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Abstract 
 
 
 
Rivers and their adjacent wetlands and floodplains worldwide have been 

altered or have vanished as a result of river regulation and development (such 

as dams, locks and weirs), as well as water over-allocation. In recent years, 

environmental flow management has been suggested as a means to mitigate 

these negative impacts. One approach in order to do this is through the 

scheduling of environmental flow management alternatives (EFMAs), such as 

reservoir releases and the operation of wetland regulators. However, this is not 

an easy task for the following reasons: (i) there are generally many wetlands 

and floodplains in any particular river system, all containing a wide range of 

biota that have different flow requirements; (ii) there is generally limited water 

allocated for environmental purposes, since there are multiple users (e.g. 

irrigation, domestic), all competing for the same water source; (iii) the 

schedules are generally developed over multiple years; and (iv) there are 

multiple competing objectives and constraints that need to be considered. This 

problem therefore lends itself to be formulated as an optimization problem, 

where the aim is to maximise the ecological integrity of the system, while also 

considering humans needs and the constraints of the system. 

 

In this thesis, a generic adaptive multi-objective optimization framework for 

determining the optimal schedule of EFMAs for rivers and their associated 

wetlands and floodplains is developed and tested. In order to achieve this, ant 

colony optimization algorithms are selected, since they can take into account 

the conditional dependencies and sequential nature of the scheduling problem 

explicitly. This is possible, as the solution space can be represented by a graph 

structure that can be adjusted dynamically based on the choices made at 



viii 

previous points in the decision graph, thereby reducing the size of the decision 

space and increasing the proportion of feasible solutions. This  is not possible 

when most other metaheuristics are used. In addition to this, the framework is 

adaptive and able to incorporate forecasts of environmental water allocation, 

such that the environmental water can be used most efficiently in order to 

maximize ecological response. 

 

The major research contributions are presented in three journal publications. 

Firstly, the initial single-objective formulation of the optimisation framework, 

which incorporates the temporal dependencies associated with the scheduling 

of EFMAs is presented and validated using a hypothetical case study. The 

framework is then extended to incorporate multiple objectives and applied to a 

river section in the South Australian River Murray, so that the trade-off 

between the ecological response and environmental water allocation can be 

examined. Finally the framework is further extended to incorporate adaptive 

features by using forecasts of environmental water allocation in the 

development of EFMA schedules, as well as an additional objective which 

aims to minimise the number of differences of EFMA schedules developed at 

subsequent time steps. Thus the framework provides valuable insight to 

managers into the EFMA scheduling problem, as it can be applied to 

investigate a wide variety of problems, such as investigating the likely 

ecological benefit gained from an increase in environmental allocation, the 

impact of system constraints on ecological response and the potential 

advantages of investment in additional infrastructure. 

 

 

 

  



ix 

Statement of Originality 
 

I certify that this work contains no material which has been accepted for the 

award of any other degree or diploma in my name, in any university or other 

tertiary institution and, to the best of my knowledge and belief, contains no 

material previously published or written by another person, except where due 

reference has been made in the text. In addition, I certify that no part of this 

work will, in the future, be used in a submission in my name, for any other 

degree or diploma in any university or other tertiary institution without the 

prior approval of the University of Adelaide and where applicable, any partner 

institution responsible for the joint-award of this degree. 

I give consent to this copy of my thesis when deposited in the University 

Library, being made available for loan and photocopying, subject to the 

provisions of the Copyright Act 1968.  

The author acknowledges that copyright of published works contained within 

this thesis resides with the copyright holder(s) of those works.  

I also give permission for the digital version of my thesis to be made available 

on the web, via the University’s digital research repository, the Library Search 

and also through web search engines, unless permission has been granted by 

the University to restrict access for a period of time. 

 

Signed:…………………………………. Date:…………….. 

  
 
 
 



x 

 
 

  



xi 

Acknowledgements 
 
Firstly, I would like to thank my supervisors, Prof Holger Maier and Prof 

Graeme Dandy, for their supervision, support and encouragement over the 

course of my PhD candidature. I would particularly like to thank Prof Holger 

Maier for his continual enthusiasm, vision and determination for my research 

to succeed. I am also grateful to Prof Graeme Dandy for his constant 

motivation and scientific insight into my research. Without their guidance, I 

would have never finished my PhD research. Thank You! 

 

I would also like to thank Tumi Bjornsson and Richard Thompson, who went 

out of their way and happily provided the vital data for this PhD research. If it 

wasn’t for these data, this research would have been very difficult to finish. 

 

I very grateful to my fellow PhD students Fiona Paton, Jeffery Newman and 

Eva Beh for their friendship, encouragement, help and enjoyable discussions, 

which made the PhD experience less daunting than it would have been alone. 

Many thanks also to staff and other PhD students in the School of Civil, 

Environmental and Mining Engineering who have helped me throughout my 

PhD. 

 

I would also like to thank my mother, Margaret, for her unwavering support 

through this rollercoaster ride, as well as my father, Olgierd, who every week 

would call and motivate me to press on. I would like to thank Andrew and 

Lizzie Szemis and Donna Krieg, who would be there to take my mind off 

things related to my research. 

 



xii 

Finally, and most importantly, I like to thank God, who put me on this 

journey, which I would never have thought in million years I would be on. It 

has been definitely challenging and at times questionable, but in the end very 

rewarding. 

  

 

 

 
 
 



xiii 

List of Figures 
 

Figure 1.1: Research objectives and their hierarchy. Objectives are denoted by 
the superscript numbers in each of the flowchart boxes. .................................. 7 

Figure 2.1: Representation of the optimal scheduling of environmental flow 
management alternative ................................................................................ 21 

Figure 2.2: Steps in formulation of environmental flow management schedule 
optimization problem. The river reaches, wetlands, and floodplains are defined 
as Hi, and i ranges from 1 to q. The ecological indicators, Ei,r, where r ranges 
from 1 to s, are specified for each Hi. The planning horizon is defined as Yv, 
where v ranges from 1 to v years, while the time interval, t, ranges from 1 to 
the final time interval, T. The number of management alternatives, Ma, ranges 
from 1 to h .................................................................................................... 23 

Figure 2.3: Environmental flow management schedule development, where the 
number of management alternative, Ma, ranges from 1 to h. The time step, t, 
ranges from 1 to T months, while Ma,m and Ma,d are the magnitude and 
duration suboptions for each Ma and d corresponds to the duration of Ma,d .... 29 

Figure 2.4: Example of an EFMA schedule graph for flow releases (in 
gigaliters (GL)) ............................................................................................. 33 

Figure 2.5: Steps in ant colony optimization algorithm ................................. 34 

Figure 2.6: Example of an environmental flow management schedule decision 
tree graph using dynamic constraints ............................................................ 36 

Figure 2.7: Layout of case study ................................................................... 38 

Figure 2.8: MFAT response curves adapted from Young et al. (2003)and the 
Inside MFAT website 
(http://www2.mdbc.gov.au/livingmurray/mfat/index.htm) ............................ 42 

Figure 2.9:  Environmental flow management schedule development using the 
heuristic approach......................................................................................... 53 

Figure 2.10: Monthly flow releases for heuristic and ACO management 
schedule for Investigation 6. ......................................................................... 59 

file:///D:/Data/Thesis/FINALSUB2014/JSzemis_Thesis_Print2014.docx%23_Toc390694935
file:///D:/Data/Thesis/FINALSUB2014/JSzemis_Thesis_Print2014.docx%23_Toc390694935


xiv 

Figure 2.11: ACO management schedule for Investigation 3. ....................... 62 

Figure 2.12: Optimal trade-offs between MFAT recruitment and maintenance 
scores for 500–12,000 GL allocations. .......................................................... 63 

Figure 2.13: Monthly flow releases for the three points along the 10,000 GL 
allocation trade-off ....................................................................................... 66 

Figure 2.14: Flow releases for Investigations 10 and 11 ................................ 69 

Figure 3.1: Map of case study area adapted from Murray-Darling Basin 
Authority website (http://www.mdba.gov.au/river-data/spatial-data-
services/spatial-information)......................................................................... 87 

Figure 3.2: Steps in optimization framework ................................................ 89 

Figure 3.3: Example of an EFMA schedule graph for environmental flow 
releases (In Gigalitres (GL)) incorporating dynamic constraints.................... 98 

Figure 3.4: Traditional Ant Colony Optimization Procedure ....................... 104 

Figure 3.5: Hypervolume convergence for each multi-objective ACO 
algorithm when h<4 ................................................................................... 110 

Figure 3.6: Comparison of PACOA, COMPETants and m-ACO3 using EAF 
differences plots ......................................................................................... 113 

Figure 3.7: Optimal trade-offs between environmental flow allocation 
(GL/5yr) and MFAT score for Investigations 1-5........................................ 121 

Figure 3.8: Optimal trade-offs between environmental water allocation 
(GL/5yr) and MFAT score for Investigations 2 (i.e. 1650 GL/month) and 5 
(i.e. 3,000GL/month) .................................................................................. 125 

Figure 3.9: Optimal trade-off between environmental water allocation (EWA 
(100 GL/5yr)) and the wetland and floodplain MFAT score for Investigation 6
 ................................................................................................................... 127 

Figure 3.10: Optimal trade-offs between environmental flow allocation and 
MFAT score for Investigations 1, 3 and 7-10 .............................................. 130 

Figure 4.1: Steps in Proposed Adaptive Optimization Framework .............. 147 

Figure 4.2: Map of case study area (adapted from Murray-Darling Basin 
Authority website, http://www.mdba.gov.au/river-data/spatial-data-
services/spatial-information) ...................................................................... 151 



xv 

Figure 4.3: Graph of Training Data Standardized Residuals for the ANN 1 
model. ........................................................................................................ 163 

Figure 4.4: Example of an EFMA Schedule Graph for Environmental Flow 
Releases (In Gigalitres (GL)) incorporating Dynamic Constraints ............... 165 

Figure 4.5: Pareto Ant Colony Optimization Algorithm Procedure ............. 168 

Figure 4.6: Average Annual MFAT Scores Achieved for each Method and 
Actual Data Between the Years 1983-2003 ................................................. 174 

Figure 4.7: Actual Flows at the South Australian Border ............................ 174 

Figure 4.8: Average Annual MFAT Scores Achieved for Method1 and 2 for 
the Years 1983-2003 ................................................................................... 176 

Figure 4.9: Average Annual MFAT Scores for Floodplain and Wetland Flora 
Achieved for Methods 1 and 2 Between the Years 1983-2003 .................... 179 

Figure 4.10: Trade-off Curves Developed using Method 2 for the 1st Year 
(1983-1984), 10th Year (1992-1993) and 20th Year (2002-2003) ................. 180 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 

 

 

 

  



xvii 

List of Tables 
 

Table 2.1: Wetland and Floodplain Specifications ........................................ 40 

Table 2.2: MAX-MIN Ant Systems Parameters ............................................ 49 

Table 2.3: Details of Each Study and Corresponding Objective .................... 50 

Table 2.4: Details of the Investigations used in each Study ........................... 50 

Table 2.5: Details of the 6 Investigations used for Developing Heuristic and 
Optimization Based Management Schedules ................................................. 52 

Table 2.6: Seasonal Environmental Flow Allocation used in Investigation 12
 ..................................................................................................................... 57 

Table 2.7: Heuristic and ACO Management Schedule Results for 
Investigations 1 to 6...................................................................................... 58 

Table 2.8: Difference in Annual MFAT Scores between Management 
Schedules obtained using ACO and Heuristic Approaches for Investigation 6
 ..................................................................................................................... 59 

Table 2.9: Annual Recruitment and Maintenance Scores for the Three 10,000 
Water Allocation Investigations .................................................................... 66 

Table 2.10: Maintenance and Recruitment Scores for Investigations 10 and11
 ..................................................................................................................... 68 

Table 2.11: MFAT Scores for each Asset and overall MFAT score for 
Investigation 12 and 13 ................................................................................. 71 

Table 3.1:: Details of Problem Formulation for Case Study .......................... 91 

Table 3.2: Species composition in case study area ........................................ 92 

Table 3.3: Range of ACO parameters investigated for each algorithm......... 109 

Table 3.4: Adopted ACO parameters for each algorithm ............................. 109 

Table 3.5: Details of investigations for trade-offs between environmental 
allocation and total ecological response ...................................................... 114 



xviii 

Table 3.6: Details of number of species per asset and number of years 
considered in total ecological response objective (g=1) for Investigations 1-5 
and 7-10 ..................................................................................................... 115 

Table 3.7: Details of investigations conducted as part of examining the trade-
offs between environmental flow, wetland ecological response and floodplain 
ecological response .................................................................................... 115 

Table 3.8: Details of number of species per asset and number of years 
considered in wetland ecological response (g=1) and floodplain ecological 
response (g=2) objectives for Investigation 6 .............................................. 117 

Table 3.9: Details of investigations conducted as part of the assessment of the 
impact of additional regulators ................................................................... 118 

Table 3.10: MFAT Score and allocation at the breakpoint for each 
investigation, as well as the rate at which the MFAT score increases per 
1,000GL environmental allocation before and after the breakpoints ............ 122 

Table 3.11: Maximum MFAT Scores and corresponding allocations (GL/5yr) 
for each Investigation ................................................................................. 122 

Table 3.12: Maximum MFAT scores for each Allocation and Investigation 128 

Table 3.13: Maximum MFAT Scores and associated allocations achieved for 
each regulator in operation ......................................................................... 131 

Table 3.14: MFAT scores achieved for each Allocation and Investigation for 
the 1,200 GL/month system constraint ........................................................ 132 

Table 3.15: MFAT scores achieved for each Allocation and Investigation for 
the 1,800 GL/month system constraint ........................................................ 132 

Table 4.1: Details of Problem Formulation for Case Study ......................... 153 

Table 4.2: Species Composition in Case Study Area ................................... 154 

Table 4.3: Details of the Number of Species per Asset in the Total Ecological 
Response Objective (g=1) for all Investigations .......................................... 157 

Table 4.4: Details of Candidate Inputs and Selected Inputs for all five ANNs
 ................................................................................................................... 161 

Table 4.5: Statistical Properties of the Data (Number of Observations = 106)
 ................................................................................................................... 161 



xix 

Table 4.6: Parameter Values Ranges Tested and Final Selected Parameters for 
each ANN................................................................................................... 162 

Table 4.7: Error Measures for all Forecasting ANN Models........................ 164 

Table 4.8: Range of PACOA Parameters Investigated and Values Selected 171 

Table 4.9: Details of Methods Used ............................................................ 172 

 

 

 

 

 
 





1 

 

 

 

Chapter 1 

 

1   Introduction 
Freshwater ecosystems, including rivers, wetlands and floodplains are 

amongst the most endangered systems in the world (Jenkins, 2003). This is 

due to the increase of the global population intensifying the conflict over water 

resources, and the threat of climate change, which could possibly lead to 

further river development (e.g. dams) and, in turn, additional stress on rivers 

and their associated wetlands and floodplains (Arthington et al., 2006). There 

is a growing consensus that rivers are “legitimate” water users and as such, 

environmental flow management, which involves releasing flows specifically 

for the environment, should be undertaken to protect, maintain and restore 

these systems (Arthington et al., 2006). In the past, environmental flow 

management involved releasing a minimum flow, however, the concept of the 

“natural flow paradigm” introduced by Poff et al., (1997), where the flows that 

existed prior to river development are reintroduced, should form the basis of 

any environmental flow management plan. Poff et al., (1997) highlighted five 

key flow components, including duration, timing, magnitude, frequency and 

rate of change of flow that should be take into account, since these factors 

govern structure and function, and in turn, the ecological health of rivers, 

wetlands and floodplains (Junk et al., 1989). 
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In order to achieve the required ecological response, there are a number of 

management alternatives, including reservoir releases and/or the operation of 

structures, such as wetland regulators, that can be employed. The decisions 

involved in scheduling management alternatives are made at discrete 

timesteps, with additional decisions relating to time, magnitude and duration 

of the management alternative also needing to be made. For instance, the 

operation of a wetland regulator would involve selection of the duration and 

the time at which a gate should be opened or closed. Because these decisions 

are generally made over long temporal scales (e.g. multiple years) and 

different spatial scales (e.g. numerous locations of regulators or reservoirs), 

the search space of possible management alternatives is extremely large. 

