.mathworks.com.au/help/matlab/ref/repmat.html
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weighted homographies generated with Moving DLT have the ability to align the views without

producing any visible alignment mistakes. Contrast this result with the result generated by a

“global” homography in Fig. 2.6(c) where severe alignment mistakes are visible.

It is important to note that Moving DLT, or more specifically, the as-projective-as-possible warps

do not aim at performing image stitching of images acquired under arbitrary motions. The

purpose of Moving DLT is to perform local deformations to the projective warp in order to fit

data that deviates from the projective model, as Fig. 4.1(a) illustrates.

It is also not the purpose of this approach (or this thesis) to dispense with the usage of de-

ghosting or post-processing algorithms which are still very useful specially if serious misalign-

ments remain or if there are moving objects in the images. The main point is that it is prudent

to achieve higher accuracy alignments since this imposes a much lower dependency on the suc-

cess of further compositing routines (as will be demonstrated in the experiments and results in

Chapter 6).

4.3 Efficient Computation for Image Stitching

So far this work has assumed that no mismatches or outliers exist amongst the data. This ide-

alised situation is extremely rare in practice since the keypoint matching algorithms are imper-

fect, and there is usually noise in the measured data. Therefore, it is necessary to resort to outlier

removal approaches.

Before invoking Moving DLT it is possible to remove outliers by making use of RANSAC [20]

with DLT as the minimal solver. One might argue against RANSAC since this work considers

data where the inliers themselves may deviate from the projective trend. In practice though,

the outlier errors are orders of magnitude larger than the inlier deviations. This observation

was reported and justified in [83] where RANSAC was able to generate outlier detection rates

similar (and sometimes better) than those of other, more complicated, methods e.g., SVM re-

gression [50], annealed M-estimation [100] or local smoothness [68]. Thus, RANSAC can be

effectively used.

4.3.1 Partitioning into cells

Solving (4.6) for each pixel position x∗ in the source image I is unnecessarily wasteful. This is

because neighboring pixel positions will yield very similar weights (4.8) and, as consequence,

very similar homography estimates. Instead of estimating a homography per pixel, one option is
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(a) Image alignment results obtained by means of the proposed Moving DLT method. As can be seen in the figure, very few
(if any) visible misalignments remain.

(b) Aligned images with transformed cells overlaid to visualise the warp. Observe that the warp is globally projective for
extrapolation, but adapts flexibly in the overlap region for better alignment.

Figure 4.2: Demonstrating image stitching with Moving DLT. The input images correspond to
views that differ by rotation and translation. The images are both of size 2000 × 1500 pixels.
The number of SIFT matches {xi,x

′
i}Ni=1 (not shown) after RANSAC is 2753. With N = 2753

keypoint matches, the number of entries in the A matrix is 2N ×9 = 49554 and the number of
entries in W∗ is 2N × 1 = 5506, assuming 8 bytes per entry in A and W∗, the total number
of bytes is 440480. This is equal to 0.42007 MegaBytes, which is a low memory consumption
requirement for each H∗. On top of that, it is not necessary to save the values of W∗ for each
H∗. Thus, in principle, the computational cost does not grow with the number of weighted
homography matrices H∗. This stitching result was generated in ∼4 seconds.

to uniformly partition the 2D domain of image I into a grid of C1×C2 cells, and take the center

of each cell as x∗. Pixels within the same cell are then warped using the same homography.
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Fig. 4.2(b) illustrates a mosaic result where the image I is partitioned into 100 × 100 cells. In

this figure it is possible to observe that the as-projective-as-possible warp is globally projective

for extrapolation, but adapts flexibly in the overlap region for better alignment.

Partitioning into cells effectively reduces the number of Weighted SVD (WSVD) instances to

C1×C2. Moreover, each of the WSVD instances are independent of each other (see (4.6)), thus

a straightforward approach to further speed up the computation of the as-projective-as-possible

warps is to solve the WSVDs in parallel. Although, even without parallel computations, Moving

DLT is a very fast and efficient approach for image stitching. This will be further discussed in

Chapter 6.

A potential concern is that discontinuities in the warp may occur between cells since the parti-

tioning effectively downsamples the smoothly varying weights in Eq. 4.8. In practice, as long as

the cell resolution is sufficiently high, the effects of warp discontinuities are minimal (100×100

is an adequate size for all of the images tested in the experiments of this work).

4.3.2 Updating weighted SVDs

Further speedups of Moving DLT are possible by realising that, for most of the cells, due to the

offsetting (4.8), many of the weights do not differ from γ.

Based on the input images (I and I ′) in Figs. 2.6(a) and 2.6(b), Fig. 4.3 histograms across all

cells the number of weights that differ from γ (in this example, γ = 0.0025). A vast majority of

cells (> 40%) have fewer than 20 weights (out of a total of 2753) that differ from the offset γ.

0 500 1000 1500 2000
0

2000

4000

6000

Number of weights (out of 2753) greater than offset value

C
el

l c
ou

nt Most cells are concentrated here (there
are a total of 10000=100x100 cells).

Figure 4.3: Histogram of number of weights 6= γ for the cells in Fig. 2.6(b).

To exploit this observation a WSVD can be updated from a previous solution instead of being

computed from scratch. Defining Wγ = γI, let the columns of V be the right singular vectors

of WγA. Define the eigendecomposition

ATWT
γ WγA = VDVT (4.9)

as the base solution. Let W̃ equal Wγ except the i-th diagonal element that has value w̃i.
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The eigendecomposition of ATW̃TW̃A can be obtained as the rank-one update

ATW̃TW̃A = VDVT + ρrir
T
i = V(D + ρr̄ir̄

T
i )VT ,

where ρ = (w̃2
i /γ

2−1), ri is the i-th row of A, and r̄i = VT ri. The diagonalisation of the new

diagonal matrix

D + ρr̄ir̄
T
i = C̃D̃C̃T ∈ Rm×m (4.10)

can be done efficiently using secular equations [75].

Multiplying VC̃ effectively yields the right singular vectors of W̃A. This can be done ef-

ficiently by exploiting the Cauchy structure in C̃ [75]. The cost of this rank-one update is

O(m2 log2m).

The WSVD for each cell can thus be obtained via a small number of rank-one updates to the

base solution, each costingO(m2 log2m). Overall this is cheaper than computing from scratch,

where for W∗A of size n×m, would take O(4nm2 + 8m3) even if just the right singular

vectors are computed [28]. Note that, in Eq. 4.6, (n = 2N)� (m = 9).

4.4 Comparing Moving DLT against (affine) Moving Least Squares

for Image Stitching

Conceptually, Moving DLT is the homogeneous version of Moving Least Squares (MLS) com-

monly used in surface approximation [4] and image manipulation. In the context of warping

points in 2D for image manipulation [71], MLS estimates for each x∗ an affine transformation

(refer to Table 2.1) defined by a 3× 3 matrix F∗

x̃′∗ ∼ F∗x̃∗, (4.11)

where

F∗ = argmin
F

N∑
i=1

wi∗

∥∥∥∥∥∥F
x

1

−
x′

1

∥∥∥∥∥∥
2

. (4.12)
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Figure 4.4: An affine-as-possible warp obtained by means of Moving Least Squares. The warp
is able to flexibly interpolate the data that deviates from the projective trend. However, when
there is no more data to stitch, the warp goes back to an affine, i.e., linear trend instead of
reverting into a fully projective warp.

The problem in Eq. 4.12 is a weighted linear least squares problem [7, Pp. 42], which can be

easily solved by obtaining the solution to the following normal equations


x1 y1 1

x2 y2 1
...

xN yN 1



T 
w1
∗ 0 . . . 0

0 w2
∗ . . . 0

...
...

. . .
...

0 0 . . . wN∗




x1 y1 1

x2 y2 1
...

xN yN 1

FT
∗ =


x1 y1 1

x2 y2 1
...

xN yN 1



T 
w1
∗ 0 . . . 0

0 w2
∗ . . . 0

...
...

. . .
...

0 0 . . . wN∗




x′1 y

′
1 1

x′2 y
′
2 1

...

x′N y′N 1

 .
(4.13)

Writing 4.13 in matrix form produces the following equation

BTW∗BFT
∗ = BTW∗f , (4.14)

then, the solution to (4.12) is just

F∗ = ((BTW∗B)−1BTW∗f)T . (4.15)

Including nonstationary weights {wi∗}Ni=1 produces flexible warps, but since each F∗ corre-

sponds to an affine transformation, such warps are only as-affine-as-possible. Fig. 4.4 illustrates

this warp.

The 1D analogy from Fig. 4.4 illustrates how MLS is able to interpolate or align non-ideal

stitching data while going back to a global affine trend in the extrapolation area, thus, producing
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Figure 4.5: Image stitching results obtained with as-affine-as-possible warps generated with
MLS. Note the distortion of the alignments in the areas where the images do not overlap. The
two red strokes drawn on top of the images illustrate the deformations of the warp. These
strokes follow the lines of the tiles of the floor. Besides the image distortions, visible alignment
mistakes remain (circled in red). This is probably a consequence of the implicit bias which
constrains the flexibility of the alignments when there is few data to guide the warps. The
images are taken with a camera undergoing rotation and translation. The size of the images is
730× 487 pixels. The number of inliers after RANSAC is 415. Similar to Fig. 4.2, the domain
of image I was partitioned into 100× 100 cells.

the aforementioned as-affine-as-possible warps.