The scheduling of environmental flow management alternatives (EFMAs) 

becomes even more complicated because: (i) not only does the river need to be 

considered, but also adjacent wetlands and floodplains; (ii) there are different 

ecological processes that must be taken into account, including the 

maintenance of adult species and the recruitment of juveniles (e.g. breeding of 

wildlife), which results in different flow requirements (Rogers, 2011b); (iii) 

there are many species that, at times, have competing flow requirements; (iv) 

the schedules generally need to be developed over multiple years, since there 

are species, such as the Black Box woodland (Eucalyptus largiflorens), that 

require a maintenance flood frequency of 1 in 2 to 5 years (Rogers, 2011b), 

thereby introducing temporal dependencies into the scheduling process (i.e. 

decisions made at each time step are not independent of each other); (v) 

generally there is limited water available for environmental purposes, given 

that there are number of users (e.g. irrigation, domestic), all competing for the 

same water source (Wallace et al., 2003); and (vi) there might be flow 

restrictions as a consequence of system constraints within the area of interest. 

Given this complexity, there is potential benefit in employing optimization 
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approaches to schedule EFMAs to maximise the chance that rivers, wetlands 

and floodplains are restored and preserved for future generations in locations 

where environmental water is limited. 

There have been a number of optimization studies in environmental flow 

management, however many have considered ecological objectives in a 

simplistic manner, with some studies not considering the five key flow 

components, (Chang et al., 2010; Chaves et al., 2003), while in others, the 

importance of competing ecological objectives is neglected (Cardwell et al., 

1996; Tilmant et al., 2010; Yang, 2011; Yang and Cai, 2011). In almost all of 

the studies, there was no consideration of both the river and downstream 

wetlands and floodplains, or the temporal dependencies between management 

options (Homa et al., 2005; Shiau and Wu, 2004; 2007; 2013; Suen and 

Eheart, 2006; Tilmant et al., 2010; Yang, 2011; Yin et al., 2011). Higgins et al. 

(2011) was the only study to take into account the river and adjacent wetlands 

and floodplains They employ optimization to obtain optimal operating regimes 

for wetland regulators and weirs by matching the flood timing, dry period and 

flood duration in natural conditions. However, there is no existing 

optimization framework that can be used to: (i) develop schedules that 

maximize the ecological response of rivers and their wetlands and floodplains 

for a given environmental water allocation; (ii) incorporate the five flow 

components as defined by Poff et al. (1997); (iii) develop schedules that favor 

certain ecological process or species; and (iv) assess the optimal trade-offs 

between water allocated to the environment and the corresponding optimal 

ecological responses of affected wetlands and floodplains or particular species, 

which is of interest to water and wetland managers who operate EFMAs.  

In addition to this, previous optimization studies depend on the historical 

natural flow hydrology or a known volume of water being available for the 

environment in their assessment. This is a significant shortcoming, as 
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environmental water is most likely to change annually as a result of the natural 

variability of hydrological regimes within rivers, wetlands and floodplains 

(GSA, 2013).  Given that EFMA schedules are developed over extended time 

periods, as mentioned previously, the schedules developed based on assumed 

water availabilities are most likely not truly optimal and, as a result, for a 

specific environmental water allocation, the optimal ecological outcome may 

not be achieved. Thus, there is a need to also develop an adaptive optimization 

approach, where EFMA schedules are updated at regular intervals over the 

planning horizon, such that updated information on hydrological conditions 

can be considered (e.g incoporating environmental water allocation forecasts). 

Simultaneously, restrictions to any changes made to optimal schedules 

developed previously must be considered, such that the possible negative 

impacts on the EFMA schedules and related resource schedules (e.g. human 

resources, equipment) are kept to a minimum during the re-optimization 

process. 

1.1  Research Objectives 

This research aims to develop a generic adaptive multi-objective optimization 

framework for the scheduling of environmental flow management alternatives, 

which can take into account the river, wetlands and floodplains over large 

spatial and long temporal scales. The development of the framework will 

ultimately aid water and wetland managers in making informed decisions in 

relation to environmental flow management, such that the ecological response 

of rives, wetlands and floodplains is maximised when there is a limited 

volume of environmental water available and the operation of the system is 

subject to constraints. To achieve the overall aim of this research, two main 

research objectives have been identified, each of which has a number of sub-

objectives, as given below. The linking of each of these objectives is shown in 

Figure 1.1. 
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Objective 1: To develop an adaptive multi-objective optimization framework 

for the scheduling of environmental flow management alternatives (EFMAs) 

(Journal Papers 1, 2 and 3) 

Objective 1.1: To formulate a single-objective optimization 

framework, which incorporates temporal dependencies associated with 

the scheduling of EFMAs over long planning horizons (Journal Paper 

1)  

Objective 1.2: To extend the framework in Objective 1.1, such that 

multiple objectives can be considered in the scheduling of EFMAs 

(Journal Paper 2) 

Objective 1.3: To develop an adaptive approach by extending the 

framework in Objective 1.2 (Journal Paper 3) 

Objective 2: To demonstrate the utility of the framework (Journal Papers 1, 2 

and 3) 

Objective 2.1: To validate and apply the framework developed in 

Objective 1.1 to a hypothetical case study based on the South 

Australian River Murray (Journal Paper 1)  

Objective 2.2: To apply the framework to a real case study of the South 

Australian River Murray (Journal Papers 2, 3)  

Objective 2.3: To develop and assess the trade-offs between ecological 

response and environmental water allocation for a range of 

infrastructure options using the framework developed in Objective 1.2 

(Journal Paper 2)  

Objective 2.4: To assess the utility of the adaptive features 

incorporated in the approach developed in Objective 1.3, which 
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include (i) the use of environmental water allocation forecasts and (ii) 

the assessment of the trade-off between limiting the number of 

differences of schedules at subsequent timesteps and the ecological 

response . (Journal Paper 3)  
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1.2 Thesis Overview 

This thesis consist of five chapters, with the main body presented in Chapters 

2 to 4, which correspond to three journal papers (Szemis et al., 2012; Szemis et 

al., 2013; Szemis et al., 2014). 

In Chapter 2, a new optimisation framework for the scheduling of EFMAs for 

rivers, wetlands and floodplains is presented (Objective 1), where the 

formulation and the incorporation of temporal dependencies associated with 

the problem are described (Objective 1.1). The utility of the framework is 

demonstrated (Objective 2) by validating and applying it using a hypothetical 

case study (Objective 2.1). 

In Chapter 3, the framework in Chapter 2 is extended to incorporate multiple 

objectives (Objective 1.2)  and is then applied to real case study of a river 

section of the South Australian River Murray (Objective 2.2), where the trade-

offs between ecological response and environmental water allocation are 

assessed (Objective 2.3). 

In Chapter 4, the work in Chapter 2 is further extended to incorporate 

adaptive features (Objective 1.3) and is again applied to the real case study in 

order to demonstrate the utility of the adaptive features, that is, the 

consideration of forecasts of future environmental water allocation, as well as 

an assessment of the trade-off between the limitation of disruptions to the 

EFMA schedules and ecological response (Objective 2.4). 

The linking of each of the papers to the objectives is shown in Figure 1.1. 

Although the manuscripts have been reformatted in accordance with 

University guidelines, and sections renumbered for inclusion within this 

thesis, the material within these papers is otherwise presented herein as 

published. Copies of the first two papers “as published” are provided in 

Appendices A and B. 
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Conclusions of the research within this thesis are provided in Chapter 5, 

which summarises: 1) the research contributions, 2) limitations and 3) future 

directions for further research. 
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Chapter 2 

 

 

 

2 A framework for using ant colony 

optimization to schedule environmental flow 

management alternatives for rivers, wetlands, 

and floodplains (Paper 1) 
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Abstract 

 
 
Rivers, wetlands, and floodplains are in need of management as they have 

been altered from natural conditions and are at risk of vanishing because of 

river development. One method to mitigate these impacts involves the 

scheduling of environmental flow management alternatives (EFMA); however, 

this is a complex task as there are generally a large number of ecological 

assets (e.g., wetlands) that need to be considered, each with species with 

competing flow requirements. Hence, this problem evolves into an 

optimization problem to maximize an ecological benefit within constraints 

imposed by human needs and the physical layout of the system. This paper 

presents a novel optimization framework which uses ant colony optimization 

to enable optimal scheduling of EFMAs, given constraints on the 

environmental water that is available. This optimization algorithm is selected 

because, unlike other currently popular algorithms, it is able to account for all 

aspects of the problem. The approach is validated by comparing it to a 

heuristic approach, and its utility is demonstrated using a case study based on 

the Murray River in South Australia to investigate (1) the trade-off between 

plant recruitment (i.e., promoting germination) and maintenance (i.e., 

maintaining habitat) flow requirements, (2) the trade-off between flora and 

fauna flow requirements, and (3) a hydrograph inversion case. The results 

demonstrate the usefulness and flexibility of the proposed framework as it is 

able to determine EFMA schedules that provide optimal or near-optimal 

trade-offs between the competing needs of species under a range of operating 

conditions and valuable insight for managers. 
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2.1 Introduction 

Rivers and their associated wetlands and floodplains provide vital ecosystem 

services that people depend upon, such as water purification, habitat for 

wildlife and climate mitigation (MEA, 2005). Many of these systems have 

been severely altered, or have even vanished, due to the development of 

infrastructure, such as channelization and dams, land conversion, and the over 

allocation of water for human needs (Brookes, 1988; Kingsford, 2000; MEA, 

2005; Nel et al., 2008). This has altered the hydrological regime, reducing the 

level of connectivity and flooding between rivers and associated floodplains 

and wetlands, thereby changing their ecology and causing the death or poor 

health of their biota (Kingsford, 2000; Kingsford and Auld, 2005). According 

to National Research Council (1992), the rate at which freshwater ecosystems 

are being altered or destroyed is much greater now than at any other time in 

human history. To mitigate the impacts of these alterations, there is an urgent 

need to improve the connectivity between rivers and their adjacent wetlands 

and floodplains, so that they can be maintained and protected for future 

generations. 

In order to address the problem outlined above, the provision of water for 

environmental flows has been suggested (Arthington et al., 1998; Kingsford, 

2000). In the past, this consisted of releasing a minimum flow, which has now 

been deemed to be inadequate (Arthington et al., 2006). Instead, it has been 

suggested that managed flow regimes should follow the ‘natural flow 

paradigm’ developed by Poff et al. (1997) in order to reintroduce the flow 

variability that has been lost as a result of human induced flow alteration (Poff, 

2009). Five flow components were presented by Poff et al. (1997) as the key 

to ensuring the ecological integrity of river systems, including the timing, 

duration, magnitude, frequency and rate of rise/fall of flow. These components 

are also important when flooding adjacent wetlands and floodplains, as it is 
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these factors that govern the structure and function, and in turn, the health of 

wetlands and floodplains (Junk et al., 1989). For example, the timing of 

inundation can affect the recruitment and regeneration of plants (e.g. (Cordes 

et al., 1997)), flood duration can influence plant cover and diversity (e.g. 

(Busch and Smith, 1995)), while a combination of the timing, duration and rate 

of change of flooding can impact the life cycles of fish species (Junk et al., 

1989). River, wetland and floodplain biota are dependent on these flow 

components and a significant amount of research has been undertaken to 

quantify these ecological responses (Poff and Zimmerman, 2010). 

The pursuit of environmental integrity criteria, such as those developed by 

Poff et al. (1997) constitute the primary objective of any management 

program. A number of management alternatives are available for achieving the 

corresponding environmental flow requirements for rivers, wetlands and 

floodplains, including environmental flow releases from upstream storages 

and the operation of flow control infrastructure, such as regulators and pumps. 

Decisions have to be made in relation to the timing, magnitude and duration of 

potential flow releases and infrastructure operation. In other words, at discrete 

points in time (e.g., day, week, month), decisions have to be made whether an 

environmental flow release should be made and/or whether a change should be 

made to the setting of flow control infrastructure. These decisions must be 

made in pursuit of an objective that seeks to maximize some measure of 

ecological health. If the decision is made to release environmental flows 

and/or make a change to the setting of flow control infrastructure, a choice has 

to be made in relation to what fraction of the available environmental flow 

allocation to release at this time and/or which of the available infrastructure 

change options should be implemented, and how long this management action 

should persist. Given that these decisions generally have to be made at discrete 

time steps over a given planning horizon (e.g., several years) and at numerous 
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locations (e.g., locations of reservoirs, regulators and pumps), the search space 

of potential management alternatives in this scheduling problem is generally 

extremely large, particularly when dealing with extended spatial and temporal 

scales. 

The scheduling of environmental flow management alternatives (EFMAs) is 

further complicated by the fact that (i) there are often different processes that 

must be accounted for in managing a single species, such as (a) promoting the 

maintenance of adult species and the recruitment of juveniles (e.g., 

germination of plant species and breeding of wildlife), resulting in varying 

flow requirements (Rogers, 2011b), or (b) ensuring the succession and 

retrogression of floodplain vegetation, which introduces an additional shear 

stress factor (Benjankar et al., 2011), (ii) flow requirements are generally 

different for each species of flora and fauna, and may be in competition with 

each other, which is a problem that is often exacerbated when considering 

extended spatial scales, as the number of species that need to be considered is 

generally larger, and (iii) schedules generally need to be developed over 

multiple years, since there are species, such as the Black Box woodland 

(Eucalyptus largiflorens), that require a maintenance flood frequency of 1 in 

2–5 years (Rogers, 2011b), thereby introducing temporal dependencies into 

the scheduling process (i.e., decisions made at each time step are not 

independent of each other). 

Given the extremely large search space of management options, the large 

number of generally competing environmental flow requirements, and the 

temporal dependencies between management alternatives, the problem of 

scheduling EFMAs so as to maximize ecological outcomes is extremely 

difficult. However, such a goal is very important, particularly given that 

limited amounts of water are generally available for environmental purposes, 

as there is competition for water resources between various uses, such as 
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irrigation, domestic and industrial water supply, power generation, recreation, 

and the restoration, rehabilitation and maintenance of ecological services. 

Given this complexity, there is potential benefit in using formal optimization 

approaches for addressing the environmental flow management problem. 

However, previous optimization studies in this field have primarily focused on 

the higher-level problem of the development of optimal reservoir/weir 

operating rule parameters or monthly reservoir releases, while trying to 

maintain an adequate balance between the needs of the environment and other 

water users (e.g., irrigation), rather than the specific problem of how to 

allocate a given environmental water allocation so as to maximize ecological 

outcomes. As a result, ecological objectives have been treated in a rather 

simplistic manner in past optimization studies. For example, in some studies, 

there was no consideration of the important flow components (Chang et al., 

2010; Chaves et al., 2003), while in others, the importance of competing 

ecological objectives was neglected (Cardwell et al., 1996; Tilmant et al., 

2010; Yang, 2011; Yang and Cai, 2011). In almost all of the studies, there was 

no consideration of both river and downstream wetlands and floodplains, or 

the temporal dependencies between management options (Homa et al., 2005; 

Shiau and Wu, 2004; 2007; Suen and Eheart, 2006; Tilmant et al., 2010; Yang, 

2011; Yin et al., 2010). Only Higgins et al. (2011) considered the river, 

wetlands and floodplains on a landscape scale and used optimization to 

determine the best locations and operating regimes for wetland regulators and 

weirs by mimicking the natural flood timing, dry period and flood duration. 

However, there is no existing optimization framework that can be used to (i) 

develop schedules that maximize the ecological response of rivers and their 

wetlands and floodplains for a given environmental water allocation, (ii) 

incorporate not only flood timing, dry period, and duration but also depth 

(which affects seed germination (Rogers, 2011b)), and (iii) develop schedules 

that favor certain ecological process or species. Consequently, there is a need 
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to develop and test a generic framework for determining the optimal schedule 

of EFMAs for rivers and their wetlands and floodplains for a given 

environmental water allocation that takes into account (i) rivers and adjacent 

wetlands and floodplains, (ii) a large number of potential management 

alternatives, (iii) multiple and potentially competing environmental objectives 

associated with important flow components, process and species, and (iv) 

temporal dependencies associated with the important flow components. 

In order to meet this need, the specific objectives of this paper are (i) to 

develop an optimization framework for maximizing the ecological response of 

rivers and their wetlands and floodplains (e.g., by using the Murray Flow 

Assessment Tool (MFAT) developed by Young et al. (2003), as is done in the 

case study presented in this paper) for a given environmental flow allocation, 

by determining the optimal scheduling of predetermined EFMAs, such as flow 

releases and regulator settings, which is able to take account of (a) a large 

number of possible management alternatives, (b) a range of environmental 

objectives (e.g., ecological responses of flora and fauna species and associated 

processes), (c) constraints associated with environmental water allocations, 

and (d) the temporal dependencies associated with the management 

alternatives; (ii) to develop an approach that is capable of solving the 

optimization problem formulated in objective i, and (iii) to apply the 

optimization framework and solution methodology developed in objectives i 

and ii to a case study in order (a) to demonstrate how they are applied in 

practice, (b) to validate their performance, (c) to illustrate how they can be 

used to account for competing requirements of individual species, (d) to 

illustrate how they can be used to account for competing requirements of flora 

and fauna, and (e) to illustrate how they can be used to deal with 

environmental water allocations of different magnitude and timing (e.g., 

hydrograph inversion). 
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The remainder of this paper is organized as follows. The novel optimization 

framework is introduced in section 2.2, followed by the optimization approach 

for solving it in section 2.3. The case study used to illustrate the utility and 

validate the proposed formulation and solution approach is introduced in 

section 2.4, while details of the numerical experiments conducted are provided 

in section 2.5. Results and discussion are presented in section 2.6, followed by 

a summary and conclusions in section2 .7. 