An affine transformation can be seen as a restricted form of a homography that preserves paral-

lelism in the image alignments, this is the reason why an affine transformation is, in principle,

not suitable for image stitching. However, one can argue that, given a large number of suffi-

ciently small patches (i.e., given that the distances between each x∗ are not too large), a locally

varying affine warp should have similar degrees of freedom with respect to a locally varying

homography. However, onw would then need to determine how small the patches should be and

how many of them. Even though the global behaviour is biased towards affine.

This “inadequate” affine bias tends to produce highly distorted results in the extrapolation region

of the stitched images where there is no (keypoint) data to guide the local deformation and the

warp reverts to the global affine model. This is illustrated in the stitching results from Fig. 4.5

where the affine prior from MLS introduces severe distortions in the aligned images.

Compare the previous results of MLS from Fig. 4.5 against the results obtained by the APAP

warps generated by Moving DLT (Fig. 4.6), where the warps achieve perspective realism and no

alignment mistakes remain.
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Figure 4.6: Image stitching results obtained with APAP warps generated with Moving DLT.
In this image, few or no visible alignment mistakes remain and the scene is able to maintain
geometric consistency. In particular, note how the two red strokes correspond to straight lines,
thus, giving consistency and realism to the aligned mosaics. The domain of image I was
partitioned into 100× 100 cells.

Figure 4.7: Feature points extracted from the temple image pair (this image pair appears in
Fig. A.2). Inliers are shown in green, outliers in red. For clarity purposes the matching lines
are omitted.

Also note that for both of the methods, the domain of image I was partitioned into the same

number of cells: 100 × 100. However, for MLS visible misalignments still remain. This is

probably due to the affine bias that constrains the flexibility of the alignments in data-poor

regions. Fig. 4.7 shows the keypoint matches between the two images I and I ′ in the previous

mosaics. In particular, note how, for MLS, the misalignments persist in the regions of the images

where the number of keypoint matches decrease. Moving DLT on the other hand, does not

present this problem since it makes use of a more adequate and justifiable regularisation for

image stitching.

It is important to mention that MLS is conceptually similar to the Smoothly Varying Affine
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warps (SVA) [51], which were discussed during the literature review of this thesis (Section 3.5

from Chapter 3) and which is a state-of-the-art method for image stitching. MLS has not been

proposed as an image stitching method per se. Thus, instead of comparing the proposed Moving

DLT approach against MLS, experimental comparisons against SVA are performed. However,

once again, the underlying principles and drawbacks of both SVA and MLS are the same: locally

adapted affine warps with global affine priors. This is the reason why, not surprisingly, (similar

to MLS) SVA also introduces very similar image deformations and presents similar alignment

results in the stitched images (these results and comparisons will be reported in Chapter 6).

4.5 Summary

This Chapter presented the theory behind the novel Moving DLT approach for image stitch-

ing. Since the method is based on Moving Least Squares, there are some similarities between

these two approaches. Specifically, both of these methods make use of weights and weighted

piecewise smooth estimates in order to approximate complex, functions.

However, besides the similarities, there are also very important differences and advantages of

Moving DLT over MLS and other similar approaches. The most important advantage of Moving

DLT over MLS is the implicit projective bias for “non-rigid” homography estimation. This

most important characteristic is what gives Moving DLT the ability to produce state-of-the-art

stitching results as it will be seen in the experimental evaluations. Also important is the fact that,

contrary to other similar approaches, Moving DLT remains a very simple and yet very powerful

approach for flexible warp estimation.

This Chapter also presented different options for balancing the accuracy of the estimated warps

against the speed of the whole estimation process. On top of this, since each homography esti-

mation process is independent from each other, Moving DLT can be easily implemented in par-

allel by making use of GPUs or other similar hardware architectures. This can give the method

even further speed improvements; maybe even achieving real-time computation, which can be

extremely useful for task like live-3D reconstruction, simultaneous localisation and mapping

(SLAM) and augmented reality.

The next contribution of this research is the development of a method for simultaneously esti-

mating multiple as-projective-as-possible warps. This method, named Bundled Moving DLT, is

given in the following Chapter.



Chapter 5

Simultaneous Refinement of Multiple

As-Projective-As-Possible Warps

5.1 Introduction

This Chapter presents a novel formulation of bundle adjustment which is able to simultaneously

refine multiple as-projective-as-possible warps. This method effectively avoids the pairwise

error propagation of most of the incremental image stitching approaches while making use of

the proposed non-rigid projective warps.

The novel formulation presented in this Chapter is the first bundle adjustment method for simul-

taneously aligning multiple flexible warps for image stitching.

Note that if one insists on incremental (pairwise) stitching, Moving DLT is still an excellent

choice; as it will be shown in Section 6.2 from Chapter 6, the alignment error of Moving DLT

is much smaller than other pairwise stitching methods. This means that the cumulative error of

such technique will also be much smaller.

5.2 Selecting the Reference Frame

Given a set of input images {Ik}Kk=1, the initial step is to map all the keypoints in the images

onto a common reference frame IR.

Though not necessary for bundle adjustment, for simplicity IR is chosen from one of the input

images. To this end, the keypoint-based panorama recognition method of [12, Sec. 3] is applied
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Figure 5.1: Warping the keypoints (through pairwise homography “chaining”) from the input
images {Ik}Kk=1 onto a common reference frame IR. Points in black in IR are the averaged
projections of the keypoint mappings (in gray). IR was chosen from input image I3.

in order to identify pairs of overlapping images and construct an image connection graph. The

graph is traversed to find the node (image) with the largest number of edges which is chosen as

the reference frame IR.

The byproduct of the panorama recognition step is a set of planar homographies between each

pair of overlapping images (similar to Section 3.2). The homographies are then chained and

used to warp the keypoints in all the images onto IR. To minimise propagation errors during

this process, an optimal chaining order can be estimated e.g., the minimum spanning tree of the

connection graph [58].

Within IR, the coordinates of keypoints that are matched across several images, i.e., have the

same identity (which is inferred from the pairwise image matching conducted in panorama

recognition) are averaged. The result of this process is a set of coordinates {xRi }Ni=1 in IR,

where each xRi is (potentially) matched to a keypoint xki in the k-th image Ik. Fig. 5.1 provides

an illustration of this initialization step.

5.3 Bundled Moving Direct Linear Transformation (Bundled Mov-

ing DLT)

Once the reference frame IR has been selected, given an arbitrary location x∗ in IR, the goal is

to estimate a set of location dependent homographies {Hk
∗}Kk=1, where each Hk

∗ maps x∗ from

IR to Ik following

x̃k∗ ∼ Hk
∗x̃∗. (5.1)
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The pixel intensity at x∗ in IR is composited from the original intensity at x∗ in IR (if it exists)

and the pixel intensities (if they exist) at locations {xk∗}Kk=1 in {Ik}Kk=1.

To estimate the required homographies {Hk
∗}Kk=1 for position x∗, it is necessary to simulta-

neously minimise the transfer error of all correspondences. Specifically, this thesis proposes

minimising the following cost function

E∗(Θ) =
N∑
i=1

wi∗∑K
k=1 δik

K∑
k=1

δik‖xki − f(qi,H
k
∗)‖2, (5.2)

where Θ = [H1
∗, . . . ,H

K
∗ ,q1, ...,qN ] and f(q,H) is the projective warp (in inhomogeneous

coordinates) defined as

f(q,H) =

[
r1[q

T 1]T

r3[qT 1]T
r2[q

T 1]T

r3[qT 1]T

]T
, (5.3)

where r1, r2, r3 are the three rows of homography H.

The optimized parameters include the point coordinates {qi}Ni=1, which are essential to “couple”

the homographies in bundle adjustment [84]. The coordinates {qi}Ni=1 are initialized as the

points {xRi }Ni=1 resulting from the homography chaining in Sec. 5.2. The k-th homography Hk
∗

is initialized using Moving DLT on the correspondences between {xRi }Ni=1 and keypoints in Ik.

Note that not all xRi has a correspondence in Ik; if the correspondence {xRi ,xki } exists, the

indicator δik = 1, else δik = 0. The division of each error term in (5.2) by
∑K

k=1 δik ensures

that points xRi that are matched in many images do not dominate.

Note that, in this case, the local weights

wi∗ = max
(
exp(−‖x∗ − xRi ‖2/σ2), γ

)
(5.4)

are computed by referring to the coordinates {xRi }Ni=1. This ensures that the optimized homo-

graphies are locally adapted to x∗. One could also refer the weights to the points {qi}Ni=1 which

are iteratively updated. However, this simple scheme is sufficient to satisfactorily achieve the

desired effect.

To reduce the number of instances of (5.2) to solve, as in Sec. 4.3 the domain of the reference

image IR is partitioned into cells. The center of each cell is taken as x∗, and the estimated

homographies for x∗ are applied to the pixels within the same cell. Further, the Moving DLT

initialization across the cells can be accomplished as a series of efficient rank-one updates (see

Section 4.3 in Chapter 4). Algorithm 4 summarizes the proposed Bundled Moving DLT method.

Fig. 5.2(a) illustrates the multiple as-projective-as-possible warps estimated by means of Eq. 5.2.
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Algorithm 4 Simultaneous refinement of multiple as-projective-as-possible warps for panorama
creation.
Require: Input images {Ik}Kk=1 with overlaps.