 

2.2 Framework for the Optimal Scheduling of Environmental 

Flow Management Alternatives 

In this section, the framework for the optimal scheduling of EFMAs aimed at 

restoring, protecting and maintaining rivers and their wetlands and floodplains 

is introduced (objective i), which has been adapted from the systems approach 

proposed by Biswas (1976) and is shown in Figure 2.1. 

 

 

Figure 2.1: Representation of the optimal scheduling of environmental flow 
management alternative 
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The first step in the optimization framework is problem formulation, which 

includes identification of the wetlands, floodplains and river reaches to be 

managed, identification and selection of appropriate ecological indicators 

(e.g., flora/fauna species, flow components or shear stress), the planning 

horizon over which the schedule for the EFMAs is to be developed (e.g., 

number of years), the time interval (e.g., monthly or yearly time steps) at 

which alternatives are to be scheduled, and finally, specification of the 

EFMAs that are available for achieving the desired ecological response (e.g., 

flow release options, regulator settings, pumping schedule), as well as the 

suboptions associated with each of these alternatives (e.g., magnitude, 

duration). Next, the objective function (e.g., maximization of ecological 

response) and any constraints (e.g., maximum available environmental water 

allocation) need to be defined, after which a schedule for the EFMAs can be 

developed. The objective function (e.g., overall ecological response of the 

system under consideration) is then calculated to assess the utility of the 

selected schedule. The process of selecting different schedules and evaluating 

their utility is generally repeated many times and guided by the selected 

optimization method in order to find optimal or near-optimal solutions (e.g., 

schedules of EFMAs). Each of these steps is discussed in more detail in 

sections 2.2.1–2.2.4 

 

2.2.1 Problem Formulation 

The first step in formulating the optimal scheduling problem, shown in Figure 

2.2, involves the identification of the q wetlands, floodplains and river reaches 

that require protection, restoration or maintenance, where the wetlands, 

floodplains and river reaches are defined as Hi, and i ranges from 1 to q. 
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Figure 2.2: Steps in formulation of environmental flow management schedule 
optimization problem. The river reaches, wetlands, and floodplains are defined 
as Hi, and i ranges from 1 to q. The ecological indicators, Ei,r, where r ranges 
from 1 to s, are specified for each Hi. The planning horizon is defined as Yv, 
where v ranges from 1 to v years, while the time interval, t, ranges from 1 to 

the final time interval, T. The number of management alternatives, Ma, ranges 
from 1 to h 

Next, appropriate ecological indicators Ei,r, are specified for each wetland, 

floodplain and river reach, Hi, in order to assess the performance of each 

potential management schedule in terms of ecological response. For example, 

the r ecological indicator/s (ranging from 1 to s) can be used to assess the 

ability to simulate the natural flow regime (Richter et al., 1996), assess 

processes that govern the life cycle of different types of flora and fauna 

species (Young et al., 2003), or measure the succession and retrogression of 

vegetation (Benjankar et al., 2011). The choice of the number and types of 

indicators is case study dependent. It should be noted that there are other 

ecological responses that can be taken into account, such as the fact that lower 

peak flows can increase ecological response through terrestrialization of 

riparian areas or the encroachment of the river channel by riparian 
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communities (Poff and Zimmerman, 2010). However, such ecological 

responses can only be incorporated if they can be represented in the form of an 

ecological indicator, which is a limitation of the proposed optimization 

framework. 

Once the wetlands, floodplains, river reaches and ecological indicators have 

been identified, the planning horizon over which the schedules need to be 

developed, Yv, where v ranges from 1 to K years, and the time intervals 

between potential management actions during the period, t, which ranges from 

1 to T time intervals, should be selected. Selection of appropriate values for 

these variables is also problem dependent. 

The next step in the problem formulation procedure is the specification of the 

management alternatives, which can be divided into two groups. The first 

category includes reach-scale management alternatives, which affect the 

hydrological regime of the entire river system. These include reservoir 

releases or weir operations that govern the flow within the entire river reach 

and affect wetland and floodplain inundation. The second type includes 

management alternatives that manipulate hydrological regimes for individual 

wetlands and floodplains. An example is the manipulation of water levels 

using individual gates and/or pumps at the entrances or exits of wetlands, 

which could prevent, allow, or force water from entering or leaving. The 

combination of reach, wetland, and floodplain scale management options 

constitutes the final set of management alternatives, Ma, where a ranges from 1 

to h. 

The final stage of the problem formulation step involves the specification of 

the suboptions for each management alternative, that is, the magnitude, 

duration and timing of the proposed management interventions described in 
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section 2.1. All of the available suboptions need to be specified for each of the 

management alternatives in order to define the decision space in its entirety. 

 

2.2.2 Selection of Objective Function and Constraints 

The second stage of the proposed optimization framework involves definition 

of the objectives and constraints. It is important to select an appropriate 

objective function, as this characterizes how well different management 

schedules perform. The constraints, on the other hand, ensure that infeasible 

schedules are not considered. 

The objective function used to assess the performance of the proposed 

management schedules should consider all of the wetlands, floodplains and 

river reaches, as well as the selected ecological indicator(s). Since there are 

generally multiple, and at times competing, indicators, the values of individual 

indicators need to be summed over all ecological assets (e.g., river reaches, 

wetlands, floodplains) in order to obtain an estimate of the ecological response 

of the entire system under investigation for a given management schedule. In 

order to account for differences in the relative importance of various 

ecological assets, indicators, and time periods, user defined weights are 

included. Consequently, the proposed objective function takes the following 

form: 
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where Ei,r,v is the indicator value for asset i, for indicator type r in the vth 

yearly time interval. In equation (2.1), the overall objective function value is 

obtained by summing (1) values of each ecological indicator over the q 

wetlands, floodplains and river reaches considered, (2) values of the s 
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indicators used for each wetland, floodplain, and river reach, and (3) 

ecological indicator values over the number of years (YK) over which the 

schedule of EFMAs has been developed (i.e., the planning horizon). Weights, 

w1i, w2r and w3v place emphasis on the qth wetlands, floodplains or river 

reaches, rth ecological indicator and YKth year, respectively. Consequently, 

the proposed objective function is sufficiently flexible to cater to particular 

aspects of the problem (e.g., favoring an endangered species), while also 

ensuring that an overall ecological score is obtained for the river system. 

Once the objective function has been defined, the constraints need to be 

specified to ensure infeasible schedules of EFMAs are not developed. Since 

the aim of the research is to develop EFMA schedules that optimize the 

environmental benefit associated with a given amount of environmental water, 

constraints have to be placed on the total amount of water that is available for 

environmental purposes, which is likely to vary over the planning horizon 

(e.g., on a seasonal basis), as given by 
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                                        (2.2) 

 

where, pd is the number of periods of constrained environmental water 

allocations, ranging from 1 to np, while the number of increments in each 

period, ni(p) ranges from 1 to Vp, and i_ni(pd) and f_ni(pd) are the 

corresponding initial and final time steps for pd, over which a particular water 

allocation is released. The duration of each increment is defined as dni(p), and 

the summation of all duration increments for each period must equal the total 

duration interval, Td. Being able to have different allocation constraints for 
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different time periods during the planning horizon provides the ability to 

account for situations such as hydrograph inversion, or physical constraints on 

water release infrastructure. 

Constraints also have to be placed on the magnitude and duration of the sub-

options for a particular management alternative, Ma, as given in Equations 2.3 

and 2.4: 

 

      max_,,min_, mamama MMM  ,         nm   to1                    (2.3) 

  max_,,min_, dadada MMM   ,          pd   to1                    (2.4) 

 

where the magnitude sub-options for wetlands, floodplains, and river reaches 

are Ma,m, which are constrained by minimum and maximum values of Ma,m_min 

and Ma,m_max, respectively, and the duration sub-options are Ma,d, which are 

constrained by minimum and maximum values of Ma,d_min and Ma,d_max, 

respectively, for each management alternative. The m possible magnitude sub-

options, Ma,m, range from 1 to n and Ma,d is the number of duration sub-options 

available, where d is between 1 and p. Each management alternative must 

therefore be assessed individually in order to determine appropriate values for 

the above constraints. These ranges may depend on the characteristics of the 

wetlands and floodplains, or the chosen ecological indicator. 

If a yearly time step is chosen, then an additional timing constraint is required 

to determine during which month a particular management alternative should 

be implemented. However, such a constraint is not required if a monthly time 

step is adopted. Other constraints that must taken into account are mass 

balance constraints, for instance the overall water entering the system must 
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equal the water leaving system (through either water allocated to the wetlands 

and floodplains or evaporation). 

 

2.2.3 Environmental Flow Management Schedules Development           

Once the problem has been formulated, management schedules can be 

constructed by first selecting a management alternative, as shown in Figure 

2.3. Next, a schedule needs to be constructed for all T time intervals. In order 

to do this, the magnitude suboptions for Ma should be selected, followed by an 

assessment of the number of available duration suboptions, Ma,d. The second 

step is necessary, as the number of duration suboptions can change during the 

generation of a schedule. For example, if a monthly time step were used, there 

would be a maximum of twelve duration options at the beginning of a year, 

which would reduce to six halfway through the year. Consequently, the 

conditional dependencies associated with the selection of Ma,d need to be taken 

into account during the schedule generation process, as shown by the loops in 

Figure 2.3. Once all suboptions have been selected at each time step for a 

particular management alternative, this process has to be repeated for all of the 

remaining management alternatives until a complete EFMA schedule has been 

developed. 
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Figure 2.3: Environmental flow management schedule development, where 
the number of management alternative, Ma, ranges from 1 to h. The time step, 

t, ranges from 1 to T months, while Ma,m and Ma,d are the magnitude and 
duration suboptions for each Ma and d corresponds to the duration of Ma,d 

 

This procedure demonstrates the sequential nature and dependencies of the 

optimal scheduling problem, where decision made at certain time steps affect 

the choices that are available at subsequent time steps. It is vital that such 

information be taken into account, as it can affect the quality of the 

management schedule developed, as well as the efficiency with which it is 

generated. 

 

2.2.4 Calculation of Objective Function and Optimization 

Once an EFMA schedule has been developed, its utility needs to be assessed, 

which is done via the objective function (equation (2.1)). In order to calculate 
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the objective function, a simulation model, such as a hydrological model of the 

river system, is generally used in order to determine the flow regime within 

each river reach, floodplain and wetland, as well as the resulting ecological 

indicator score. Once the objective function has been calculated, its value is 

used during the optimization procedure in order to develop better solutions 

(i.e., schedules of EFMAs), as shown in Figure 2.1. The cycle of development, 

simulation and assessment of EFMA schedules using optimization continues, 

until the selected termination criteria are met. A discussion of the proposed 

optimization method for solving the optimal scheduling problem is presented 

in the next section 

 

2.3 Proposed Ant Colony Optimization for the Scheduling of 

Environmental Flow Management Alternatives  

There are a number of candidate optimization algorithms for solving the 

optimal scheduling problem formulated in section 2.2, including traditional 

forms of optimization, such as linear and dynamic programming (Taha, 1997) 

and metaheuristics, for instance, genetic algorithms (GA) (Goldberg, 1989) 

and ant colony optimization (ACO) algorithms (Dorigo et al., 1996). Linear 

programming only works for linear objective functions and constraints (Taha, 

1997), resulting in the inability to solve complex nonlinear problem, such as 

the optimal scheduling problem presented here. Dynamic programming, on the 

other hand, overcomes this problem by using the principle of optimality to 

determine optimal solutions (Taha, 1997), while genetic and ACO algorithms 

achieve this by using the principle of survival of the fittest (Goldberg, 1989) 

and the foraging behavior of ants (Dorigo et al., 1996), respectively. However, 

dynamic programming suffers from the ‘curse of dimensionality’, which 

means that it has difficultly solving problems with large search spaces, as the 

computational requirements grow exponentially with increased complexity 
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(Madej et al., 2006). Both GAs and ACO algorithms overcome this problem to 

a large extent by searching for near-optimum solutions using the search 

principles mentioned above, thereby only exploring a small fraction of the 

search space. Consequently, they sacrifice “the guarantee of finding the 

optimal solution for obtaining good solutions in a significantly reduced time” 

(Blum and Roli, 2003). Despite this shortcoming, in tests of problems with 

known theoretically optimal solutions, GAs and ACO algorithms have been 

found to produce globally optimal or near-optimal solutions for a range of 

applications (Back et al., 1997; Blum, 2005). 

GAs are probably the most widely used heuristic optimization method. 

However, as they represent solutions as strings of genes, which are modified 

from one generation to the next as the algorithm attempts to find the globally 

optimal solution, it is difficult to account for the sequential nature and 

conditional dependencies of the optimal scheduling problem outlined in 

section 2.2.3. In other words, as values of all decision variables are generated 

simultaneously in a particular population, there is no mechanism for adjusting 

the value of one decision variable based on the selected value of another. This 

increases the size of the search space unnecessarily and introduces a larger 

proportion of infeasible solutions, making it more difficult to find globally 

optimal or near-optimal solutions. In contrast, ACO algorithms are able to 

account for the sequential nature and conditional dependencies of the optimal 

scheduling problem explicitly, as the solution space is represented by a graph 

structure that can be adjusted dynamically based on the choices made at 

previous points in the decision graph during the constructions of solutions, 

thereby reducing the size of the decision space and increasing the proportion 

of feasible solutions (Afshar, 2010; Foong et al., 2007; 2008a; Maier et al., 

2003). In other words, as solutions in ACO are constructed incrementally by 

stepping through a decision graph, rather than generating the entire solution 
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simultaneously, as is the case with GAs, the options that are available at 

subsequent steps in the decision graph can be altered during the construction 

of a trial solution, based on the choices that were made at previous steps. This 

is because in ACO, solutions are generated based on changes in the decision 

space, rather than by modifying solutions themselves. 

ACO algorithms have been applied successfully to the traveling salesman 

problem (Dorigo and Gambardella, 1997a) and found to outperform other 

optimization algorithms, such as genetic algorithms, in terms of computational 

efficiency and solution quality (Dorigo and Gambardella, 1997b). Other 

successful ACO applications include the quadratic assignment problem 

(Mainiezzo and Colorni, 1999), shop scheduling problems (Blum and Sampels, 

2004), water distribution systems optimization problems (Maier et al., 2003; 

Zecchin et al., 2007), reservoir operation problems (Jalali et al., 2007) and 

power plant maintenance scheduling problems (Foong et al., 2007).. The 

sections 2.3.1–2.3.3 discuss the problem representation and steps in the ACO 

algorithm, as well as the implementation of dynamic constraints to account for 

the conditional dependencies of the EFMA scheduling problem discussed 

previously. 

 

2.3.1 Problem Representation 

Before ACO can be used to develop an optimal or near-optimal schedule as 

per section 2.2.3, each management alternative must be first mapped onto a 

graph, which consists of a number of discrete time steps and a set of 

suboptions at each of these. An example EFMA schedule graph for flow 

releases is shown in Figure 2.4. As can be seen, there are two suboptions that 

are considered at each time step, magnitude and duration. The magnitude 

suboption for this case ranges from a minimum allocation of zero to a 

maximum allocation of 1000 gigaliters (GL), which is independent of time, 
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and as such remains in a closed loop. However, the next suboption, duration, 

branches into 12 paths after each magnitude suboption, one for each month, 

thereby generating multiple possible solutions. The number of possible 

solutions begins to expand until the final time step, T, is reached. Other 

suboptions, such as timing, can be also be accounted for in the graph structure. 

Once the graph has been defined, it can be used to develop a trial schedule 

using the ACO algorithm, which will be discussed in the following section. 

 

 

Figure 2.4: Example of an EFMA schedule graph for flow releases (in 
gigaliters (GL)) 

 

2.3.2 Ant Colony Optimization Algorithm 

The steps involved in the ACO algorithm are given in Figure 2.5. The process 

of generating a trial EFMA schedule begins with the initialization of the ACO 

control parameters. Next, the optimization process takes place, where b ants 

construct trial schedules during each iteration (its). An ant achieves this by 

traveling to each time step and selecting magnitude and duration suboptions 

(Figure 2.4), until it reaches the final time step, T. At each time step, the 

suboptions are selected probabilistically based on a pheromone intensity (τ) 
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and heuristic information (η), as well as decision policy control parameters, α 

and β, that determine the relative importance of pheromone intensity and 

heuristic information, respectively (Zecchin et al., 2005). The pheromone 

intensity for a suboption is first initialized to a random value while for 

subsequent iterations, pheromone is added based on the initial pheromone (τo), 

a pheromone persistence factor (ρ) and a reward factor (Q) that is used to scale 

the pheromone addition (Zecchin et al., 2005). The heuristic value of a 

suboption, on the other hand, represents the quality of that suboption based on 

prior information. 

 

 

Figure 2.5: Steps in ant colony optimization algorithm 

Once a complete trial schedule has been generated by an ant, the plan is 

evaluated using an objective function (see equation (2.1)). As discussed in 
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section 2.2, a simulation model, such as a hydrological model for the river 

system under investigation, is used in the calculation of the objective function 

and any constraint violations (e.g., equation (2.2)). An iteration is completed 

once b ants have developed and evaluated a trial schedule. 

At the end of each iteration, the quality of the EFMA schedules generated by 

the ants is evaluated and pheromone values are modified accordingly (i.e., the 

better the solution, the higher the pheromone that is added to the “paths” that 

made up that solution). The pheromone intensity for a suboption thus reflects 

the quality of trial schedules developed in previous iterations that contained 

that particular suboption, which creates bias for ants in future iterations to 

develop solutions of high quality. Additionally, pheromone evaporation is 

applied to components of schedules that do not perform well, which in turn 

deters the ACO algorithm from choosing those paths again. In this manner, the 

environment is modified to guide the artificial ants to regions of the search 

space that contain attractive solutions. For an ACO algorithm to be effective in 

generating optimal or near-optimal solutions, it is important that the correct 

balance of exploration (i.e., exploring the search space widely) and 

exploitation (i.e., converging to an optimal solution as quickly as possible) is 

struck. A number of ACO variants that use different pheromone updating 

schemes have been developed to achieve this. Some of these include: Ant 

Systems (Dorigo et al., 1996), Ranked-Based Ant System (Bullnheimer et al., 

1999) and MAX-MIN Ant Systems (Stutzle and Hoos, 2000). 

The process of developing, assessing and updating the pheromone trails to 

guide the ACO algorithm to near-optimal schedules continues until the 

specified stopping criteria have been met. For a detailed description of the 

ACO algorithm and equations used, readers are referred Dorigo and Stützle 

(2004). 
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2.3.3 Dynamic Constraint Adjustment 

As discussed above, ACO algorithms have the ability to cater to the sequential 

nature and conditional dependencies involved in the development of EFMA 

schedules (see section 2.2.3). This is achieved by dynamically adjusting the 

number of available suboptions as ants construct a trial schedule. An example 

decision tree graph that incorporates dynamic constraints for a flow release 

management alternative is shown in Figure 2.6. The example is for four time 

steps and considers magnitude and four duration suboptions 

 

Figure 2.6: Example of an environmental flow management schedule decision 
tree graph using dynamic constraints 

 

If the maximum duration, which is assumed to be greater than four time steps 

for the example in Figure 2.6, is selected by an ant at the first time step 

(decision point), then no other decision paths need to be made available at 

subsequent time steps (decision points), as shown by the top path in Figure 

2.6. In this way, the decision tree is adjusted based on the choice made at the 
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first decision point, thereby reducing the size of the search space and 

increasing the likelihood that globally or near globally optimal solutions will 

be found. On the other hand, if a duration option of one is chosen by an ant at 

the first time step (bottom path), then the potential duration suboptions are 

considered again at the following time step. However, the number of available 

options decreases from four to three, as there are only three more time steps 

remaining. If the number of available duration suboptions was not adjusted 

dynamically, four duration options would be considered after each magnitude 

suboption, which would result in a significantly larger search space. 

Therefore, this form of dynamically constraining the decision tree graph 

ensures that feasible EFMA schedules are developed, as well as ensuring that 

the ACO algorithm is able to find optimal solutions more efficiently. 

 

2.4 Case Study  

In order to test and demonstrate the utility of the proposed optimization 

framework, it has been applied to a quasi-hypothetical case study based on the 

Murray-Darling river system in South Eastern Australia. The majority of this 

river system experiences arid or semiarid climate and incorporates a large 

array of connected wetlands and floodplains, which are mainly flooded during 

high streamflows (Maheshwari et al., 1995). However, due to the regulation of 

flow and over allocation of water to other users (e.g., irrigation), the flow 

regime has been changed, which has had significant negative impacts on the 

ecology of the river and adjacent wetlands and floodplains. In recent years, it 

has been recognized that the environment is a legitimate user of water and 

water allocations have been made available for environmental purposes. 

However, how this environmental flow allocation should be used in order to 

achieve the best ecological response remains a challenge. 
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Figure 2.7 shows the layout of the case study used to meet the objectives 

outlined in the Introduction. It consists of a river reach, three wetlands and two 

floodplains that contain a variety of different flora and fauna species found in 

the River Murray. To quantify the ecological response of the species within 

the river reach, wetlands and floodplains, the Murray Flow Assessment Tool 

(MFAT) was used (Young et al., 2003). The minimum monthly river flows 

were based on entitlement flows used in the River Murray (MDBA, 2010) and 

it was assumed that there were only gates (no pumps) to regulate flows into 

and out of the wetlands. Reservoir releases were taken as given and not 

considered part of the decision set. Details of how the proposed framework 

and solution approach, introduced in sections 2.2 and 2.3, respectively, have 

been applied to the case study are given in sections 2.4.1–2.4.4 

 

Figure 2.7: Layout of case study 

 

2.4.1 Problem Formulation 

2.4.1.1 Identification of Ecological Assets and Indicators 

In this case study, there are two floodplains and three wetlands (Figure 2.7). 

The key flora and fauna species for each asset are given in Table 2.1, which 

were selected to represent the diversity and complexity that would occur in the 
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River Murray, Australia, as presented by Rogers (2011b). The wetland and 

floodplain fill values, which relate to the minimum river flow required to 

inundate the assets, are also presented in Table 4.1. To delineate the flora and 

fauna species within each wetland and floodplain, a number of assumptions 

were made (R. Oliver, personal communication, 2009). First, it was assumed 

that the floodplain species lie on the same elevation plane, therefore once the 

river flow was above the fill value, all species were inundated at a specific 

depth, depending on the water level in the river. Second, wetland species were 

assumed to lie along a nonlinear gradient, resulting in a wetland depth range at 

which the species would be inundated, for instance, Cumbungi rushland would 

lie lower on the wetland gradient than Lignum shurbland. Therefore, if the 

wetland water depth (which is dependent on the river flow and regulator 

settings) was above the minimum species depth, then that species would be 

inundated. 

In order to obtain the required ecological flow requirements for the species of 

flora and fauna considered, the Murray Flow Assessment Tool (MFAT), 

developed by Young et al. (2003), was used. MFAT is a habitat simulation 

model that was developed specifically for the River Murray and can be used to 

assess the impact of different flow scenarios on vegetation and wildlife (Young 

et al., 2003). This is done using a set of response curves, which are based on 

important flow components, such as duration, timing and magnitude (which is 

represented in terms of depth), as well as the interdry period. 

 

 

 

 



40 

Table 2.1: Wetland and Floodplain Specifications 

Asset Type Dominant Species 
Fill Value 

(GL/month) 

1 Floodplain Black box woodland (Eucalyptus 
largiflorens) 1200 

2 Floodplain 

River red gum forest (Eucalyptus 
camaldulensis) 

800 Lignum shrubland (Muehlenbeckia 
florulenta) 
Colonial nesting waterbird (e.g. ibis) 
Flood spawners (e.g. golden perch) 

3 Wetland 

Common reed (Phragmites australis) 300 

Cumbungi rushland (Typha sp.) 400 

Lignum shrubland (Muehlenbeckia 
florulenta) 
Waterfowl and grebes 

500 

4 Wetland 

Ribbon weed herbland (Vallisneria 
americana) 400 

Giant rush rushland (Juncus ingens) 450 

Rats tail couch grassland (Sporobolus 
mitchelli) 500 

5 Wetland 

Spiny mudgrass grassland 
(Pseudoraphis spinescens) 300 

River red gum forest (Eucalyptus 
camaldulensis) 400 

River red gum woodland (Eucalyptus 
camaldulensis) 550 

6 River Main channel specialists (e.g. Murray 
cod) 450 

 
The MFAT response curves for ten different species of vegetation used in this 

study are shown in Figure 2.8 for illustration purposes. As can be seen, a score 
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between 0 and 1 is given for each flow component, where 0 corresponds to a 

poor and 1 to a good ecological response. It should be noted that the curves 

take into account different flow requirements for recruitment (i.e., promotion 

of seed growth) and maintenance (i.e., maintenance of adult habitat). As can 

be seen in Figure 2.8, there are curves for twelve different flow components, 

which can be divided into timing, frequency, duration and various inundation 

depth groups. It should be noted that there is an additional water depth 

response curve (in terms of maximum mean depth percent) for the wetland 

vegetation species ribbon weed herbland, which has not been presented here, 

as well as the flooding memory response curves for the various floodplain 

species. Other flow factors, such as the rate of rise and fall, have also not been 

presented in Figure 2.8. In total, there are approximately 48 curves for the 

vegetation species that, at times, have competing requirements, which 

highlights the complexity of the EFMA scheduling problem and the 

difficulties in developing optimal management schedules. 
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Figure 2.8: MFAT response curves adapted from Young et al. (2003)and the 
Inside MFAT website 

(http://www2.mdbc.gov.au/livingmurray/mfat/index.htm) 
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The top four response curve graphs in Figure 2.8 are associated with wetlands, 

while the bottom six are for floodplains species. To determine the response 

from the wetland inundation and the floodplain flood timing and inundation 

depth curves, the median value of the ‘best flood event’ was used, where the 

‘best flood event’ was the event that produces the highest overall ecological 

scores. For example, if the spiny mudgrass grassland was inundated from the 

beginning of March until the end of May, it would receive a wetland 

inundation score of 0.1, as this was the median value for that event. This 

region is depicted by the two bold lines in Figure 2.8a, where from March to 

May, the curve remains at a constant score of 0.1. On the other hand, 

inundation duration, recruitment and germination timing, and interperiod 

scores are based on a single value for the “best flood event.” Therefore, the 

inundation duration for spiny mudgrass grassland is approximately 90 days, 

giving a score 0.5. This is represented by the bold line in Figure 2.8c. 

Additionally, it was assumed that a draw down and rewetting sequence must 

occur within a year, so that the interperiod could be calculated. Once all the 

scores have been obtained from Figure 2.8, they are used in equations to 

calculate an overall ecological response for each vegetation species in the 

MFAT (Young et al., 2003). It should be noted that there are weights x1 and x2 

that emphasize, for example, the recruitment of vegetation seedlings and 

maintenance of adult plant species, respectively. 

There are an additional 12 response curves, not depicted in this paper, for 

assessing the health of the fauna species (i.e., fish and water birds). For 

waterbird responses, only the flood duration and dry period were taken into 

account, while for fish responses, the flood and spawning timing, inundation 

duration and dry period were considered. Other factors, such as thermal 

pollution (1.0), woody debris (1.0), the level of fish barrier (1.0), and channel 

straightening (0.78) were set to MFAT default values. For further details on 
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the fauna and flora response curves and the equations used, readers are 

referred to Young et al. (2003) and the Inside MFAT Web site (http://www2.-

mdbc.gov.au/livingmurray/mfat/index.htm) 

 

2.4.1.2 Planning Horizon and Time Interval 

A planning horizon of 5 years was chosen, as this (1) is the time period 

selected for the development of wetland management plans in the River 

Murray (Schultz, 2007; Turner, 2007), and (2) ensures that there is sufficient 

time to achieve the maximum ideal flooding frequency for the species of flora 

and fauna considered (see Figure 2.8g). A monthly time interval was selected, 

as this provides sufficient resolution for the hypothetical case study. This 

meant that the “rate of change” flow component in MFAT for flora and fauna 

species was not considered. Therefore, there are 60 time steps where an option 

has to be selected for each management alternative. This is discussed in 

section 2.5. 

 

2.4.1.3 Management Alternatives and Suboptions  

There was one reach-scale management alternative (i.e., releases) for this case 

study and the associated suboptions include the magnitude and duration of the 

releases. An example of the resulting problem graph structure is shown in 

Figure 2.6. The number of magnitude options depends on the minimum and 

maximum fill values of the whole system. In this case, this could be anywhere 

between 100 GL/month, which was the minimum flow that needed to be 

added to the minimum river flows in order to inundate the wetland with the 

lowest fill value, and 1500 GL/month, which ensures that all of the wetlands 

and floodplains can be inundated simultaneously. An increment of 50 

GL/month between these limits was chosen for the available suboptions to 
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provide sufficient resolution to ensure that the ideal depth could be achieved 

for the different flora and fauna species considered. An additional zero 

allocation was defined to ensure that a “no release option” was available. 

Consequently, a maximum of 29 magnitude decision values are available (i.e., 

n = 29 for management alternative M1). The number of duration options, p, 

available at each time step (i.e., month) varies throughout the year from 12 in 

January to 1 in December. The wetlands also have gates that can regulate flow 

into the wetlands, while floodplains do not. This leads to three additional 

management alternatives, which control the flow into and out of the wetlands 

via gates (thus for M2, M3, and M4, n = 2 and p = 12). Therefore, there are a 

total of four decision tree graphs similar to the one in Figure 2.6 that control 

the flow releases and flow via gates to the three wetlands. This produces a 

total search space size of 10141 discrete combinations of decision variable 

values, highlighting the potential benefit of using a formal optimization 

approach to solve this problem. 

 

2.4.2 Objective Function and Constraints 

The ecological score for each species per asset was calculated using MFAT, 

which was described in section 2.4.1.1. The equation used to calculate an 

average MFAT score was based on the formulation presented in equation 

(2.1): 
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where the number of assets is 6, the number of ecological indicators is 16 for 

each flora and fauna species (see Table 2.1), and finally, the score, Ei,r,v for 

each asset and indicator is calculated per year, with the total number of years 
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equaling 5. To obtain an average score and an indication of the overall health 

of all the species and assets, Ei,r,v was divided by the total number of assets and 

indicators. The weights (w1i, w2r, w3v) were varied for the different 

investigations conducted in order to examine various trade-offs between 

competing objectives (see section 2.5 for details). In order to maximize F in 

equation (2.5), an objective function most appropriate for this case study needs 

to be selected, bearing in mind that the ACO algorithm minimizes the selected 

objective function and cannot accommodate constraints on environmental flow 

allocations explicitly. A number of different objective function formulations 

were assessed and the following form of the objective function (Y) was found 

to perform best and was hence used in this study: 
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where F is the MFAT ecological score calculated using equation (2.5), and 

Penalty is a penalty function that was developed to ensure that the water 

allocation constraints for each period were adhered to and is given by 
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where the variables in equation (2.7) have been defined in equations (2.1) and 

(2.2). 
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2.4.3 Calculate Objective Function 

In order to calculate the objective function specified in section 2.4.2, the 

wetland and floodplain hydrology must be simulated for each management 

schedule. The following sections discuss the equations and assumptions used 

to achieve this. 

 

2.4.3.1 Wetland Hydrology Model 

To ensure that the model adequately accounts for wetland hydrology, whereby 

wetlands fill quickly once the river level breaches the fill value and when 

gates are opened but then drain slowly either when the gates are closed or 

when the river level drops below the fill value, equations (2.8) and (2.9) have 

been utilized. A simple water balance relationship is 

tttt SSOI  1                                           (2.8) 

where It refers to the wetland inflows, Ot are the wetland outflows, while S are 

the wetland storages at time t. The outflows Ot are the summation of the flows 

out of the wetland (Ow) and evaporation (Et). To calculate the evaporation loss 

from the wetlands, it was assumed that the wetland is rectangular with the 

longer sides parallel to the river, and that the bank slope remained constant. 

Consequently, the surface area versus depth relationship is linear. A simple 

relationship of 0.7 × (pan evaporation) was used to determine the evaporation 

from the wetland, in meters/month. The value of 0.7 was chosen as it is a 

common value used to determine evaporation within the Murray Darling Basin 

(Gippel, 2006). 

To simulate the gate operations at the wetlands, logic (If-Then) statements 

were used to adjust the components of the water balance equations. If the gate 

was closed, the inflow at that time step was zero (i.e., It = 0.0) and if there was 

water in the wetland, wetland storage was only affected by evaporation: 
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ttt ESS 1                                              (2.9) 

If there was water remaining in the wetland and the gate was opened at the 

next time step, water would flow out until the fill value was reached, after 

which water would remain in the wetland and only be affected by evaporation 

(i.e., equation (2.9)). It should be noted that the mass balance constraints 

associated with the problem were also satisfied within this wetland hydrology 

model. 