1: Choose reference frame IR from {Ik}Kk=1.
2: Map all keypoints from {Ik}Kk=1 onto IR.
3: Match points {xRi }Ni=1 in IR with points in {Ik}Kk=1.
4: Define C1 × C2 cells in IR.
5: for each cell in IR do
6: Compute weights (5.4) for current cell center x∗.
7: for k = 1, . . . ,K do
8: Apply Moving DLT (4.6) to yield homography Hk

∗ .
9: end for

10: Refine all {Hk
∗}Kk=1 with (weighted) bundle adjustment (5.2).

11: Using {Hk
∗}Kk=1, composite pixels in current cell.

12: end for
13: Note: Moving DLT in Step 8 can be computed using rank-one updates.

To give an idea of the size of problem (5.2), the size of the Jacobian is (9K+ 2N)× (
∑

i,k δik).

However, each error term includes only one point qi, hence the Jacobian is extremely sparse. In

order to efficiently solve this problem, this work makes use of the sparse Levenberg-Marquardt

library of [1] for minimising (5.2). The 7-image panorama in Fig. 5.2(b) was created in ∼7

minutes (time includes pixel compositing) in MATLAB. Each one of these 7 images is of size

2456 × 1632 pixels. The reference frame or canvas IR is partitioned in 100 × 100 cells, and

the total number of points in IR is 13380. Of course, since the problems (5.2) are independent

across the cells, they can be solved in parallel for speedup.

Previous methods on topology inference (e.g., [40, 58]) can also be applied to optimise the order

of stitching. It should be noted that since the Bundled Moving DLT method can stitch multiple

images simultaneously (provided they overlap with a reference image), it significantly reduces

error propagation. This claim will be validated in the Experiment and Results Chapter of this

thesis (Chapter 6).

5.4 Comparing Bundled Moving DLT and Bundle Adjustment

The equation in (5.2) is a Weighted Bundle Adjustment problem. Similar to Moving Least

Squares and Moving DLT where for each pixel a weighted problem is solved, Bundled Moving

DLT solves one weighted bundle adjustment problem for each one of the pixels (or cells) in IR.

Contrary to this novel formulation, the classical approach for image stitching focuses on solving

one single “non-weighted” bundle adjustment problem for all pixels in the reference frame. In

particular, current bundle adjustment approaches solve the following (or some variant of the
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following) problem:

E(Θ) =
N∑
i=1

1∑K
k=1 δik

K∑
k=1

δik‖xki − f(qi,H
k)‖2, (5.5)

where Θ = [H1, . . . ,HK ,q1, ...,qN ] and each Hk is often initialised with the chained ho-

mographies obtained from the pairwise alignment process from Section 5.2. The first row in

Fig 5.3 in page 70 presents an illustration of the stitching results, i.e., the initialisation obtained

with such pairwise stitching approach.

After the problem in Eq. 5.5 has been solved (usually by means of the Levenberg-Marquardt

algorithm), the estimated homographies {Hk}Kk=1 are used for mapping the pixels x∗ from the

reference frame IR to the corresponding {Ik}Kk=1 via the following equation:

x̃k∗ ∼ Hkx̃∗, (5.6)

this way, the pixel intensity at x∗ in IR can be composited with the pixel intensities (if they

exist) at locations {xk∗}Kk=1 in {Ik}Kk=1.

The main difference between the proposed Bundled Moving DLT formulation and the classi-

cal bundle adjustment approach in (5.5) is the fact that the latter has no weights (wi∗) or, more

specifically, all of the weights are equivalent (normally equal to 1). Thus, the estimated homo-

graphies are not location dependant, they correspond to a basic (non-weighted) projective warp

or planar homography.

The second row in Fig. 5.3 shows a panorama obtained with the classical bundle adjustment

formulation from Eq. 5.5. Even though bundle adjustment manages to evenly distribute the

alignment errors across all of images in the panorama, obvious alignment errors remain due to

the inability of the basic projective warp at characterising the data.

Bundled Moving DLT on the other hand, maps the pixels x∗ in the reference frame by means

of the APAP warps. More specifically, each x∗ in IR is mapped to images {Ik}Kk=1 with the

corresponding locally weighted homography {Hk
∗}Kk=1 obtained through Eq. 5.2 (the mapping

equation is shown in (5.1)) and, as mentioned before, these locally weighted homographies de-

pend on the location of each particular x∗. Because of this reason, Bundled Moving DLT is

able to stitch the data that a basic projective model cannot characterise while evenly distributing

the alignment errors across all images, thus, minimising or eliminating the dreaded error prop-

agation of most the pairwise stitching approaches. As shown in Fig. 5.3 (third row), Bundled

Moving DLT allows the generation of panoramas with almost no visible alignment mistakes.
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Several other variants of the bundle adjustment problem from Eq. 5.5 have been proposed in the

literature including approaches that make use of 3D reconstructions, pairs or triplets of inter-

image homographies, rotation and intrinsic parameters’ matrices, etc. Some of these variants

were given in Section 3.3 of the literature review of this thesis and some others can be found in

[77, Chapter 9.2]. However, it is important to realise that all of these approaches make use of

2D projective transformations for performing the image alignments. Thus, in principle, all of

these methods are restricted to performing basic homography-based image stitching.

5.5 Summary

This Chapter presented a new formulation of bundle adjustment that allows the simultaneous

estimation of multiple as-projective-as-possible warps for image stitching. Through the simul-

taneous estimation of multiple APAP warps, it is possible to obtain non-rigid image alignments

that also minimise the error propagation that occurs with most of the incremental or pairwise

stitching approaches.

This Chapter also compared the “classical” formulation of image stitching with bundle adjust-

ment and the novel Bundled Moving DLT method. In particular this Chapter described the main

difference between these two approaches, which is the use of planar homographies (in bundle

adjustment) compared with locally weighted homographies for warping the pixels in the images

in Bundled Moving DLT.

The computational cost of, or size of the matrices required by the proposed Bundled Moving

DLT formulation was also analysed in this Chapter and it was also noted that, since not all

of the keypoint matches appear in all of the images, such matrices are generally sparse. This

sparsity characteristic justifies the use of sparse solvers, which makes the method fast when

compared against other current methods. For example, the time that Bundled Moving DLT

requires for stitching a set of 7 high resolution images is similar to the time that other state-

of-the-art approaches require for stitching only a pair of much smaller images. On top of that,

every instance that the Bundled Moving DLT approach has to solve is independent from each

other, thus, just like with Moving DLT, further speedups are possible by making use of GPU or

other similar programming.

The purpose of the following Chapter is to present several experimental evaluations, which allow

to demonstrate the effectiveness and efficiency of the methods proposed in this thesis over other,

currently available, solutions for image stitching.
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Chapter 6

Experiments and Results

6.1 Introduction

This Chapter compares the proposed Moving DLT and Bundled Moving DLT approaches against

different state-of-the-art methods and against commercial software for image stitching. In par-

ticular, two types of comparisons are performed. First, Moving DLT is compared against other

(pairwise) non-rigid methods for image stitching. In this case two types of experimental evalu-

ations are obtained: quantitative experiments which numerically measure the accuracy of each

one of the different stitching methods; and qualitative experiments, which allow a “visual in-

spection” of the advantages and disadvantages of each approach. On the second part of the

experimental evaluation Bundled Moving DLT is compared against other state-of-the-art stitch-

ing tools that make use of bundle adjustment for panorama creation.

The main purpose of this Chapter is to demonstrate that better image alignments effectively

impose less dependence on further post-processing and de-ghosting techniques, which translates

into the generation of significantly better results.

In all of the experiments, input images that correspond to views that differ by rotation and

translation were either generated or selected from recent stitching papers.

Similar to previous Chapters, the methods proposed in this thesis are referred as APAP (for

as-projective-as-possible warps).
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6.2 Comparisons with Flexible Warp Methods

First, APAP warps are compared against other flexible warp methods for image stitching, namely,

Content Preserving Warps (CPW) [53], Dual Homography Warps (DHW) [23], and Smoothly

Varying Affine warps (SVA) [51]. As mentioned in Sections 3.5 and 5.4, these methods can

only stitch two images at a time, since they either cannot be easily extended to simultaneous

estimation, or at least no such extensions exist in the literature.

The aim of these experiments is to cogently compare the alignment accuracy of the different

image warping methods, thus, these results avoid sophisticated post-processing routines like

seam cutting [2] and straightening [23], and simply blend the aligned images by intensity av-

eraging such that any misalignments remain relatively obvious. For completeness, these ex-

periments also include the results from the commercial tools Autostitch1 [12] and Photosynth

results, which were obtained by inputting two images at once. For Photosynth, the final postpro-

cessed results are used since “raw” alignment results are not obtainable in the standard version

of the software.

6.2.1 Preprocessing and Parameter Settings

Given a pair of input images, the first step is to detect and match SIFT keypoints using the

VLFeat library [88]. Then RANSAC is used in order to remove mismatches, so that the remain-

ing inliers are given to CPW, DHW, SVA and APAP. The performance of these methods depends

on having the correct parameters. For CPW, DHW and SVA, the required parameters are tuned

for best results2; refer to the respective papers for the list of required parameters. For APAP, the

scale σ is varied within the range [8 12] for images of sizes 320 × 240 to 2456 × 1632 pixels.