Assumptions made include that water seepage, the effect of rainfall and the fill 

and drainage rate of the wetlands were negligible. This was considered 

reasonable, since a monthly time step was used. Additionally the storage 

capacity of the wetlands was set to be very small in comparison to the 

streamflows, thus having negligible effect on downstream flows as a result of 

upstream wetlands storage. 

 

2.4.3.2 Floodplain Hydrology Model 

The floodplain hydrology model used the same equations and assumptions as 

the wetland model, with the exceptions of (1) being only affected by the river 

level (i.e., if the river level is above the fill value then the floodplain would be 

inundated at a depth dependent on the river level or if the river level is below 

the fill value then the floodplain would not be inundated) and (2) not including 

gates to regulate the flow, and as such the gate operational equations were not 

used. 

 

2.4.4 ACO Algorithm 

As discussed in section 2.3.2, there are various types of ACO algorithm, which 

generally differ in the pheromone updating methods used (Dorigo and Blum, 
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2005). In this study, the MMAS algorithm was used, as it has been found to 

outperform other ACO variants in a variety of studies (Foong et al., 2007; 

Zecchin et al., 2007). Details relating to the procedure and equations used by 

the MMAS are given by Stützle and Hoos (2000). 

An extensive sensitivity analysis was undertaken to determine the optimal 

values of the parameters that control the searching behavior of the MMAS 

algorithm. The range of parameter values tried and the final parameter values 

chosen are shown in Table 2.2. It should be noted that each sensitivity run was 

performed with 10 different random numbers (i.e., starting positions in the 

decision space) to minimize the impact of the random starting position in 

decision variable space on the results obtained. 

Table 2.2: MAX-MIN Ant Systems Parameters 

ACO Parameter Range Investigated Final Value 
Alpha (α) 0.5,1.0,1.5.2.0 1.0 
Beta (β) 0.5,1.0,1.5.2.0 1.0 
Initial pheromone (τo) 0.5, 1.0, 2.0, 5.0, 10.0 5.0 
Pheromone persistence (ρ) 0.1,0.2,0.6,0.8,0.9,1.0 0.6 
Pheromone reward factor (Q) 0.5, 1.0, 2.0, 5.0, 10.0 5.0 
Number of ants (ant) 50-1500 500 and 1200 

 

2.5 Analysis Conducted 

In order to meet the objectives stated in the Introduction, a number of studies 

were conducted, which demonstrate how the proposed framework and 

optimization approach are applied in practice in different settings (objective 

iiia). In the first study (section 2.5.1), the proposed optimization approach was 

compared with and tested against a heuristic scheduling approach by analyzing 

whether it performed adequately on problems of varying complexity 

(objective iiib). In the second and third studies (sections 2.5.2 and 2.5.3, 

respectively), it is demonstrated that the proposed approach can account for 

the competing requirements of individual species (objective iiic) and the 
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competing requirements of species of flora and fauna (objective iiid) (section 

2.5.3), respectively. In the final study (section 2.5.4), it is illustrated that the 

proposed framework and solution approach can deal with environmental water 

allocations of varying magnitude and timing (objective iiie). Details of the 

various studies and the specific investigations conducted as part of each these 

are given in Tables 2.3 and 2.4, and described in detail below. 

Table 2.3: Details of Each Study and Corresponding Objective 

Study Objective Investigations Species Planning Horizon 
Section 2.5.1 iiib 1 - 6 Flora 

5 years Section 2.5.2 iiic 7 - 9 Flora 
Section 2.5.3 iiid 10 - 11 Flora and fauna 
Section 2.5.4 iiie 12 - 13 Flora and fauna 
 

Table 2.4: Details of the Investigations used in each Study 

Investigation 
Allocation 

Constraint Period/s 
Allocation 

Constraint/s (GL) 
Weight preferences 

1 

5 years 

5000 

Equal preference 
2 1750 
3 3500 
4 4750 
5 10,000 
6 10,000 
7 

5 years 500 – 12,000 
Recruitment favored 

8 Processes equally 
favored 

9 Maintenance favored 
10 5 years 10,000 Flora favored 
11 Fauna favored 
12 5 years and 3 months 10,000 and Table 6 Equal preference 13 5 years 10,000 

 

2.5.1 Validation of Optimization Framework 

In order to provide some degree of validation, and to assess the potential 

benefits, of the proposed optimization framework, it was compared with a 

heuristic EFMA scheduling approach for six investigations of varying 

complexity. It was recognized that the proposed ACO-based optimization 
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approach should outperform a heuristic scheduling approach due its greater 

degree of sophistication. However, simply because an algorithm is highly 

advanced does not guarantee that it will perform well and it was therefore 

considered important to evaluate it against a benchmark approach that is 

representative of current practice in the River Murray before it was applied to 

more complex problems (sections 2.5.2 to 2.5.4). In addition, it highlights the 

complexity of the problem being addressed and the benefits of the approach 

introduced in this paper. 

The six investigations considered in this study only considered flora (Table 

2.3), as this provided a sufficient level of complexity (i.e., 48 different MFAT 

response curves) to validate the optimization framework. The allocation 

constraint period was set to 5 years (Table 2.4), indicating that there were no 

constraints on the time periods during which the water available for 

environmental purposes was used over the planning horizon of 5 years (Table 

2.3), as long as the total environmental water allocation was not exceeded. The 

total amount of water available for environmental flow purposes varied 

between investigations (Table 2.4) based on the outcomes of the heuristic 

scheduling procedure, as explained below, and equal preference was given to 

all components of the overall ecological score in equation (2.5) (i.e., species, 

assets and time period) (Table 2.4), such that w1i = 0.2, w2r = 0.08 and w3v = 

0.2 for i, r and v. Additionally, the recruitment and maintenance MFAT 

weights, x1, and x2, were both set to equal 0.5. The degree of complexity of the 

investigations was variable, both in terms of the number of species and the 

spatial extent considered (Table 2.5). 
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Table 2.5: Details of the 6 Investigations used for Developing Heuristic and 
Optimization Based Management Schedules 

Investigation 
Total number of 

flora species 
Plant species 

1 1 River red gum forest in Asset 5 
2 1 Rats tail couch grassland in Asset 4 
3 1 Spiny mudgrass grassland in Asset 5 
4 3 All flora species in Asset 3* 
5 7 All flora species in Assets 1,3 and 5* 
6 12 All flora species in Assets 1 to 5* 

* Please see Table 2.1 for details 

 

Details of the heuristic approach are given in Figure 2.9. The first step is the 

identification of species groups with similar MFAT flow requirements for 

each management alternative (Ma). These species groups are defined as Ga,c, 

where c ranges from 1 to nc number of species and a ranges from 1 to h (i.e., 

number of Ma). The groups are ordered so that the first group, G1,1, has the 

largest number of species with similar MFAT requirements that is affected by 

M1, G1,2 the second largest number of species, and so on. 
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Figure 2.9:  Environmental flow management schedule development using the 
heuristic approach 

 

For each management alternative, Ma, duration, timing and magnitude values 

are selected based on the MFAT flow requirements of the species in the 

largest group. Ga,c. The selection of these values may be repeated several times 

to ensure that the highest possible MFAT score is achieved for all species. 

Next, the selection process is repeated for the remaining Ga,c species that are 

affected by the Ma under consideration, starting with the group with the 

second largest number of species. A check is then undertaken to ensure that 

the Ma values chosen (i.e., duration, timing and magnitude) for a particular 

Ga,c do not negatively impact the MFAT scores of the species groups 

considered previously. This cycle continues until a complete schedule has 
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been produced for management action Ma, after which the process is repeated 

for the next Ma until schedules have been developed for all M. 

It should be noted that this scheduling approach does not take into account any 

constraints on the amount of water that is available for environmental flow 

allocation purposes. Addressing the constrained scheduling problem would 

add another level of complexity, which was not considered warranted for the 

purposes of illustrating the complexity of this problem and validating the 

proposed optimization approach. Consequently, in order to provide a fair 

comparison between the heuristic and ACO-based approaches, the constraints 

in relation to the total water allocation used when developing the ACO-based 

schedules corresponded to the volumes found in the corresponding 

management schedules obtained using the heuristic approach. Additionally, 

for each investigation, all ACO optimization runs were repeated ten times with 

different random starting positions in decision variable space in order to 

minimize any effects of the probabilistic nature of the searching behavior of 

the ACO algorithm. 

 

2.5.2 Determination of Optimal Trade-Offs Between Recruitment and 

Maintenance Scores for Different Flow Allocations 

As discussed in section 2.4.1.2, MFAT considers both recruitment (i.e., 

promoting and ensuring seedling growth) and maintenance (i.e., maintaining 

and ensuring the good condition of current adult habitat) of flora species. 

These factors have differing and, at times, competing flow requirements and, 

as such, must be considered separately. In order to investigate the trade-offs 

between recruitment and maintenance, optimal management schedules for 

maintenance and recruitment of the flora species over a 5 year management 

period were generated (Investigations 7 to 9, Table 2.3). Further details of 

each investigation are presented in Table 2.4, with schedules that favor 
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recruitment considered in Investigation 7, schedules that emphasize 

recruitment and maintenances equally in Investigation 8, and schedules that 

favor maintenance in Investigation 9. This was achieved by specifying 

additional weights as part of the calculation of MFAT scores that either 

emphasize recruitment (x1, = 1.0 and x2 = 0.0), maintenance (x1, = 0.0 and x2 = 

1.0), or both (x1, = 0.5 and x2 = 0.5). The weights that control asset, flora type 

and release year (i.e., w1i, w2r, w3v), were set to have equal preference, using 

the same values as in section 2.5.1. The planning horizon for this study was 

five years and seven different environmental water allocation constraints (i.e., 

different amounts of water available for environmental flow purposes), 

ranging from 500 to 12,000 GL (i.e., 500, 2000, 4000, 6000, 8000, 10,000 and 

12,000 GL) were examined (Table 2.4), in order to investigate the impact of a 

number of different water policies (i.e., different amounts of water set aside 

for environmental flow purposes, as opposed to consumptive uses (e.g., 

irrigation, water supply)) on ecological response and the trade-off between 

maintenance and recruitment. Each optimization run for the 21 schedules 

developed was repeated ten times with different starting positions in the 

solution space in order to minimize the impact of the random starting position 

on the results obtained. 

 

2.5.3 Determination of Optimal Trade-Off Between Flora and Fauna 

Ecological Response 

In order to investigate the trade-offs between the requirements of flora and 

fauna, the flow requirements of four fish and waterbird species (see section 

2.4.1.1) were added to those of the flora species used in Investigation 6 of 

section 2.5.1 (Table 2.5), and optimal EFMA schedules generated using the 

proposed ACO-based approach. Details of this study are given in Tables 2.3 

and 2.4, where a single environmental water allocation constraint of 10,000 
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GL was used over the adopted planning horizon of 5 years and different 

weightings were used to either favor fauna (Investigation 10) or flora 

(Investigation 11). The fauna species weights in Investigation 10 equaled 0.25 

and the flora weights equaled 0.0, while in Investigation 11, the flora species 

weights equaled 0.08 and the fauna weights were set to 0.0. The other weights 

(i.e., w1i, w3v, x1 and x2) were set to provide equal preference. As was the case 

in section 2.5.1, each optimization run was repeated ten times from different 

starting positions in the solution space. 

 

2.5.4 Determination of Optimal EFMA Schedules as a Result of 

Hydrograph Inversion 

Many regulated river systems, such as the Murray River, have reversed flow 

regimes with major flows now occurring in summer–autumn (i.e., December 

to May) to sustain human needs, instead of winter–spring (i.e., June to 

November). In order to assess the impact of the hydrograph inversion case, 

two investigations were developed, including Investigation 12, which 

considered an additional seasonal flow constraint, and Investigation 13, which 

had no such constraint. Details of these investigations are given in Tables 2.3 

and 2.4. As can be seen, both flora and fauna species and a 5 year management 

period were considered, as well as a 10,000 GL total water allocation 

constraint. Additionally, equal weight values were used for all the weight 

groups, as was the case in the previous study (section 2.5.1). Table 2.6 

presents the environmental flow allocations that were available in each season. 

As with the previous studies, each optimization run was repeated 10 times. 
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Table 2.6: Seasonal Environmental Flow Allocation used in Investigation 12 

Season Environmental flow allocation (GL) 
Summer (Dec.-Feb.) 1500 
Autumn (Mar.-May.) 1000 

Winter (Aug.-Jul.) 500 
Spring (Sept.-Nov.) 200 

 

2.6 Results and Discussion 

2.6.1 Validation of Optimization Framework 

The MFAT scores obtained using the ACO and heuristic approaches are given 

in Table 2.7. As can be seen, the ecological scores obtained using both 

approaches were the same for the first three investigations. This indicates that 

there do not appear to be any problems with the formulation and 

implementation of the proposed optimization framework. Additionally, the 

ACO-based approach was able to determine management schedules that use 

less water, with the exception of Investigation 2, which had identical 

allocations and scores. Once the number of species was increased to three in 

Investigation 4, the benefit of using the optimization framework was 

demonstrated clearly. The MFAT score of the management schedule obtained 

using the ACO approach was higher than that of the management schedule 

developed using the heuristic approach, with a significantly smaller amount of 

water (i.e., 600 GL less). This demonstrates the ability of the optimization 

approach to search effectively through the large number of potential 

management schedules using the ACO process described in section 2.3.2. This 

results in management schedules that use the available environmental water 

allocation in an efficient manner, as expected, which would be especially 

beneficial during times when water resources are limited and must be 

allocated effectively between competing stakeholders. 
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Table 2.7: Heuristic and ACO Management Schedule Results for 
Investigations 1 to 6 

Investigations 
Heuristic ACO 

Allocation 
(GL) 

MFAT 

Score 
Allocation 

(GL) 
MFAT 

Score 
1 5000 1.00 4650 1.00 
2 1750 0.91 1750 0.91 
3 3500 1.00 3100 1.00 
4 4750 0.86 4150 0.91 
5 10,000 0.67 10,000 0.78 
6 10,000 0.67 9850 0.83 

 

The results for Investigations 5 and 6 (Table 2.7), which were significantly 

more complex since they considered a larger number of plant species (7 and 

12, respectively), provided further evidence of the benefit of the proposed 

optimization approach. For instance, in Investigation 6, the management 

schedules developed using the ACO-based method resulted in an increase in 

MFAT scores of approximately 0.2 for all wetlands and floodplains, despite 

using less water. The corresponding flow releases obtained using the heuristic 

and ACO-based approaches are shown in Figure 2.10. It can be seen that there 

was more variability in the flows in the ACO-based management schedule, 

which ensured that all of the flow components in Figure 2.8 were accounted 

for. Generally, the larger flow releases obtained using both approaches 

occurred at similar times, except for year 2, where the flow releases obtained 

using the ACO-based approach occurred midyear instead of at the end of the 

year. These differences in flow releases contributed to a better MFAT score. In 

particular, there was significant improvement of approximately 0.4 in the 

MFAT score for assets 4 and 5, as shown in Table 2.8 
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Figure 2.10: Monthly flow releases for heuristic and ACO management 
schedule for Investigation 6. 

 

Table 2.8: Difference in Annual MFAT Scores between Management 
Schedules obtained using ACO and Heuristic Approaches for Investigation 6 

Asset Species 
Difference ACO and Heuristic MFAT Scores 

Year 1 Year 2 Year 3 Year 4 Year 5 

4 
Ribbon weed herbland 0.0 0.0 0.0 0.0 0.0 
Giant rush rushland 0.5 0.6 0.5 0.5 0.5 
Rats tail couch grassland 0.0 0.2 0.4 0.3 0.5 

5 
Spiny mudgrass 
grassland 0.3 0.5 0.4 0.4 0.5 
River red gum forest -0.1 0.5 0.6 0.4 0.5 
River red gum woodland 0.0 0.3 0.3 0.2 0.1 

 

It was found that this increase in MFAT score was because some species, such 

as giant rush rushland and spiny mudgrass grassland, were inundated for 

longer than one month. Ideally, giant rush rushland requires inundation for 

120–270 days, while spiny mudgrass grassland requires 150–210 days of 
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inundation. This was clearly not achieved by the management schedule 

developed using the heuristic approach, resulting in a much lower overall 

MFAT score, as the inundation requirement for maintenance was not satisfied. 

Another requirement that was difficult to meet in the development of the 

management schedule using the heuristic approach was the ideal depth for 

some of the floodplain species (e.g., river red gum forest, rats tail couch 

grassland), which corresponds to a certain depth that must be maintained to 

ensure the recruitment of these species. In contrast, this requirement was able 

to be satisfied by the management schedule developed using the ACO 

approach, thereby ensuring that a good recruitment score could be achieved. 