The number of keypoint matches per image pair varied within the range [161 5068]. The offset γ

was empirically chosen from [0.0025 0.025] (even though the offset value can be tuned in order

to achieve better results, such parameter is not crucial for performance so, alternatively, γ can be

set to a fixed small value e.g., 0.01, which in this work was observed to provide “good” overall

alignment results). The grid sizes C1 and C2 were both set to 100 on each dataset; the same

grid resolution was also used in the CPW grid. In addition, following [53], for CPW the source

image was pre-warped with the global homography estimated via DLT on the inliers returned

by RANSAC. For Photosynth and Autostitch the original input images (with EXIF tags) were

given.
1The commercial version of Autostitch: “Autopano” was used in these experiments.
2Through personal communication, the correctness of the implementations of CPW, DHW and SVA and their

parameter settings have been verified.
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6.2.2 Qualitative Comparisons

Figs. 6.1 and 6.2 (pages 78 and 80) depict results on the railtracks and temple image pairs.

The baseline warp (single homography via DLT on inliers) is clearly unable to satisfactorily

align the images (since the views do not differ purely by rotation). SVA, DHW and Autostitch

are marginally better, but significant ghosting remains. Further, note the highly distorted warp

produced by SVA, especially in the extrapolation regions (e.g., the railtracks do not follow a

straight line in Fig. 6.1 and there are visible deformations in the left rooftop and bottom tiles of

Fig. 6.2). The errors made by Photosynth seem less “ghostly”, suggesting the usage of advanced

blending or pixel selection [76] to conceal the misalignments. Nonetheless it is clear that the

post-processing was not completely successful; observe the misaligned rail tracks and tiles on

the ground. Contrast the above methods with APAP, which cleanly aligned the two images with

few artifacts, thus, reducing the burden on post-processing. While CPW with pre-warping is

able to produce good results, the rigidity constraints (a grid like in Fig. 4.2(b) is defined and

discouraged from deforming) may counterproductively limit the flexibility of the warp (observe

the only slightly nonlinear outlines of the warped images3). Thus, although the rail tracks and

tiles are aligned correctly (more keypoint matches exist in these relatively texture-rich areas

to influence the warp), ghosting occurs in regions near the skyline. Note that although APAP

introduces a grid, it is for computational efficiency and not to impose rigidity.

As noted in the Appendix B-8.2 of [51], a major challenge for most of the flexible image stitch-

ing methods is that of aligning images that contain scenes with large depth discontinuities. The

proposed APAP stitching warps were tested with such a scene (see Fig. 6.3 in page 82). In this

scene, the trees, lamp post and bollards in the foreground cause sharp depth discontinuities. The

results show that the APAP warps do not fail in such data. This is because the amount of camera

translation is small compared to the overall scene depth (nonetheless, this small translation is

sufficient to cause the baseline projective warp to break down - see Row 1 Fig. 6.3). Thus, while

areas with sharp depth discontinuities may cause large deviations from the projective warp, the

amount of deviation (mainly) depends on the camera translation distance.

Fig. 6.4 in page 84 shows the stitching results obtained on the construction site image pair.

DHW and Autostitch present strong misalignments followed by the baseline projective warp

and CPW where less alignment errors can be noticed. For SVA strong misalignments remain

and the warped images look distorted in the extrapolation region. This distortion is probably

because SVA reverts to a global affinity model instead of a projective model. For Photosynth
3As explained in Sec. 3.5, imposing warp rigidity is essential to prevent wobbling in video stabilisation [53].

Note that the original purpose of CPW was for video stabilisation and not image stitching.
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no misalignments remain. However, the post-processing techniques from Photosynth failed to

produce a convincing result, in particular, the hose around the left building does not follow a

continuous line, it has been “cut” into two non-continuous pieces. Probably, the post-processing

techniques from Photosynth could not conceal the errors from the image alignment stage. For

APAP warps few visible misalignments remain.

Fig. 6.5 (page 86) presents the results obtained in the train image pair. For this image pair

strong misalignments can be observed for the baseline warp and Autostitch. SVA produces

better alignments than the baseline warp and Autostitch (note the alignments around the street

light and palm trees) but still, misalignments and some distortion can be noticed (in particular,

look how the lines of the bench are not straight). DHW was not able to align the images in the

region around the bench. CPW presents good alignments around the bench and palm tree areas,

but not around the street light. For Photosynth errors can be seen in the final post-processed

result (note how the faces of the people have been erased and note how the bench and the

tiles around the bench are not properly aligned). The APAP warps manage to generate better

alignments in the street light, bench and palm trees, thus, producing fewer alignment mistakes

and ghosting.

Fig. 6.6 in page 88 shows the stitching results for the garden image pair. The baseline warp,

SVA and DHW results present misalignments around the building and side-walk areas. For Au-

tostitch, misalignments are far more obvious. CPW and APAP present similar results, although,

APAP makes less noticeable alignment mistakes. For Photosynth, there is a small error: the

side-walk is not properly aligned in one section; other than that, no obvious errors remain (this

is probably because of the post-processing and de-ghosting methods used by Photosynth).

In page 90, Fig. 6.7 depicts the stitching results on the carpark image pair. For the baseline

method and DHW serious misalignments can be observed in the images. SVA introduced some

distortion in the extrapolation regions (observe the ground between the building and the grass

patch). Autostitch presents errors around the grass patch and side-walk areas. Photosynth pro-

duces an unexpected bending effect in the grass patch; this is most probably the side effect of

the post-processing techniques. Here, CPW and APAP present some minor errors.

Fig. 6.8 shows the results in the apartments image pair. This image appears in page 92. SVA and

Autostitch produce very obvious alignment errors. The baseline warp, DHW and CPW present

similar results with the most visible misalignments around the car plate and around the windows

of the apartments. APAP presents some alignment errors around the rooftops of the apartments

and around the tyres of the car. For Photosynth no visible errors remain but this is due to the

post-processing and de-ghosting methods that conceal the alignment mistakes.
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Fig. 6.9 (in page 94) shows the stitching results obtained on the chess/girl image pair. As can be

seen in Fig. 6.9, the baseline warp could not align the images properly, thus, significant ghosting

remains. The APAP stitching method manages to align the images with little visible artifacts.

The results from APAP are similar to those of obtained from Photosynth (with post-processing).

For SVA, DHW and CPW significant alignment errors remain. On this dataset Autostitch was

not able to produce a good result, as observed also in [51], therefore, the results from Autostitch

are omitted.

Moving DLT, like most image stitching methods, relies on feature detection and matching.

When the number of matched feature points is low, none of the methods compared here will be

able to generate satisfactory stitching results. This can be observed in page 96 where Fig. 6.10

shows the stitching results on the rooftops image pair. In this image pair the number of matched

feature points is very small in certain regions (specifically, around the squared rooftops). The

best stitching result in Fig. 6.10 is produced by Photosynth which most likely makes use of

post-processing and de-ghosting techniques.

Lastly, Fig. 6.11 in page 98 depicts results in the couch image pair. Here, SVA and Autostitch

present the most obvious misalignments. For SVA the images look distorted, again. The baseline

warp, DHW and CPW present similar results with the most obvious alignment errors around the

left side of the couch. For Photosynth some artifacts remain after post-processing the images. In

particular, the frame of the window and one of the bags on the couch are not properly aligned.

The APAP warps introduce some alignment errors around the baggage area.
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6.2.3 Runtime Information

For DHW, CPW, SVA and APAP, the total duration time for warp estimation (plus any data struc-

ture preparation), pixel warping and blending was recorded. All methods were run in MATLAB

with C Mex acceleration for warping and blending. APAP takes in the order of seconds (< 6 in

the current experiments), while CPW typically requires tens of seconds to few (3-5) minutes. In

contrast, SVA scales badly with the number of keypoint matches, most likely due to the underly-

ing point set registration method [59]. While 8 minutes was reported in [51] for 500×500-pixel

images, in these experiments SVA takes between 1 minute for the rooftops image pair (320×240

pixels per image with 161 keypoint matches) and∼2 hours for the construction site (2000×1329

pixels per image with 5068 keypoint matches). DHW, Autostitch and Photosynth typically take

∼2 seconds.

6.2.4 Quantitative Benchmarking

To quantify the alignment accuracy of an estimated warp f : R2 7→ R2, the following experi-

ments obtain the root mean squared error (RMSE) of f on a set of keypoint matches {xi,x′i}Ni=1,

i.e., RMSE(f) =
√

1
N

∑N
i=1 ‖f(xi)− x′i‖2. For an image pair the available SIFT keypoint

matches are partitioned into a “training” and “testing” set. The training set is used to learn the

warps, and the RMSE is evaluated over both sets.

These experiments also employed the error metric of [52]: a pixel x in the source image is

labeled as an outlier if there are no similar pixels in the neighbourhood of f(x) in the target

image. Following [52], neighbourhood is defined by a 4-pixel radius, and two pixels are judged

similar if their intensities differ by less then 10 gray levels. The percentage of outliers resulting

from f is regarded as the warping error. Note that pixels that do not exist in the overlapping

region are excluded from this measure. f is estimated using only the data in the training set.

Table 6.1 depicts the average errors (over 20 repetitions) on 11 challenging real image pairs, 6

of which were provided by the authors of [23, 51]. It is clear that APAP provides the lowest

errors (RMSE and % outliers) in most of the image pairs.

To further investigate the accuracy of the different stitching methods under non-ideal conditions,

synthetic 2D images were produced by projecting 3D point clouds onto two virtual cameras. The

point clouds were laser scanned from parts of buildings in a university campus; see Column 1

in Fig. 6.12 for the point clouds used. The camera intrinsics and poses were controlled such that

the projections fit within 200× 200-pixel images. The projections yield a set of two-view point

matches that permit the direct application of the various warp estimation methods. For each
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Dataset Base DHW SVA CPW APAP
railtracks -Training set error 13.91 14.09 7.48 6.69 4.51

-Testing set error 13.95 14.12 7.30 6.77 4.66
-% outliers 21.14 20.48 16.73 16.42 16.86

temple -Training set error 2.66 6.64 12.30 2.48 1.36
(from [23]) -Testing set error 2.90 6.84 12.21 2.54 2.04

-% outliers 11.65 12.27 12.29 12.65 11.52
bikes -Training set error 4.33 5.89 5.10 4.25 4.22

-Testing set error 4.61 6.16 5.28 4.57 4.52
-% outliers 26.13 25.71 25.11 25.14 25.12

construction site -Training set error 12.43 11.24 11.36 7.06 5.16
-Testing set error 12.88 11.87 11.56 7.43 5.88

-% outliers 11.28 11.24 10.79 11.18 10.38
train -Training set error 14.76 13.38 9.16 6.33 5.24

-Testing set error 15.16 13.52 9.84 6.83 6.06
-% outliers 18.17 21.01 10.61 11.83 11.11

garden -Training set error 9.06 8.76 8.98 6.36 5.19
-Testing set error 9.12 9.01 9.47 7.06 5.31

-% outliers 14.03 16.01 13.20 13.54 13.15
carpark -Training set error 4.77 4.36 4.19 3.60 1.38
(from [23]) -Testing set error 4.85 5.67 4.05 3.86 1.67

-% outliers 9.50 9.32 9.01 9.28 8.04
apartments -Training set error 10.23 9.06 9.84 6.86 6.23
(from [23]) -Testing set error 10.48 9.76 10.12 7.02 6.40

-% outliers 4.16 3.10 3.69 3.27 2.83
chess/girl -Training set error 7.92 10.72 21.28 9.45 2.96
(from [51]) -Testing set error 8.01 12.38 20.78 9.77 4.21

-% outliers 23.35 22.87 22.98 23.44 21.80
rooftops -Training set error 2.90 4.80 3.96 3.16 1.92
(from [51]) -Testing set error 3.48 4.95 4.11 3.45 2.82

-% outliers 8.66 10.48 10.17 8.24 8.44
couch -Training set error 11.46 10.57 12.04 5.75 5.66
(from [51]) -Testing set error 11.84 10.86 12.93 5.92 5.68

-% outliers 39.10 38.80 37.20 39.56 36.68

Table 6.1: Average RMSE (in pixels) and % outliers over 20 repetitions for 5 methods on 11
image pairs. See Figs. 6.1 to 6.11 to view the qualitative stitching results.

point cloud, the relative rotation between the cameras was fixed at 30◦, and varied the distance

between the camera centers along a fixed direction. As before, the point matches of a point

cloud are partitioned into a training and testing set.

To generate different data instances, 1500 points were randomly sampled from each point cloud.

Fig. 6.12 shows the average (over 50 repetitions) training and testing RMSE plotted against

camera distance (% outlier measure [52] cannot be used here since there are no image pixels).

Expectedly, all methods deteriorate with the increase in camera distance. Note that the errors of

SVA and CPW do not diminish as the translation tends to zero. For SVA, this is due to its affine
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Figure 6.12: Point cloud (left) and average RMSE on the training set (middle) and the testing
set (right) as a function of inter-camera translational distance.

regularisation (in other words, the affine model is the incorrect model, even with no camera

translations). For CPW, this indicates that its rigidity preserving distortions may sometimes

overly perturb the pre-warping by the homography. In contrast, APAP warps reduce to a global

homography as the camera centres coincide, and provides overall the lowest error.
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6.3 Comparisons with Bundle Adjustment

Here, the novel APAP bundle adjustment scheme (i.e., Bundled Moving DLT) is compared

against the tools Autostitch [12] and Photosynth. Both of these solutions make use of bundle

adjustment in order to optimise the relative rotations of the set of overlapping images, which

in turn give rise to a set of aligning homographies. In this section, two types of comparisons

are performed: stitching of panoramas without post-processing and stitching of panoramas with

post-processing.

6.3.1 Stitching Full Panoramas without post-processing

This section compares the novel APAP bundle adjustment scheme against Autostitch [12] in

simultaneously refining multiple alignment functions. Again, to directly compare alignment

accuracy, any advanced compositing techniques are avoided, and the results are obtained by

simply blending the aligned images with intensity averaging (the commercial version of Autos-

titch: “AutoPano”, allows post-processing to be switched off). Since Autostitch prewarps the

images onto a cylindrical surface, the same prewarping was also performed for APAP.

Figs. 6.13, 6.14 and 6.15 show the alignment results respectively on the construction site, garden

and train image sets (these figures appear in pages 104, 105 and 106, respectively). For Bundled

Moving DLT, these panoramas were generated in 7, 5 and 7 minutes respectively. For Autostitch

the panorama generation time is < 15 seconds.

The images correspond to views that differ by more than pure rotation, as one would expect from

a typical tourist’s photo collection. The Autostitch results exhibit obvious misalignments; these

are highlighted with red circles in the figures. Fundamentally, this is due to being restricted to

using homographies for alignment. In contrast, the new Bundled Moving DLT method produces

much more accurate alignments that maintains a geometrically plausible overall result.

However, both methods (without photometric post-processing) cannot handle moving objects,

which give rise to motion parallax in the mosaic. This is evident in the train scene (Fig. 6.15),

where there are many walking pedestrians. Nonetheless, the APAP method is able to handle the

static components of the scene much better than Autostitch.
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6.3.2 Stitching Full Panoramas with post-processing

As mentioned throughout this work, the underpinning premise of this thesis is that accurate

image alignments impose much lower expectations or requirements on the effectiveness of de-

ghosting and photometric post-processing methods. Since such post-processing techniques are

imperfect and may not work all the time [39], it is vital to minimise errors in the alignment

step. Here, this point is illustrated by post-processing the stitched images obtained by the as-

projective-as-possible warps, which provides the most accurate alignment amongst the com-

pared techniques. These experiments focus on stitching large panoramas from multiple images,

since stitching multiple images naturally presents many opportunities for alignment errors to

surface.

In these experiments, full panoramas are generated by stitching multiple images onto a canvas

using Bundled Moving DLT (Chapter 5). After the warps are generated, each image is warped

onto a canvas. After each image is warped onto the canvas, seam cutting and feathering blending

techniques are applied in order to composite the pixels. This allows a better demonstration of the

accuracy of the proposed image alignment since any misalignment errors will be propagated and

amplified. These post-processed panoramas obtained by Bundled Moving DLT are compared

against Autostitch and Photosynth with photometric post-processing enabled. Figs. 6.16, 6.17

and 6.18 present results on (respectively) the construction site, garden and train image sets

(pages 108, 110 and 112).

It is evident that significant artifacts remain in the results of Autostitch. The results from Photo-

synth show signs of the usage of seam cutting-like techniques and sophisticated pixel blending

methods. However noticeable artifacts can still be observed, since the post-processing failed

to conceal the misalignments. Comparatively, the results obtained by Bundled Moving DLT

present less obvious alignment mistakes and artifacts. In particular, in train the motion parallax

errors have been dealt with by seam cutting after Moving DLT, without introducing noticeable

alignment errors in the other parts of the scene.

Notwithstanding the potentially bad errors from using basic homography alignment, the results

of Photosynth show the remarkable ability of post-processing methods to reduce or conceal

much of the misalignment artifacts. The practical contribution of the methods proposed in this

thesis is, therefore, to allow the remaining errors to be eliminated thoroughly via improved

image alignment.
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6.4 Summary

This Chapter presented several experiments and results that allowed to compare the proposed

Moving DLT and its APAP warps, against other recent methods for flexible warp estimation

and against commercial solutions for panorama creation. It is important to note that this thesis

is the first work that manages to compare such a “large” number of recent solutions for image

stitching with different types of (real and simulated) evaluations. In most of these evaluations

Moving DLT was able to achieve results with less visible alignments mistakes, less alignment

errors and, most importantly, less visible artifacts.

In fact, some of the raw alignment results obtained through Moving DLT, resemble the results

obtained with tools like Photosynth which includes post-processing (see for example Figs. 6.1,

6.2, 6.6 and 6.9). Such impressive results support the underpinning assumption behind this

work, that better approaches for image stitching should be oriented towards the generation of

much better image alignment functions since they impose far less constrains on further post-

processing or compositing techniques.

The purpose of the next Chapter is to conclude this thesis and to propose future lines of work.

Since Moving DLT is a method for the generation of non-rigid projective warps (which is in

this work were applied to the task of image stitching), the following Chapter also presents other

interesting applications where Moving DLT can be further applied.



Chapter 7

Conclusions

Over the years, two dimensional projective transformations have become one of the standard

tools for performing tasks that require some form of image alignment. These task include (but

are not limited to) 3D reconstruction, augmented reality, image-based rendering and, of course,

image stitching.