Overall, this study showed that once the number of wetlands and floodplains is 

moderately large, developing a management schedule heuristically over 

multiple years is extremely difficult. This is because there are too many 

wetlands and floodplains with different and competing water demands that 

must be considered. However, the optimization method can deal with these 

complexities with the aid of the searching process outlined in section 2.3. 

Another benefit of the ACO approach over the heuristic approach was that it 

provided a number of possible optimal management schedules for each 

investigation. For example, the releases and corresponding MFAT scores from 

three different management schedules for asset 3 in Investigation 4 generated 

using the ACO approach are shown in Figure 2.11. As can be seen, water was 

allocated to asset 3 twice in the first year in management schedules 1 and 2, 

while this was not the case in schedule 3. This resulted in a lower MFAT score 

of 0.74 in year 1 for schedule 3, while the corresponding score for schedules 1 

and 2 is 0.8. This was because the interperiod for lignum shrubland (Figure 

2.8d) was not achieved for schedule 3. The releases for the three management 

schedules then followed a similar pattern in the second year, where, initially, 

there was a dry period until the end of the year, when asset 3 was inundated. In 
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the third year, there was some variability between the management schedules, 

but generally flows were allocated at the end of the year in each of the 

schedules. Consequently, for years 2 and 3, the MFAT scores were similar for 

all management schedules. In the fourth year, a gate was used as part of 

management schedule 3, the effect of which was shown by the gradual change 

in flow (Figure 2.11). This contributed to a significantly lower maintenance 

score, as a longer duration of flooding negatively affected the wetland 

response. A gate was closed in the fourth year as part of management schedule 

1; however, this did not negatively affect the final MFAT score. Finally, all 

three assets were inundated at the end of the fifth year, indicating that the 

species within this asset prefer to be flooded at the end of the year. This 

comparison can aid in the understanding of how sensitive the assets are to the 

flow regime. By knowing this sensitivity, managers have the ability to develop 

much more effective management schedules that efficiently use the water 

allocated for environmental flow management purposes, while achieving a 

high ecological response. Additionally, it provides wetland managers with a 

variety of different optimal management schedules that could be implemented, 

depending on prevailing social and economic factors, for example. This 

discussion further highlights the complexity of EFMA scheduling, as there are 

many different solutions that result in similar MFAT scores. 
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Figure 2.11: ACO management schedule for Investigation 3. 

 

2.6.2 Determination of Optimal Trade-Offs Between Recruitment and 

Maintenance Scores for Different Flow Allocations 

The optimal trade-offs between recruitment and maintenance scores for total 

environmental water allocations ranging from 500 to 12,000 GL obtained 

using the ACO-based approach are shown in Figure 2.12. As can be seen, at 

an allocation of 500 GL, there was a small recruitment and maintenance 

response of approximately 0.2. However, this increased significantly to an 

average of 0.5 when the water allocation was increased to 2000 GL. The lower 

MFAT scores for the 500 GL allocation were due to insufficient water to 

inundate all of the wetlands and floodplains over the 5 year planning horizon. 

Only the wetlands with lower fill values were inundated. As the allocation 

increases from 2000 to 12,000 GL, more wetlands and floodplains were 

flooded and began to contribute to the overall score. Additional water was 

shown to have a decreasing marginal benefit and reached an asymptote of 
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approximately 0.9, beyond which, further environmental flow allocations 

would not increase the overall MFAT scores. 

 

Figure 2.12: Optimal trade-offs between MFAT recruitment and maintenance 
scores for 500–12,000 GL allocations. 

The maximum score obtained by either favoring maintenance or recruitment 

was approximately 0.9, which was shown by the outer two points for the 

10,000 and 12,000 GL water allocations in Figure 2.12. The maximum value 

of 1.0 could not be achieved for a number of reasons. First, each wetland and 

floodplain had different flow requirements. Second, the maintenance and 

recruitment flow components for particular species were different, for instance 

favoring the maintenance and survival of a plant species such as, river red 

gum, could in turn limit its recruitment and regeneration capacity (George et 

al., 2005; Rogers, 2011b), thus resulting in the inability to achieve the 

maximum response for all ecological processes, simultaneously. Finally, there 

were particular flood factors, such as the interdry flood period, which were 

difficult to satisfy. For example, the interflood dry period response curve was 
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the only one that accounted for flooding over multiple years, while the 

remaining response curves were determined annually. Therefore, it had less 

impact on the objective function (and in turn the resulting management 

schedule), as only one graph governed the flooding over several years. 

Gate operations have the ability to increase significantly the efficiency of 

water use in the management schedule. Changes in gate settings were used 

extensively in the optimal schedules for the 500 and 2000 GL allocations. This 

was expected, since there is significant benefit in using gates to prolong 

inundation when a limited amount of water is available. Gate operations 

featured less prominently in the optimal schedules once allocations increased 

to 8000 GL, particularly if the aim was to favor recruitment or to balance 

recruitment and maintenance. As the flow allocations increased to 10,000 and 

12,000 GL, gates were used to prevent inflows into wetlands, rather than 

prolonging inundation. It was evident from the optimal management schedules 

that the use of gates has the potential to improve MFAT scores, especially at 

times when water is limited and to prevent water flowing into the wetlands 

during flood events. This enables the ecological integrity of wetlands to be 

maintained over a wider range of flow conditions. 

In order to understand better the impact of the flow releases on recruitment 

and maintenance scores, the optimal releases obtained for the 10,000 GL 

allocation for Investigations 7, 8 and 9 were analyzed and are given in Figure 

2.13. Generally, larger releases were scheduled at times that favored the 

timing of the processes that were emphasized by the weight preferences. For 

example, in Investigation 7, larger releases were scheduled between October 

and December (spring to summer), with the majority of the releases being 

allocated in November. This was a reasonable selection of releases for this 

investigation, as nine out of the ten MFAT plant species preferred recruitment 

inundation in November, with inundation in October and December being 
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preferred by seven and eight of the ten species, respectively. In all three 

investigations, most of the releases occurred in November, as the majority of 

the MFAT vegetation species preferred spring inundation for both recruitment 

and maintenance. However, the difficulty in the development of a 

management schedule arises in the determination of the magnitude and 

duration of releases, as these components vary from species to species (see 

Figure 4.8), which the optimization approach was able to account for. The 

maintenance and recruitment scores for each investigation and year are given 

in Table 2.9. It can be seen that, generally, when the preference is to ensure 

recruitment, the scores were approximately 0.95, with the exception of the first 

year. This was because recruitment timing for some species was based on the 

inundation from the previous year. When both recruitment and maintenance 

were favored, the scores were generally similar (see Table 2.9). On the whole, 

it seemed that the recruitment scores were higher than the maintenance scores. 

This was due to the difficulty associated with achieving the required interflood 

dry periods for maintenance, as discussed previously. The investigation 

favoring maintenance achieved an average score of approximately 0.9, while 

the recruitment score was not as high, at 0.6. This suggests that the 

optimization approach was able to ensure that the ideal maintenance flow 

components were met. 
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Figure 2.13: Monthly flow releases for the three points along the 10,000 GL 
allocation trade-off 

 

Table 2.9: Annual Recruitment and Maintenance Scores for the Three 10,000 
Water Allocation Investigations 

Investigation Score 
Year 

1 2 3 4 5 

7 – Favor recruitment Maintenance 0.47 0.48 0.70 0.59 0.62 
Recruitment 0.58 0.97 0.96 0.95 0.95 

8 – Equally favored Maintenance 0.80 0.80 0.84 0.79 0.85 
Recruitment 0.55 0.89 0.93 0.93 0.93 

9 – Favor maintenance Maintenance 0.91 0.91 0.88 0.91 0.92 
Recruitment 0.53 0.66 0.63 0.63 0.62 

 

Overall, the ACO-based approach was able to be guided by the preferences of 

either maintenance, recruitment, or even both, quite successfully. Even though 

the management schedules had similar major release timings, the magnitudes 

for the smaller allocations were different, thus introducing the required flow 

variability to incorporate the ideal recruitment and maintenance flow 
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components shown in Figure 2.8 into the schedule. There was however a 

limitation with the use of MFAT as the ecological indicator, as it was unable 

to account for vegetation encroachment. According to Dolores Bejarano and 

Sordo-Ward (2011) altered flow regimes as a result of dams influence tree and 

shrub establishment patterns along the river and as such should be taken into 

account. Even with this limitation, the approach was able to be used to 

develop near-optimal management schedules based on preferences chosen by 

managers. This is not only restricted to maintenance and recruitment scores, 

but can also incorporate emphases on different types of species or river 

reaches, wetlands and floodplains, as shown in the following subsections. 

 

2.6.3 Determination of the Optimal Trade-Off Between Flora and Fauna 

Ecological Response 

Table 2.10 shows the overall maintenance and recruitment scores for 

Investigations 10 and 11 (i.e., favoring flora and fauna, respectively). As can 

be seen, the overall maintenance and recruitment scores were significantly 

lower for Investigation 11, where fauna was favored, as only four species were 

considered within the objective function and therefore used to guide the ACO 

algorithm. Assets 1 and 5 were particularly affected, achieving a zero 

recruitment score, as there were no fauna species present in these assets, and 

there was therefore no contribution from these assets to the objective function. 

However, the fauna ecological scores in Investigation 10 were high, ranging 

from 0.8 to 1.0, which indicated that the optimization framework could be 

used to successfully find a management schedule that only focused on the 

fauna ecological response. 
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Table 2.10: Maintenance and Recruitment Scores for Investigations 10 and11 

Investigation Maintenance Score Recruitment Score 
10 0.80 0.86 
11 0.68 0.57 

 

On the other hand, higher recruitment and maintenance scores of 0.86 and 0.8, 

respectively, were obtained in Investigation 10. This was because, first, there 

were more species governing the development of the management schedule 

and second, the flora response curves were more difficult to satisfy and needed 

to be incorporated in the objective function, so that the resulting management 

schedules had higher overall MFAT scores. Although the flora species were 

preferred in Investigation 10, the fauna species also achieved high MFAT 

scores. This was because some of the fauna response curves were similar to 

the flora curves. For example, the ideal flood and spawning timing for main 

channel specialist fish, such as Murray Cod, is in late spring (Ralph et al., 

2011), which is within the range required for the ideal timing for the 

maintenance and recruitment of the majority of plant species (i.e., November). 

This suggests that ensuring major flows in late spring not only enhances the 

vegetation within the wetlands and floodplains, but also promotes the 

spawning and of recruitment of fish. Additionally, by flooding 

wetland/floodplain vegetation, habitat productivity is encouraged, resulting in 

an abundance of waterbird prey (Rogers, 2011a) and an ideal environment for 

waterbirds to forage and reproduce. Therefore, by ensuring flora species are of 

good health, the health of waterbird and fish species is also taken into account, 

indicating that in this particular case study, it is best to favor flora over fauna, 

as an overall better MFAT score can be achieved. 

The optimal flow releases for both investigations are presented in Figure 2.14, 

and it can be seen that the larger releases occurred between October and 

December in Investigation 10, which corresponded to the preferred timing 
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(i.e., spring–early summer) for all the vegetation types in the case study. On 

the other hand, in Investigation 11, major releases of lower magnitude were 

scheduled in December, since the fish species preferred that timing and the 

fauna species did not require such high flow releases during that time. 

Additionally, longer inundation times of approximately 6 months in years 1 

and 4 ensured that the waterbird species in asset 3 could achieve the ideal 

inundation duration. In doing so, there was not enough water to support the 

surrounding biota, resulting in a lower overall MFAT score, and in turn, a 

poorer ecological state. 

 

Figure 2.14: Flow releases for Investigations 10 and 11 

 

This study demonstrates the development of management schedules that favor 

specific species and the impact this might have on the remaining species. The 

results suggest that the proposed framework can be applied to cases when 

particular species (e.g., endangered species) need to be favored in the 
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development of EFMA schedules, thereby providing wetland managers with 

valuable information about the trade-offs in ecological outcomes between 

different species for different management schedules. Finally, the study 

demonstrates the flexibility and versatility of the proposed optimization 

framework, as the additional fauna species could be incorporated into the 

study with ease. 

 

2.6.4 Determination of Optimal EFMA Schedules as a Result of 

Hydrograph Inversion 

The average MFAT scores obtained for Investigations 12 and 13 are given in 

Table 2.11. The scores achieved when the seasonal constraints (i.e., 

Investigation 12) were included were lower compared with those produced 

when an overall constraint was applied over the entire 5 year planning horizon 

(i.e., 0.75 and 0.84, respectively). This was because the majority of 

environmental water allocation in the seasonal constraint case was available in 

summer and autumn (i.e., December–May), which was not ideal for the flora 

and fauna species in the case study. For instance, a total release of 200 GL was 

scheduled in spring (with the majority scheduled in summer) when a seasonal 

constraint was applied, while a release of 5450 GL of the 10,000 GL 

allocation was scheduled in the spring months (i.e., September–November) in 

Investigation 13, resulting in a higher MFAT score, as the majority of the 

biota prefer to be inundated at this time. On the other hand the hydrograph 

inversion case score was higher than expected, which may have been due to 

the assumptions made, such as setting the MFAT water temperature score to 

1.0 (see section 2.4.1.1). In reality, river thermal regimes are altered by 

reservoir operations and can have a significant impact on fish species 

spawning (Clarkson and Childs, 2000) and the overall integrity of the 

ecosystem (Olden and Naiman, 2010). Even though, the hydrograph inversion 



71 

scores were relatively high, the seasonal restrictions had an impact on the 

overall ecological health of the river and associated wetlands and floodplains, 

since the required flow was not provided to the biota. However, by using the 

optimization approach introduced in this paper, the best possible ecological 

outcome, given the constraints on the water available for ecological purposes 

at different times of the year, can still be achieved. 

 

Table 2.11: MFAT Scores for each Asset and overall MFAT score for 
Investigation 12 and 13 

Asset 
MFAT Scores 

Investigation 12 Investigation 13 
1 0.72 0.79 
2 0.76 0.90 
3 0.82 0.86 
4 0.71 0.78 
5 0.58 0.77 
6 0.95 0.95 

AVERAGE 
SCORE 0.75 0.84 

 

The individual MFAT scores for each asset are also given in Table 2.11. As 

can be seen, the scores were generally lower when the seasonal constraint was 

applied, with the exception of the fish species at asset 6, which had the same 

score. This was because, first, the ideal inundation duration of one month, as 

well as the ideal dry period of between 6 and 12 months, could be met, and, 

second, the preferred timing for spawning and flooding could both be achieved 

in spring and summer. This means that a high MFAT score for main channel 

specialists can be achieved in cases when the majority of environmental water 

is available in summer or spring. 
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In comparison, there was a significant drop in MFAT scores for assets 2 and 5 

of 0.14 and 0.19, respectively, when the seasonal constraints were applied. 

This was mainly due to lower recruitment and maintenance scores for river red 

gums. Both assets contain this species of vegetation and both had lower 

MFAT scores. This was because the ideal flow requirements were not met, 

particularly the ideal timing for maintenance of current adult habitat and 

germination of seedlings, as both prefer inundation in spring. This indicates 

that for the hydrograph inversion case, there is significant impact on river red 

gums, which might threaten their survival. This impact would be worse if the 

available total environmental water allocation over the 5 year period was 

reduced. In the River Murray, the health and growth of river red gum areas 

have declined as a result of river regulation (Bren, 1988) and for this reason 

wetland management plans in this region focus on maintaining this particular 

species (Tucker et al., 2002). 

Overall, the optimization framework was able to cater to the hydrograph 

inversion case and show that a particular plant species (i.e., river red gum) was 

particularly susceptible to seasonal constraints. It can therefore be used to 

identify species under threat and provide wetland and water resource managers 

with a better understanding of the management schedule that will ensure the 

ecological health of the entire river system, even if the river is regulated. 

Furthermore, the study demonstrated that the optimization framework can 

incorporate other constraints (e.g., seasonal, monthly or yearly), which 

managers may need to employ in other investigations. 
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2.7 Summary and Conclusion 

This paper provides a detailed formulation of the EFMA schedule 

optimization problem (section 2.2) and presents a novel and robust 

optimization framework for solving it (section 2.3). In order to be able to 

account for the sequential nature of the EFMA problem, it has been suggested 

to use ant colony optimization (ACO), as it uses a graph structure to represent 

the problem, which is able to be adjusted dynamically during the construction 

of trial solutions, thereby reducing the size of the search space and increasing 

the chances of finding globally optimal solutions. In order to demonstrate the 

utility of the proposed optimization framework, a case study based on the 

Murray River, Australia, was used, which consists of a river reach, three 

wetlands and two floodplains. In order to evaluate the effectiveness of the 

management schedules developed, the Murray Flow Assessment Tool, MFAT 

(Young et al., 2003) was used. 