The main argument in this thesis is that even though projective transformations are very popu-

lar and have helped accomplishing several successful tasks in a wide range of fields, they are

very limited models. What is surprising is the fact that, even though these limitations have been

known for several years, basic projective warps are still widely used. However, such popularity

may have stemmed from the fact that other approaches are much more complicated, slow or

computationally expensive. Thus, the majority of the applications involving projective estima-

tions, prefer to fix or conceal the mistakes produced by homographic alignments in subsequent

stages of their pipelines or processes.

In order to solve the main limitations of a basic projective warp, this thesis proposed Moving

DLT. Moving DLT is the first method for the generation of smoothly varying projective warps.

These novel warps, which throughout this text have been called, as-projective-as-possible warps

are the result of the successful integration of the Direct Linear Transformation into the frame-

work of Moving Least Squares.

Moving DLT and its as-projective-as-possible (APAP) warps aim at accounting for the parallax

and scene depth discontinuities in stitching imagery (which cause the basic homographic warp

to “break”). But what is more important is the fact that Moving DLT manages to achieve this

goal without explicitly modelling the camera motions, the 3D structure of the scene, the camera

115
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matrices or the depth information of the image pixels. All of these characteristics make the

proposed method a very versatile approach for flexible projective warp estimation.

Another important advantage of Moving DLT is the fact that the method is a very simple, compu-

tationally fast and very effective approach for smoothly varying homography generation. These

are characteristics that no other recent solution for non-rigid image stitching has offered (com-

bined) before.

This thesis also introduced Bundled Moving DLT, which is a novel bundle adjustment formu-

lation that allows the refinement of multiple as-projective-as-possible warps (in the same way

that the “classical” bundle adjustment allows the refinement of multiple projective warps). This

unique formulation allows the generation of long panoramas while avoiding the error propaga-

tion of the incremental or pairwise stitching methods.

Combined with commonly used post-processing methods, the image alignments of Bundled

Moving DLT are able to generate state-of-the-art stitching results with far less visible artifacts

and no visible image distortions or deformations.

Besides image stitching, there is a wide and very exciting range of applications where Moving

DLT and its as-projective-as-possible warps can be used. Some of these applications, along with

possible avenues for future work, are described next.

7.1 Future Work

7.1.1 Non-Rigid Image Registration

The most straightforward task where Moving DLT can be applied is Non-Rigid Image Reg-

istration [24, 26, 83] (NRIR). In NRIR the goal is to align a template image with an input or

support image, which (usually) contains the template image undergoing a non-rigid deformation

(Fig. 7.1 illustrates).

NRIR can be seen as a special case of image stitching where one of the images completely

overlaps or subsumes the other. This type of problems usually involve non-linear formulations

solved by means of Gauss-Newton algorithms or Thin-Plate-Splines [8].

In order to solve this problem, the Moving DLT algorithm from Alg. 3 can be applied to the

template and input images. But, for the NRIR case, instead of stitching the images, a mesh

overlaid on top of the template image is warped onto the input image, thus, describing the
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(c) A template (normally “flat”) image. (d) An input image, which contains the template im-
age undergoing a non-rigid deformation.

Figure 7.1: Typical input data for Non-Rigid Image Registration tasks.

deformation of the template image. Fig. 7.2 shows examples of non-rigid image registration

results obtained through Moving DLT.

Figure 7.2: Examples of Non-Rigid Image Registration results obtained with Moving DLT.

One of the possible lines of future work is to analyse the advantages of projective regularisations

for the task of NRIR. However, a much more interesting possibility is to develop a solution for

giving Moving DLT the ability to register not only smooth but also “sharp” image foldings

and discontinuities, as well as self occlusions [68] in the input images. In fact, giving Moving

Least Squares methods the ability to approximate piecewise-smooth functions has become an

active area of research in the computer graphics and computer vision communities in recent

years. Some of the current solutions make use of two-stage processes where discontinuities are

first identified (by means of e.g., robust methods) from the input data and then Moving Least

Squares is used for approximating each one of the remaining, continuous “pieces” [61, 90].

Other methods make use of multiple weighting functions in order to incorporate additional in-

formation (besides the distance between two points x and xi) into the Moving Least Squares

function approximation process. For example, [43] incorporates a second weighting function



Chapter 7 - Future Work 118

that also measures the distance between pixel colours, i.e., if a point xi has a colour that is simi-

lar to that of the point of interest x, the weight of xi will be higher than that of a point xj , which

has a colour that is different from that of x. Instead of the colour information, [21] developed

an iterative, robust Moving Least Squares framework for 3D reconstruction, which incorporates

the difference in the orientation of the normals of the 3D points that are used as input for the

reconstruction process. By making use of these normals, this iterative framework is able to au-

tomatically distinguish between points that belong to different surfaces, thus, giving the method

the ability to identify and reconstruct discontinuities and sharp foldings from the sparse input

data.

Instead of making use of multi-stage processes or multiple weighting functions (based on the

work of Lancaster and Salkauskas [45]), Liu and Shi [54] propose a MLS approach that makes

use of the image gradient information in order to alter the nodal point distribution at the influence

domain around a particular point of interest x. By altering the weight distribution around each

point of interest, the proposed approach is able to detect “singularities” in the input data; this

gives the method the ability to automatically alternate between performing smooth function

approximations and interpolations (for discontinuity detection and modelling).

Some of the previous techniques can be incorporated into Moving DLT in order to generate

piecewise-smooth, NRIR functions. For example, multiple weighting functions can be easily in-

corporated into Moving DLT or a pixel labelling method, e.g., graph-cut [9], can be first applied

to the images in order to segment the different regions of the scene, and then Moving DLT can

be applied to each independent region (a similar pixel-labelling approach was followed by [22]

for the task of scene reconstruction). However, multi-stage processes can be sub-optimal, pixel-

labelling processes can be overkill or can overcomplicate the task of “simple” image registration

and ad-hoc solutions like including multiple weighting functions based on e.g., colour features

are hard to generalise. Thus, analysing the feasibility and the advantages of more fundamental

approaches (like the approaches presented in [45, 54]) for discontinuity preserving Moving DLT

methods, is an interesting and challenging line of possible future work.

7.1.2 Non-Rigid Structure from Motion

Non-Rigid Structure from Motion (NRSfM) [10] is the extension of the classical Structure from

Motion approaches for 3D reconstruction, to the non-rigid case. This process usually requires

a sequence of images that contain a (moving) non-rigid object (e.g., a sequence of images of a

waving flag, a moving face or a beating heart), and the goal is to reconstruct or estimate the 3D

point positions p of this object in each one of the frames of the sequence.
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One possibility for solving the NRSfM problem is to make use of piecewise homographies [87].

By making use of methods like [98] it is possible to estimate the values of the rotation ma-

trices (R and R′), translation vectors (t and t′), 3D plane normal n and plane depth c of the

homography matrix equation, presented in (2.13):

H = K′R′[I− (nT t + c)−1(t− t′)nT ]R−1K−1,

where I is a 3× 3 identity matrix.

The calibration matrices K and K′ can be estimated through other methods, e.g., [97], [31, Pp.

211–212] and [85] (although it is a common practice to make them equal to the identity matrix

K = K′ = I). Also, since the homography matrix H warps points from I to I ′ (i.e., image I ′

is not warped), R′ = I and t′ = [0 0 0]T . Thus, the previous process produces the following

camera matrices:

P = K[R −Rt] and P′ = K′[R′ −R′t′] = K′


1 0 0 0

0 1 0 0

0 0 1 0

 . (7.1)

Appendix B explains how, by means of the camera matrices P and P′, the 3D positions p of the

points from the images I and I ′ can be recovered. However, since in this case, the camera matrix

is recovered by means of 2D homography, the obtained 3D reconstruction will correspond to a

3D plane.

In order to reconstruct a non-rigid surface, Varol et al. [87] estimate a set of inlier keypoint

matches {x,x′}Ni=1 between the images I and I ′, afterwards, they manually split the input im-

age I into M patches and, for each patch, they obtain a homography Hj that aligns the patch

with the support image I ′. Each one of these homographies Hj is then decomposed into its

corresponding Rj , tj and nj elements, which allow them to generate the corresponding camera

matrix Pj . The idea behind such work is to perform a piecewise reconstruction where, through

each Pj , a small 3D planar patch of the non-rigid surface is reconstructed.

The main problem with this type of approaches is to make sure that all of the patches are re-

constructed up to the same global scale, i.e., to ensure that the piecewise reconstructions are

properly aligned. In order to achieve such globally consistent solutions, there must be smooth-

ness between the estimated homographies Hj . The work in [87] achieves this smoothness by

manually splitting the input image while making sure that neighbouring patches share a number

of the keypoint matches.
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Figure 7.3: Non-Rigid Structure from Motion results obtained with Moving DLT. The results
correspond to the images shown in Fig. 7.2.

Moving DLT is inherently able to generate smoothly varying homographies. Thus, in principle,

decomposing each homography Hj generated through Moving DLT and then applying the ap-

proach of [87] for reconstructing the images, generates globally consistent 3D reconstructions.

In fact, Fig. 7.3 shows two different 3D reconstruction results obtained with this approach. More

specifically, in order to generate the previous 3D reconstruction results through Moving DLT,

the following cost function is minimised

E(p, c) =

N∑
i=1

M∑
j=1

‖wij(Bijpi − bij)‖2 + ‖wij(nTj pj + cj)‖2, (7.2)

where p = {p1, ..,pN} is the 3D point cloud to be estimated, c = {c1, ..., cM} contains the

depths of all of the 3D planes (or “patches”) that need to be re-scaled in order to obtain a globally

consistent solution, bij is defined as

bij =


P′14 − x′iP

′
34

P′24 − x′iP
′
34

Pj
14 − xiP

′
34

Pj
24 − xiP

j
34

 , (7.3)

and

Bij =


P′11 − x′iP

′
31 P′12 − x′iP

′
32 P′13 − x′iP

′
33

P′21 − x′iP
′
31 P′22 − x′iP

′
32 P′23 − x′iP

′
33

Pj
11 − xiP

j
31 Pj

12 − xiP
j
32 Pj

13 − xiP
j
33

Pj
21 − xiP

j
31 Pj

22 − xiP
j
32 Pj

23 − xiP
j
33

 , (7.4)

where Pk
ij is the (i, j)-th entry of the k-th projection matrix. P′ is the projection matrix for the

input image defined in (7.1) (the matrices B and b are defined as in [87]).

Even though, the previous Moving DLT approach is able to obtain consistent 3D reconstructions,
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the current literature on NRSfM offers a plethora of methods for reconstructing waving clothes

and bending pieces of paper from a set of sparse (SIFT) matches. It was until more recently

that the work of Garg et al. [25] provided an excellent example of the type of reconstruction

results that these approaches should aim at obtaining in future iterations (Fig. 7.4 offers an

example of the 3D reconstruction results from Garg et al.). Unfortunately, such type of methods

Figure 7.4: An example of the dense 3D reconstruction results of [25]. This image is taken
from [25].

are, in general, very time consuming and computationally demanding. Thus, a very interesting

challenge in this area is to make use of the NRSfM scheme of Moving DLT in order to perform

dense reconstructions of general scenes, i.e., including rigid and non-rigid objects, but with

lower computational costs and lower running times.

It is also worth mentioning that, instead of making use of homographies in order to perform the

3D piecewise planar reconstructions, other works, e.g., [69] make use of the piecewise Quadratic

Reconstruction model of Fayad et al. [19]. Thus, another interesting possibility for future work

is to make use of the Moving Least Squares and Moving DLT frameworks and apply them to the

piecewise quadratic reconstruction model of Fayad et al. [19] for NRSfM. The challenge of such

task is to ensure that the resulting (“moving”) framework is also as simple, fast and effective as

MLS and Moving DLT.

7.1.3 Video Stabilisation

During the literature review of Chapter 3, the Content Preserving Warps (CPW) [53] method for

video stabilisation was briefly described. The goal of video stabilisation is to smooth the camera

motion or path of a shaky video. In order to do this the initial “shaky” camera path needs to be

estimated and then smoothed (the red and blue lines in Fig. 7.5(a) show an example of a shaky
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path and its corresponding smooth camera path). After the shaky and the smooth camera paths

have been estimated, the frames from the shaky path are projected or warped into the smooth

camera path. In other words, video stabilisation is a “stitching problem” where the images from

the shaky video are aligned with the (empty) images from the smooth video (refer to [53] for

details).

(a) Traditional methods for video stabilisation (including
CPW) make use of a single camera path for stabilising
whole videosequences.

(b) Bundled camera paths make use of multiple camera
paths in order to stabilise the video.

Figure 7.5: Comparing single and bundled camera paths for video stabilisations. The figure
shows the camera trajectories (visualized by the y axis translation over time) and plots the
original path (in red) and the smoothed path (in blue) for both methods. This image is taken
from [55].

In order to perform this alignment, CPW divides each one of the images to be stabilised into

a mesh. Then, for each cell in the mesh, a similarity transformation is obtained. The purpose

of these similarity transformations is to bring the input image into alignment with the stabilised

path.

CPW and other similar approaches for video stabilisation assume that there is only a single

global camera path. Another, more recent work [55] focuses on making use of several camera

paths, one for each one of the cells in the input image (Fig. 7.5 compares both approaches). The

goal of such approach is then to simultaneously stabilise all of the paths in a bundled manner.

The authors call this method “Bundled Camera Paths”.

As opposed to CPW that makes use of similarity transformations, Bundled Camera Paths per-

forms the image-to-image (or more specifically, the cell-to-cell) mappings for video stabilisation

by means of homographies. However, such homographies are estimated by means of a mesh (re-

fer to [55] for details). Fig. 7.6 depicts this process. Thus, in principle, analysing the advantages

of the “mesh-less” Moving DLT method1 for single or bundled paths for video stabilisation is

also an interesting possibility for future work.
1As previously mentioned, the proposed Moving DLT method also makes use of a mesh, but in this case the mesh

is used for speed purposes only; Moving DLT is a mesh free method.
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Figure 7.6: The image stabilisation process of Bundled Camera Paths. Each cell Ci in the
image at time t is warped to image at time t+ 1 by means of a stabilised homography mapping
Hi.

7.2 Drawbacks and Limitations

It is important to emphasize the fact that Moving DLT is not a method that aligns images

obtained under arbitrary camera motions. The generated as-projective-as-possible warps will

eventually “break” as the distance between the cameras increases. This is, in principle what the

results from Section 6.2.4 are showing.

For image stitching under arbitrary camera motions, approaches like the pushbroom camera

model (presented in Section 3.6) can be used. However, as it is already known, such methods

require “dense data” or videos in order to perform. Moving DLT is suited for the cases where

the images to align deviate from the assumptions of projective estimation. In practice, this is

one of the most common scenarios when dealing with images taken by casual users.

A limitation of most of the current image stitching methods occurs when there is a lack of

features in the images to align. As shown in Fig. 6.10 in the experiments and results Chapter,

if there are few keypoint matches in the images to align, most of the feature based approaches

will perform poorly. This is because, in those cases, there is no data to guide the warps. A

possible solution to this problem is the development of pixel based methods that are not too

heavily dependant on the quality and amount of keypoint matches. Developing a fast pixel

based version of Moving DLT is another interesting area of possible future work.

Another aspect to be improved in Moving DLT could be speed. Moving DLT as been shown

to be a very fast method for image stitching, however, other tasks like augmented reality or Si-

multaneous Localisation and Mapping, demand real time performance. Even though this work
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already suggested making use of GPU’s or faster programming languages like C++, a much bet-

ter approach for achieving real-time performance is to find or develop more principled solutions

or faster methods in order to solve the formulations of Moving DLT and Bundled Moving DLT.

Developing a real-time version of Moving DLT is left as future work as well.

This thesis would like to conclude by saying that, as seen in the previous paragraphs, image

stitching is only one of the possible applications where Moving DLT has proved to be very use-

ful. However, there are several tasks where the proposed methods can still be applied. Basically,

it is possible to try in each one of the applications that make use of a basic projective transfor-

mation and develop new and interesting formulations and obtain new results. However, what is

more exciting about future work is the range of new possibilities and new applications that are

waiting to be discovered and, hopefully, Moving DLT is the engine that propels such amazing

discoveries.



Appendix A

Image Sets Used in the Experiments

Some of the images used in the experimental evaluations of this thesis were taken from different

datasets used in recent stitching papers. This Appendix shows the input (unwarped) images and

the corresponding reference that makes use of them.

Figs. A.2, A.3 and A.4 show the images from the temple, carpark and apartments datasets.

These images are used by Gao et al. in [23]. Figs. A.5, A.6 and A.7 show the images from the

chess/girl, couch and rooftops datasets used by Lin et al. in [51]. Finally, the images generated

for this thesis, namely, the railtracks, bikes, construction site, garden and train datasets are

shown in Figs. A.1, A.8, A.9, A.10 and A.11.

A.1 Images Used in Pairwise Stitching

Figure A.1: railtracks image pair. Size of images: 2000× 1500 pixels. Number of inliers after
RANSAC is: 2753.

125
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Figure A.2: temple image pair [23]. Size of images: 730× 487 pixels. Number of inliers after
RANSAC is: 415.

Figure A.3: carpark image pair [23]. Size of images: 653×490 pixels. Number of inliers after
RANSAC is: 359.

Figure A.4: apartment image pair [23]. Size of images: 1632× 1224 pixels. Number of inliers
after RANSAC is: 2634.
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Figure A.5: chess/girl image pair [51]. Size of images: 1824× 1368 pixels. Number of inliers
after RANSAC is: 1381.

Figure A.6: couch image pair [51]. Size of images: 1824 × 1368 pixels. Number of inliers
after RANSAC is: 1329.

Figure A.7: rooftops image from [51]. Size of images: 320 × 240 pixels. Number of inliers
after RANSAC is: 161.
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Figure A.8: bikes image pair. Size of images: 1632 × 1224 pixels. Number of inliers after
RANSAC is: 2561.

A.2 Images Used For Stitching Full Panoramas

Figure A.9: construction site dataset. Size of images: 2000 × 1329 pixels. Number of inliers
between the pair of images used for the pairwise experiments in Section 6.2: 5068. Number of
inliers between the images used for the panorama experiments in Section 6.3: 12616.
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Figure A.10: garden dataset. Size of images: 2000 × 1329 pixels. Number of inliers between
the pair of images used for the pairwise experiments in Section 6.2: 4567. Number of inliers
between the images used for the panorama experiments in Section 6.3: 10693.