To validate the management schedules developed using the ACO-based 

optimization framework, the schedules obtained using the framework were 

initially compared with those developed using a heuristic approach. Although 

it is recognized that the use of a heuristic approach as a basis of comparison 

has its limitations, it provides some degree of validation of the proposed 

optimization approach, as well as illustrating its potential benefits. Six 

investigations of varying complexity were used as part of the validation 

process, with Investigations 1–3 having only one plant species, while the 

number of plant species ranged from 3 to 12 in the remaining three 

investigations. Identical MFAT scores were obtained for the first three 

investigations using both techniques, while for the more complex 

investigations, the management schedules constructed using the optimization 

approach were able to save water and achieve higher MFAT scores than the 

management schedules obtained using the heuristic approach. Based on these 



74 

results, the optimization approach was considered successful in developing 

management schedules for both simple and complex circumstances. 

The optimization framework was then applied to a range of different studies 

that include (1) the development of optimal trade-offs between recruitment 

and maintenance for 12 species of flora for different 5 yearly flow allocations 

ranging from 500 to 12,000 GL, (2) the development of an optimal trade-off in 

ecological response between flora and fauna species, and (3) the development 

of EFMA schedules for a hydrograph inversion case. The results of the first 

study indicated that allocations greater than 10,000 GL did not change the 

final MFAT ecological scores for the wetlands and floodplains. Additionally, a 

maximum score of approximately 1.0 for both recruitment and maintenance 

could not be achieved, as there were competing flow components, where an 

increase in the score for a particular flow component decreased the score of 

another component, and vice versa. The second study indicated that favoring 

fauna species resulted in the surrounding biota having a lower score, while 

prioritizing flora achieved an overall higher score. Finally, the third study 

showed that the hydroinversion case could be easily incorporated within the 

optimization framework, as well as providing information on which species 

were particularly threatened. Overall, these studies were able to provide 

further understanding regarding when recruitment, maintenance, or a 

particular species are favored, the water allocation necessary to improve the 

ecological integrity of biota, as well as developing optimal flow management 

schedules in a regulated river system. This suggests that the proposed 

approach is a valuable tool in achieving the best possible ecological outcomes, 

given particular environmental flow allocations. 
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Abstract 

 
In regulated river systems, such as the River Murray in Australia, the efficient 

use of water to preserve and restore biota in the river, wetlands and 

floodplains is of concern for water managers. Available management options 

include the timing of river flow releases and operation of wetland flow control 

structures. However, the optimal scheduling of these environmental flow 

management alternatives is a difficult task, since there are generally multiple 

wetlands and floodplains with a range of species, as well as a large number of 

management options that need to be considered. Consequently, this problem is 

a multi-objective optimization problem aimed at maximizing ecological benefit 

while minimizing water allocations within the infrastructure constraints of the 

system under consideration. This paper presents a multi-objective 

optimization framework, which is based on a multi-objective ant colony 

optimization approach, for developing optimal trade-offs between water 

allocation and ecological benefit. The framework is applied to a reach of the 

River Murray in South Australia. Two studies are formulated to assess the 

impact of (i) upstream system flow constraints and (ii) additional regulators 

on this trade-off. The results indicate that unless the system flow constraints 

are relaxed, there is limited additional ecological benefit as allocation 

increases. Furthermore the use of regulators can increase ecological benefits 

while using less water. The results illustrate the utility of the framework since 

the impact of flow control infrastructure on the trade-offs between water 

allocation and ecological benefit can be investigated, thereby providing 

valuable insight to managers.  
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3.1 Introduction 

River basin development, including land conversion, over-allocation of water 

and the construction of barriers (e.g. dams) has altered many rivers and their 

adjacent wetlands and floodplains worldwide (Kingsford, 2000; MEA, 2005). 

To preserve and restore these systems, much focus has been given to 

environmental flow management (Arthington and Pusey, 2003; Arthington et 

al., 2010; Kingsford and Auld, 2005; Tharme, 2003), which aims to follow the 

‘natural flow paradigm’ developed by Poff et al. (1997) and “mimic 

components of natural flow variability”, in terms of flow frequency, duration, 

timing, rate of change and magnitude (Arthington et al., 2006). These  flow 

components are integral to maintaining and preserving biota within river-

floodplain system (Junk et al., 1989). 

 

The management and delivery of environmental flows (in terms of the five 

important flow components) is not an easy task, since (i) there are generally 

large numbers of wetlands and floodplains containing a variety of flora and 

fauna with different flow requirements that need to be taken into account, for 

instance, lignum shrubland (Muehlenbeckia florulenta) prefer an inundation 

duration of 1-6 months while great crested grebes prefer 2-5 months (Rogers 

and Ralph, 2011); (ii) there is generally limited water available for 

environmental purposes, given that there are a number of users (e.g. irrigation, 

domestic and industrial supply) all vying for the same water resource (Wallace 

et al., 2003); and (iii) there might be flow restrictions as a result of constraints 

in the system (e.g. upstream flows are limited to particular values in particular 

months) (MDBA, 2011a). Therefore, in order to use environmental water 

effectively and efficiently so as to maximize the ecological integrity of rivers, 

wetlands and floodplains, a number of environmental flow management 

alternatives (EFMAs) can be utilized, including upstream flow releases or the 
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operation of gates and pumps to regulate water entering and leaving wetlands. 

Since decisions in relation to EFMAs (e.g. reservoir flow releases or gate 

operations) are made at discrete timesteps over a specific planning horizon 

(e.g. a number of years) and at numerous locations (e.g. different wetlands), 

the search space for this scheduling problem generally becomes very large, 

especially when extended spatial and temporal scales are considered (Szemis et 

al., 2012). Due to this complexity, there is potential benefit in employing 

optimization approaches to schedule EFMAs to maximize ecological integrity, 

given a particular environmental flow allocation. 

 

Optimization studies in this area have mainly focused on the development of 

optimal reservoir/weir operating rule parameters or monthly reservoir releases, 

while attempting to maintain an appropriate balance between the environment 

and other potential water users (e.g. irrigators), rather than how to schedule a 

given environmental water allocation in order to maximize ecological 

outcomes (e.g. (Chang et al., 2010; Chaves et al., 2003; Higgins et al., 2011; 

Homa et al., 2005; Shiau and Wu, 2004; 2007; Suen and Eheart, 2006; 

Tilmant et al., 2010; Yang, 2011; Yin et al., 2011; Yin et al., 2010)). 

Consequently, ecological objectives have been generally treated in a rather 

simplistic fashion. In order to overcome this shortcoming, Szemis et al.(2012) 

introduced an optimization framework for the development of environmental 

flow management schedules for maximizing the ecological response of rivers, 

wetlands and floodplains that incorporates different EFMAs (i.e. wetland gate 

operations, reservoir releases), flow components (i.e. flood timing, flood 

duration, dry period, depth), and water allocation constraints. The framework 

is also able to cater for the relative importance of different ecological assets, 

species and processes. However, the approach has only been tested on a 

hypothetical case study thus far. In addition, the optimization framework is 
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single objective, whereas in practice, there is significant interest in the optimal 

trade-offs between the amount of water allocated to the environment and the 

corresponding optimal ecological responses of affected wetlands and 

floodplains or particular species. 

 

In order to address the shortcomings in existing literature identified above, the 

objectives of this paper are (i) to extend the single-objective optimization 

approach developed by Szemis et al.(2012) to include multiple objectives and 

compare the performance of three multi-objective algorithms in order to 

determine which is most suitable for the EFMA optimization problem, so that 

the optimal trade-offs between ecological response and environmental flow 

allocations can be obtained, and (ii) to apply the approach to a real case study 

in the South Australian reaches of the River Murray. This case study is well 

suited to testing the multi-objective EFMA approach, as flow in the River 

Murray is over-allocated and a number of options are being considered for 

increasing the ecological health of the many wetlands and floodplains in the 

region. These include different environmental flow allocations and 

infrastructure options for maximizing the benefit of these allocations. One of 

these infrastructure options is the utilization of wetland regulators to enable 

direct control over the flow regime in the wetlands (e.g. introducing a drying 

phase to wetlands that are permanently inundated) and to reduce evaporation 

losses (Higgins et al., 2011). However, where these regulators should be 

located and how they should be operated, as well as their effect on the optimal 

trade-offs between the amount of water allocated to the environment and the 

corresponding optimal ecological response, is unknown. The second 

infrastructure option considered is the potential increase in the maximum rate 

of upstream environmental flow releases, thereby enabling the magnitude of 

flow events, and hence levels of inundation, to be increased. However, the 
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impact of these system constraints on the optimal trade-offs between 

environmental flow allocations and ecological response is currently unknown.  

 

The remainder of this paper is organized as follows. The case study area, 

problem formulation and multi-objective optimization approach used to 

develop the environmental flow management schedules, including the 

comparative study of three multi-objective algorithms, are described in 

Sections 3.2 and 3.3. The analyses conducted are described in Section 3.4, 

while the results, discussion and limitations are discussed in Section 3.5. 

Finally, the conclusions of the study are given in Section 3.6. 

 

3.2 Case Study: River Murray in South Australia 

The South Australian reaches of the River Murray are part of the Murray-

Darling river system, which is located in south eastern Australia and spans a 

number of Australian States, including Victoria, New South Wales, 

Queensland and South Australia (see Figure 3.1) (Reid and Brooks, 2000). 

Since the 1920s, the South Australian reaches of the River Murray have 

become significantly regulated with the construction of six locks along the 

river channel and a number of upstream structures in New South Wales and 

Victoria (George et al., 2005). An annual water entitlement of 1,850 GL has 

been allocated to South Australia by the Murray-Darling Basin Authority 

(MBDA). This is predominantly for main channel flows, irrigation and water 

supply for Adelaide, the capital of South Australia, which has a population of 

1.21 million (ABS, 2012), with only 38.7 GL of this entitlement being used for 

wetlands, and recreational and environmental use (SAMDBNRM, 2009). 
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The increase in river regulation and over-allocation of water (due to an 

expansion of irrigation), and the effect of drought over a long period of time, 

have reduced the flow variability within the river system and highly stressed 

and altered the biota in the river and adjacent wetlands and floodplains 

(Overton et al., 2010). In response, the Commonwealth Government of 

Australia approved a basin wide plan developed by the MDBA that 

determined the water allocation for each user and intends to increase the 

annual environmental water for the entire basin by 3,200 GL/yr, taking it to a 

total volume of 4,023 GL/yr (MDBA, 2012c). In addition, the MBDA modeled 

and recommended the relaxation of system constraints, such as increasing the 

maximum flow releases from Hume Dam (an upstream dam) from 25,000 to 

40,000 ML/day in order to allow higher flows to reach the South Australian 

River Murray and inundate mid to high elevation floodplains (MDBA, 2012d). 

However, many scientists recommend that further investigations should be 

conducted to assess the impact of an increase in the environmental water 

allocation to 4,000 GL/yr, ensuring that high-elevation floodplains are 

inundated periodically (GSA, 2012). 

 

The case study area under investigation is a reach of the River Murray 

between Locks 1 and 2, shown in Figure 3.1. This reach spans 89.0 kilometers 

(Overton et al., 2006) and accommodates eight wetlands and a large number 

of high lying floodplains along the river channel. Due to the construction of 

the locks, the wetlands closer to Lock 1 have become permanently inundated 

(i.e. continual connection to the river) and experience no drying, which has 

reduced the ecological health of the biota, such as Lignum (Muehlenbeckia 

florulenta), which dies when inundated for a prolonged period of time 

(Kingsford, 2000; Smith and Smith, 1990; Walker and Thoms, 1993). In 

contrast, wetlands closer to Lock 2 are temporary and rarely inundated due to 
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upstream system constraints. Each wetland and surrounding floodplain houses 

a variety of flora and fauna, ranging from high-lying river red gums 

(Eucalyptus camaldulensis) to water birds and fish (e.g. ibis and carp 

gudgeon) (Turner, 2007). 

 

Figure 3.1: Map of case study area adapted from Murray-Darling Basin 
Authority website (http://www.mdba.gov.au/river-data/spatial-data-

services/spatial-information). 
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As discussed in Section 3.1, the use of wetland regulators has been suggested 

in the case study area. Currently there are two wetlands with gates (Schultz, 

2007; Turner, 2007), with a proposal to add flow regulation systems to a 

further three (EA, 2007; Overton et al., 2010). In addition to the manipulation 

of regulators, ecological response can also be influenced by upstream flow 

releases from the South Australian border. As stated in the Introduction, the 

objectives of this paper are to investigate the effect system constraints and 

regulator locations and settings have on the optimal trade-off between 

environmental flow allocations and different aspects of ecological integrity 

within the case study area. The methodology for achieving this is given in the 

next section. 

 

3.3 Methodology 

In order to investigate the optimal trade-offs between environmental flow 

allocations and ecological response(s) for the case study area under a range of 

scenarios, optimal EFMA schedules (i.e. flow releases and regulator settings) 

have to be identified over the selected planning horizon. This is achieved by 

modifying the optimization framework presented by Szemis et al. (2012) to 

incorporate a multi-objective optimization approach. The steps in the 

framework are shown in Figure 3.2 and include problem formulation, which 

includes the identification of the river reaches, wetlands and floodplains to be 

managed, as well as the indicator(s) for measuring ecological response, and 

potential management alternatives and associated suboptions (Section 3.3.1). 

The objective function and constraints are then identified (Section 3.3.2), after 

which a trial schedule of flow releases and regulator settings can be developed 

over the adopted planning horizon, and assessed by calculating the objective 

functions using a hydrological model (Section 3.3.3). 
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Figure 3.2: Steps in optimization framework 

This process of developing and evaluating management schedules is repeated 

multiple times and guided by a multi-objective optimization algorithm in order 

to develop the final Pareto front, which contains EFMAs that represent the 

optimal trade-offs between the total environmental flow allocation and the 

corresponding ecological response(s). Based on the rationale presented in 

Szemis et al.(2012), Ant Colony Optimization (ACO) is used as the 

optimization algorithm, since (i) it can solve complex non-linear problems, in 

contrast to traditional optimization methods, such as linear programming, 

which can only solve linear problems (Taha, 1997), and dynamic 

programming, which suffers from the ‘curse of dimensionality’ (Madej et al., 

2006), and (ii) unlike other metaheuristics, such as Genetic Algorithms 

(Goldberg, 1989), it can accommodate the sequential nature and the 

conditional dependencies of the EFMA scheduling problem by using a 

decision tree graph to represent the problem (Szemis et al., 2012), and is 

capable of adjusting constraints dynamically during the optimization process 
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in order to reduce the size of the search space (Afshar, 2010; Foong et al., 

2007; 2008a; Szemis et al., 2012).  In order to ensure that the most appropriate 

multi-objective ACO algorithm is selected, a comparison between three multi-

objective ACO algorithms is conducted, as discussed in Section 3.3.5. 

 

3.3.1 Problem Formulation 

3.3.1.1 Identification of assets and ecological indicators 

The first step of the Problem Formulation stage involves the identification of 

the ecological assets to be managed, Hi, where i ranges from 1 to q. In this 

case study, the management of eight wetland areas is considered (i.e. q=8) 

(Step 1, Table 3.1), which include the wetlands themselves, the high-lying 

floodplain areas surrounding the wetlands, and the adjacent main river 

channel. Baseline surveys and wetland management plans have been used to 

delineate areas of vegetation within the wetland and floodplain areas, as well 

as to identify the location of certain fish and waterbirds (EA, 2007; Marsland 

and Nicol, 2008; Schultz, 2007; SKM, 2004; Smith and Fleer, 2006; Turner, 

2007; Waanders, 2007; Watkins et al., 2007).  

 

The Murray Flow Assessment Tool (MFAT) developed by Young et al., 

(2003) is used as the ecological indicator (Ei,r, where r is the number of 

species per wetland or floodplain) in order to quantify the ecological response 

of each species (i.e. vegetation, waterbird and fish) within the river, and 

adjacent wetlands and floodplains (Step 2, Table 3.1). MFAT is a habitat 

simulation model that was developed specifically for the River Murray and 

can be used to determine the impact of different flow scenarios on the 

ecological response of biota in terms of two ecological processes, that is, 

recruitment (e.g. promoting seed germination) and maintenance (e.g. 
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preserving adult habitat) (Young et al., 2003). This is achieved by using a 

number of response curves that are based on the five flow components 

discussed previously (i.e. frequency, duration, timing, rate of change and 

magnitude) and include factors such as depth, dry period, flood timing, rate of 

depth change, inundation area and flow magnitude. The response curves used 

for the case study area are those given in CRCFW (2003) and Overton et al 

(2010), and include species such as river red gum (Eucalyptus camaldulensis), 

black box woodland (Eucalyptus largiflorens), ribbon weed herbland 

(Vallisneria americana), main channel specialists (e.g. Murray cod) and 

colonial nesting waterbirds. It should be noted that as part of the MFAT score 

calculation, weights need to be placed on the recruitment and maintenance 

processes, which are chosen based on literature or expert opinion. A total of 

211 species have been defined for the case study area and the proportions of 

each species type per wetland are given in Table 3.2. As can be seen, 

approximately 60% of the species are floodplain flora, followed by waterbirds, 

fish and a small proportion of wetland flora.  