Figure A.11: train dataset. Size of images: 2456 × 1632 pixels. Number of inliers between
the pair of images used for the pairwise experiments in Section 6.2: 4231. Number of inliers
between the images used for the panorama experiments in Section 6.3: 13380.





Appendix B

The Image Formation Process

Transforming the 3D world into a 2D image involves a projection process in which one dimen-

sion, corresponding to the “depth” of the world, is removed. In computer vision, this process

is usually explained in terms of the central projection model (also called the pinhole camera

model).

In central projection 3D points are projected by rays or lines passing through a common center of

projection or focal point onto a particular 2D plane; this 2D plane is called the image plane. The

intersection of the lines with the image plane are the “pictures” of the 3D points. Fig. B.1 depicts

this process. Mathematically, this process is described with the use of projective geometry.

Image plane

p = (X, Y, Z)

x = (x, y)

f

Center of 
projection

Optical axis
3D point's depth

Z

(a) (b)

Figure B.1: Two different perspectives of the image formation process through the pinhole
camera model. In the pinhole camera model, points p from the 3D world are mapped by
lines passing through a common center of projection into its corresponding image point x.
In this process, the “depth” of the points from the world is removed. The optical axis is the
ray extending through the focal point, perpendicular to the image plane. The point where the
optical axis and the image plane intersect is called the principal point of the image. The length
between the focal point and the image plane is the focal length f .

In projective geometry the world is modelled in the 3D projective space. The 3D projective space

includes points from the 3D Euclidean space R3 along with points at infinity. The 3D projective

space is denoted by P3. In the 3D projective space, points are represented in homogeneous

131



Appendix B - The Image Formation Process 132

coordinates as the 4-tuple p̃ = [X Y Z W ]T . If two tuples or points differ only by scale,

they are considered to be equivalent. A homogeneous point p̃ can be converted back into an

inhomogeneous or Cartesian vector p by dividing it through by the last element W , i.e., p =

[X/W Y/W Z/W ]T .

A homogeneous point whose last element isW = 0 corresponds to a point at infinity (also called

ideal point). Points at infinity do not have an equivalent inhomogeneous representation.

In a similar way, the model for the image is a 2D projective plane P2 with points in the 2D

image plane represented in homogeneous coordinates as 3-tuples x̃ = [x y z]T . Similar to the

3D projective space, in inhomogeneous coordinates x = [x/z y/z]T .

Central projection is a simple mapping from the 3D projective space P3 to the 2D projective

plane P2. The mapping is performed by a 3 × 4 matrix P which is called the camera matrix.

Thus, under central projection any (homogeneous) 3D point p from the “real world” is projected

to a 2D image plane via the following relationship:

x̃ ∼ Pp̃. (B.1)

where ∼ indicates equality up to scale. The camera matrix is composed by a 3 × 4 external

parameters matrix and a 3 × 3 internal parameters matrix. Each one of these elements is

described next.

B.1 The Camera Matrix

B.1.1 External Parameters

Imagine you take a picture with a camera; what are the elements or parameters that affect the

final image you obtain? Probably, the most obvious parameters are the location and orientation

of the camera, i.e., what is the camera “seeing” right now? The relative position of the 3D points

in the world with respect to the position of the camera will determine where the 3D points will

appear in the image. Different camera positions will produce different images.

In order to determine where a 3D point will appear in the final image, it is necessary to establish

the location and orientation of this point with respect to the camera. This is usually done by

taking the position of the 3D point whose coordinates are represented in the world coordinate

system and assign it coordinates with respect to the camera coordinate system. In the camera co-

ordinate system, the center of projection is denoted as the origin. Such process can be described
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Image width
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Image origin 
(0, 0)

cθ 
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Figure B.2: Example of the simplified camera intrinsic parameters. The principal point cor-
responds to the centre of the image and there is no skew between the image axes. The only
unknown parameter in this case is the focal length f .

in matrix notation by

p′ =
[
R −Rt

]
p̃ = Ep̃, (B.2)

where p is a 3D point and p′ is point p with the camera focal point as the frame of reference, R is

a 3×3 rotation matrix and t = [tx ty tz]
T is a 3D translation vector. The matrix E =

[
R −Rt

]
corresponds to the external parameters of the camera.

B.1.2 Camera Intrinsics

Besides the position of the camera there is another set of properties that determines the appear-

ance of the final picture. Depending on the particular manufacturer, different cameras can have

different fields of view, different aspect ratios and different focal lengths and all of these ele-

ments change the way the image is generated. In the image formation process it is possible to

model these properties by means of the camera intrinsics or the camera internal parameters.

In projective geometry, these internal parameters are represented by a 3× 3 matrix defined as

K =


fx r cx

0 fy cy

0 0 1

 , (B.3)

where fx and fy are the independent focal lengths along the xs and ys image axes (the aspect

ratio of the image is reflected in the different scaling of these focal lengths along xs and ys).

r = cos(θ) encodes the skew (more specifically, the angle) between the image coordinate axes

and c = [cx cy]
T denotes the coordinates of the principal point.
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In practice, most of the recent cameras have square pixels (i.e., there is no skew), have the

same aspect ratios along the xs and ys image axes (i.e., the focal lengths are equivalent) and

assume that the location of the principal point corresponds to the centre point of the image.

Thus, a simplified version of the intrinsic camera matrix can be obtained by setting r = 0 and

fx = fy = f , which produces the commonly used intrinsic camera matrix

K =


f 0 cx

0 f cy

0 0 1

 , (B.4)

with cx = Ws/2 and cy = Hs/2 where Ws and Hs are, respectively, the width and height of

the image (Fig. B.2 illustrates). Since, most of the times, the location of the principal point is

assumed to be known, some other versions of the camera matrix have cx = cy = 0.

By putting the camera intrinsics and extrinsic parameters together it is then possible to obtain

the 3× 4 camera matrix P as

P = K
[
R −Rt

]
= KE. (B.5)

B.2 Relating Points in Two Views through the Camera Matrix

Through the camera matrix it is possible to relate points between two (or more) views I and I ′.

In order to describe such process, (B.5) will be written in the following form:

P̃ =

K 0

0 1

R −Rt

0 1

 = K̃Ẽ, (B.6)

which corresponds to a 4 × 4 invertible camera matrix P̃ [76] with Ẽ being a 4 × 4 external

parameters matrix and K̃ being a 4× 4 full rank intrinsics matrix.

Writing the camera matrix as in (B.6) allows the mapping

x̃ ∼ P̃p̃ = K̃Ẽp̃, (B.7)

of any homogeneous 3D point p̃ = [X Y Z 1]T to a particular type of homogeneous image

point x̃ = [x y 1 d]T , where d is the inverse depth of point x [77, Pp. 49]. This depth value is

necessary to reason about mappings between images of a 3D scene.
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p = (X, Y, Z, 1)

x = (x, y, 1, d) x' = (x', y', 1, d')

M

~
~

~

I I'

Figure B.3: Relationship between the projections or pictures of a 3D point in two different
images. These relationships can be described by making use of the camera matrices from both
images (which requires knowing the depth values of each pixel in the images).

Given a homogeneous 3D point p̃ = [X Y Z 1]T , a 2D representation or picture of p can be

obtained by means of the 4× 4 camera matrix P̃ in (B.6). This can be expressed as

x̃ ∼ P̃p̃ = K̃Ẽp̃, (B.8)

where x̃ = [x y 1 d]T corresponds to the homogeneous image coordinates and depth of the

3D homogeneous point p̃. If a second picture of p is taken from a different location, which of

course involves the use of a different camera matrix P̃′, there will be two overlapping images of

the same scene. Fig. B.3 illustrates this scenario.

From Eq. B.8 it is possible to observe that any 3D point p can be obtained via the following

equation

p̃ ∼ Ẽ−1K̃−1x̃. (B.9)

Afterwards, it is then possible to project the point p̃ recovered from image I , into the second

image I ′ via the equation

x̃′ = K̃′Ẽ′p̃ = K̃′Ẽ′Ẽ−1K̃−1x̃ = P̃P̃′−1x̃ = Mx̃, (B.10)

where x′ is point p in image I ′, K̃, K̃′ and Ẽ, Ẽ′ are the 4×4 calibration and external parameters

matrices for images I and I ′ respectively, and M is a 4 × 4 matrix that maps point x to x′.

Fig. B.3 illustrates this process.

If this same process is applied to every point location x∗ in I , it is then possible to map any

point x∗ from image I to image I ′ through the equation

x̃′∗ ∼Mx̃∗. (B.11)
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Unfortunately, Eq. B.10 assumes that the inverse depth d for each pixel in the image are known

but, for most the conventional images or digital cameras, it is not possible to obtain such infor-

mation. In fact, the goal of some of the 3D reconstruction and plane+parallax approaches, is to

estimate these parameters (or some of them) in order to align the images through this or a similar

process. One of the most practical options for dispensing the use of this “depth information” for

relating two views is through the use of homographies. But, as seen in Chapter 2, homographies

are limited to special cases only. The purpose of the proposed Moving DLT (Chapter 4) is to

relax such limitations. Thus, making homography warps applicable to more general imaging

scenarios (as seen in Chapters 4-6 of this thesis).
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