Table 3.1:: Details of Problem Formulation for Case Study 

Problem Formulation Steps Specification 
1 Managed Ecological Assets  

Hi, i=1 to q q = 8 

2 Ecological Indicator 
Ei,r r=1 to s(i) 

Murray Flow Assessment Tool 
(MFAT) (Young et al., 2003) 

 
Total number of species = 211 

3 

Planning Horizon  
Yv, v=1 to K YK = 5 years 
Time Interval 
 t,  t=1 to T Monthly, T  =  60 months 

4 Management Alternatives 
Ma ,  a=1 to h 

h = 6 
(1 reach and 5 asset scale) 

5 
Management Alternative 
Suboption 
Ma,m and/or Ma,d  

Reach – magnitude & duration 
Asset – duration 
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Table 3.2: Species composition in case study area 

Asset Wetland 
Name 

Species Composition (% per asset) 
Regulator Floodplain 

Flora 
Wetland 

Flora Waterbird Fish 
1 Markaranka 50.0 0.0 42.0 8.0 - 
2 Cadell 73.0 0.0 18.0 18.0 - 
3 Morgan 50.0 11.0 25.0 14.0 Current 
4 Brenda Park 53.0 0.0 29.0 18.0 Current 
5 Murbko Flat 64.0 13.0 17.0 6.0 Proposed 
6 Murbko 

South 85.0 4.0 0.0 11.0 - 
7 Murbpook 52.0 7.0 30.0 11.0 Proposed 
8 Sinclair 61.0 22.0 0.0 17.0 Proposed 

 

3.3.1.2 Selection of Planning Horizon and Time Interval 

The third step of the problem formulation includes the selection of the 

planning horizon, Yv (v=1, K years) and time interval, t, where t ranges from 1 

to the final interval, T (Table 3.1). A planning horizon of five years has been 

selected, as environmental water management plans in the study area are 

generally developed over five years (EA, 2007; Schultz, 2007), while a 

monthly timestep has been chosen, since wetland gate operations are set on a 

month by month basis (Schultz, 2007; Turner, 2007). This meant that the final 

interval, T, equals 60. 

 

3.3.1.3 Determination of Management Alternatives and Suboptions 

The identification of the management alternatives Ma, (where a ranges from 1 

to h) and suboptions constitute the final two steps of the problem formulation 

process. The environmental flow release at the South Australian border has 

been selected as the sole reach scale management alternative, while the asset 

scale management alternatives include the operations of gates at selected 

wetlands. Currently, flow at two wetlands (i.e. Morgan and Brenda Park, see 

Figure 3.1) can be regulated, with another three being proposed, as shown in 
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Table 3.2. Consequently, there are six management alternatives (i.e. h=6) that 

can be considered in the development of environmental flow management 

schedules (Table 3.1). Next, the suboptions for each of the management 

alternatives, Ma are defined. Duration, Ma,d, and magnitude, Ma,m, suboptions 

have been selected as the only reach scale management suboptions, while 

duration suboptions have been selected for all asset scale management 

alternatives (see Table 3.1.). The number of possible duration suboptions 

(Ma,d) available at each monthly timestep ranges from 1 to p, with p varying 

from 12 in January to 1 in December. On the other hand, the number of 

magnitude suboptions ranges from 1 to n, with the selection of the maximum 

number of magnitude suboptions (n) dependent on the case study area and 

system constraints. This is discussed detail in the next Section.  

 

3.3.2 Identification of Objective Functions and Constraints 

Once the problem has been formulated, the objective functions and constraints 

need to be defined (Figure 3.1). As discussed previously, the two broad 

objectives that need to be considered in the problem being addressed are the 

maximization of ecological response and the minimization of environmental 

water allocation.  However, as ecological response is comprised of a number 

of different components (e.g. different types of ecological assets such as 

wetlands, and floodplains, different species, different ecological processes), 

the objective of optimizing ecological response can be represented by one or 

more objective functions, corresponding to different levels of aggregation of 

these components.  In order to account for this, the single ecological response 

objective introduced by Szemis et al, (2012) has been modified to enable 

consideration of multiple ecological objectives. To develop the multi-

ecological response objective, the number of assets, species and years 

considered in the case study area need to be defined as sets. Consequently, the 
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number of assets ranging from 1 to q is defined in set H, while the number of 

species per ith asset (e.g. wetland) is identified as the Ri set, with each ith asset 

housing s(i) species. Finally, the total year set, V, ranging from 1 to a 

maximum year of YK is also defined, with the sets shown below. 

    {       } 

   {          } 

  {        } 

Once the asset, species and year sets have been defined, the ecological 

components that are of interest (e.g. specific area of wetlands or vegetation 

species) as part of the gth ecological response objective, where g ranges from 

1 to fg, are defined in the form of g subsets, which also range from 1 to fg.  

When fg = 1, a single objective function is used, in which the ecological 

responses of all components are aggregated, when fg =2, two ecological 

objective functions are used in which different sub-sets of ecological 

components are considered and so on. The subsets are given below. 

       

       ,               g = 1 to fg 

     

where Hg is the gth subset of H and contains ecological components related to 

the assets and enables examination of the ecological response of wetlands and 

floodplains at different locations, while Ri,g is the gth subset of Ri and contains 

information about which species (e.g. fish) are  included in the gth ecological 

response objective. Lastly, Vg is the gth subset of V, which defines the years 
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considered and allows for the investigation of ecological responses at a 

specific year or over a number of years.  

 

Once the fg subsets are defined, each of the g ecological response objectives 

can be determined using Equation 3.1. It should be noted that each objective 

function includes weights in order to account for the relative importance of 

various aspects of the problem, such as favoring certain species or wetlands. 

     ∑   

    

∑    

      

∑
         

    
    

                         

     ∑   

    

∑    

      

∑
         

    
    

                         

                                                                                  (3.1) 

      ∑    

     

∑    

       

∑
         

     
     

                  

where Ei,v,r is the MFAT value for asset i, for indicator type r in the vth yearly 

time interval for each of the g objective functions corresponding to g separate 

ecological components. In Equation 1, each of the g objective function values 

is obtained by summing (i) values of each ecological indicator used in the 

particular objective function over the wetland areas (including the floodplain 

areas surrounding the wetlands and the adjacent river reach) defined in subset 

Ig(ii) values of the species indicators identified in Ri,g to be aggregated in the 

gth objective function, and (iii) ecological indicator values used in the 

particular objective function over the years defined in subset Vg, over which 

the schedule of EFMAs has been developed (i.e. the planning horizon, which 

is five years in this instance), with the total number of years considered in the 
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gth ecological response function defined as YK,g. Weights, w1i, w2r  and , w3v  

place emphasis on the ith wetlands, floodplains or river reaches, rth ecological 

indicator and YKth year, respectively, and are defined by the user before 

commencement of the optimization process. Consequently, each objective 

function is sufficiently flexible to cater for particular aspects of the problem 

(e.g. favoring sensitive or endangered species). 

 

Another component of the extension from the single to the multi-objective 

optimization framework presented in this paper is the addition of an 

environmental water allocation objective, FW, which accounts for the total 

amount of environmental water that is allocated over the five year planning 

horizon and is given below: 





T

t
tW AF

1
                                                 (3.2) 

where At is the environmental water allocation in month t, which is calculated 

using the reach scale management alternative magnitude suboptions selected 

at each tth timestep.  

 

In addition, constraints are defined on the magnitude and duration of the 

suboptions for a particular management alternative, Ma, as given in Equations 

3.3 and 3.4: 

      max_,,min_, mamama MMM  ,         nm   to1                       (3.3) 

  max_,,min_, dadada MMM   ,          pd   to1                        (3.4) 
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where the magnitude suboptions (Ma,m) are constrained by minimum and 

maximum values of Ma,m_min and Ma,m_max, respectively, and the duration 

suboptions (Ma,d) are constrained by minimum and maximum values of 

Ma,d_min and Ma,d_max, respectively, for each management alternative. Each 

management alternative must therefore be assessed individually in order to 

determine appropriate values for the above constraints. The specification of 

Ma,m_min, Ma,m_max, Ma,d_min and Ma,d_max is user-defined, based on the 

requirements of the case study area under consideration (e.g. Ma,m_max could be 

selected based on a maximum achievable flow in the case study area). 

 

A further constraint relates to the maximum allowable monthly flow at the 

South Australian border, which permits the assessment of the impact of system 

flow constraints, and is given as follows: 

maxtt QQ   ,          Tt   to1                                    (3.5) 

The monthly flow has been defined as Qt, while Qtmax is the maximum flow at 

the South Australian border each tth month. The selection of Qtmax is user-

defined and is generally based on system constraints within the case study 

area.  

 

3.3.3 Development of Management Schedules 

After the objectives and constraints have been defined, management schedules 

are developed (as shown in Figure 3.2), which is done by selecting values for 

each of the suboptions. Based on the framework developed by Szemis et al. 

(2012), the management alternatives and suboptions are represented in the 

form of a decision tree graph, which is able take into account the sequential 

nature and temporal dependencies associated with the EFMA scheduling 
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problem (e.g. the fact that the values of decision variables selected at one time 

period, such as the duration of a particular flow release, have an effect on the 

options that are available at subsequent time periods). Using this graph, a 

management schedule is developed by selecting one of the available 

alternatives at each of the nodes. Determination of the management schedules 

that provide the best possible trade-offs between the competing objectives of 

minimizing the environmental water allocation and maximizing the ecological 

response(s) is achieved over a number of iterations with the aid of the multi-

objective ant colony optimization algorithm, details of which are given in 

Section 3.3.5. 

 

An example decision tree graph that incorporates magnitude and duration 

suboptions, as well as the conditional dependencies associated with the 

duration suboptions via dynamic constraints, is given in Figure 3.3. The 

example considers four magnitude options (i.e. 0, 200, 400 and 800 gigalitres 

(GL)) and three duration suboptions, and is constructed over three time steps.  

 

Figure 3.3: Example of an EFMA schedule graph for environmental flow 
releases (In Gigalitres (GL)) incorporating dynamic constraints 

If the maximum duration has been selected at the first time step, then no other 

decision paths need to be made available at subsequent time steps (decision 
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points), as shown by the bottom path in Figure 3.3. In this way, the decision 

tree is adjusted based on the selection made at the first decision point, thereby 

reducing the size of the search space and increasing the likelihood that global 

or near globally optimal solutions are identified. On the other hand, if a 

duration option of one is chosen at the first time step (top path), then the 

potential duration suboptions are considered again at the following timestep. 

However, the number of available options decreases from three to two, as 

there are only two more time steps remaining. If the number of available 

duration suboptions is not adjusted dynamically then three duration options 

would be considered after each magnitude suboption, which results in a 

significantly larger search space. Therefore, this form of dynamically 

constraining the decision tree graph ensures that feasible EFMA schedules are 

developed, as well as ensuring that the optimization algorithm is able to find 

optimal solutions more efficiently and cater for the conditional dependencies 

associated with the EFMA problem (Szemis et al., 2012). 

 

3.3.4 Calculation of Objective Functions 

In order to evaluate the objective functions defined in Section 3.3.2 for the 

selected management schedules, a hydrological simulation model is developed 

for the river reach under investigation. This is achieved with the aid of 

backwater curves (T. Bjornsson, personal communication, 2010) that relate 

river height to river flows at the South Australia border (e.g. 5,000ML/day, 

10,000ML/day). This allows a relationship between flow and river height 

along the length of the main channel to be developed, such that for a certain 

flow release at the South Australian border, the corresponding river height at 

the eight wetland locations can be determined. In addition to this, fill values 

(i.e. the river level at which the wetland or floodplain is flooded) at the eight 

wetland locations, as well as area vs. average depth curves for each of the 
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specified areas of floodplain and wetland flora and fauna, have been 

determined using ArcGIS and a range of data sources, including a Digital 

Elevation Model (DEM) obtained from the Department of Environmental, 

Water and Natural Resources baseline surveys (Marsland and Nicol, 2008; 

SKM, 2004; Smith and Fleer, 2006; Waanders, 2007) and wetland 

management plans (EA, 2007; Schultz, 2007; Turner, 2007). Once the flow vs. 

river height relationships have been developed and the fill values obtained, the 

hydrological models can be developed using the equations employed in Szemis 

et al. (2012), as detailed below. 

 

To ensure that the model adequately simulates the hydrology, whereby 

wetlands fill quickly once the river level breaches the fill value and when 

gates are opened, Equation 3.6 is used, while Equation 3.7 is utilized to 

simulate the slow draining of a wetland when the gates are closed, or when the 

river level drops below the fill value. Equation 3.6 represents the water 

balance for a wetland as follows: 

tttt SSOI  1                                            (3.6) 

where It are the inflows, Ot are the outflows, and St are the storages at time t. 

The outflows Ot are the sum of the flows out of the wetland (Ow) and 

evaporation (Et), while the inflows are the sum of rainfall (Rt) and flows into 

the wetland. A simple relationship of 7.0 (pan evaporation) is used to 

determine the evaporation from wetlands, in meters/month, with average 

monthly evaporation sourced from the Australian Bureau of Meteorology 

website (http://www.bom.gov.au/climate/data/). The value of 0.7 is chosen as 

it is a common value used to determine evaporation within the Murray Darling 

Basin (Gippel, 2006). 
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To simulate gate operation, logic (If-Then) statements are used to adjust the 

appropriate components of the water balance equations. If a gate is closed, the 

inflow at that timestep is set to zero (i.e. It = 0.0) and if there is water in the 

wetland at that time, wetland storage at subsequent timesteps is only affected 

by rainfall and evaporation for the duration of the gate closure, as follows:   

   tttt RESS 1                                         (3.7) 

If there is water remaining in the wetland at the timestep the gate is opened, 

water is allowed to flow out of the wetland until the fill value is reached, after 

which water remains in the wetland and only is affected by evaporation and 

rainfall (i.e. Equation 3.10). It should be noted that average monthly rainfall 

data in the case study area have been used. These were obtained from the 

Australian Bureau of Meteorology website 

(http://www.bom.gov.au/climate/data/). 

 

Once the river level is above the fill value or maximum gate height (i.e. the 

maximum river level at which the gate can operate), the floodplain 

hydrological model is used. This model utilizes Equation 3.6, whereby 

floodplain hydrology is only dependent on the river level (i.e. if the river level 

is above the fill value, the floodplain is inundated and the area of flooding is 

dependent on the height of the river. For example, as the river level increases, 

so does the area and depth of inundation). It should be noted that the mass 

balance constraints associated with the problem are also satisfied within each 

hydrological model. 
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A number of assumptions have also been made for both models, including, (i) 

water seepage is negligible since it is small compared to the evaporation loss, 

and (ii) the rate of river level rise and fall occurs over each month. 

Additionally, the storage capacity of the wetlands has been examined and it 

has been determined that this is very small compared with the magnitude of 

the streamflows, and thus has a negligible effect on downstream flows.  

 

3.3.5 Multi-objective Optimization 

As mentioned in Section 3.3, a multi-objective ACO algorithm is used to 

iteratively determine management schedules that improve all objective 

functions with the aim of finding schedules that represent globally optimal or 

near globally optimal trade-offs between all objectives (i.e. schedules that are 

on the Pareto front – see Figure 3.2). The traditional multi-objective ACO 

procedure for determining optimal or near optimal trade-offs is shown in 

Figure 3.4, where a trial EFMA schedule is initialized, after which the 

optimization process takes place. This firstly involves the construction of a 

trial schedule for each b ants during each iteration. Ants achieve this by 

traveling to each timestep and selecting magnitude and duration suboptions 

until they reach the final timestep, T. The selection of these suboptions is done 

probabilistically based on the j pheromone matrices (τj) associated with each 

suboption, with the number of pheromone matrices used dependent on the 

multi-objective ACO algorithm used, as discussed below. As part of the 

optimization process, the j pheromone matrices are manipulated to increase 

pheromone levels for suboptions that have contributed to good overall 

solutions, so that they are more likely to be selected in subsequent iterations. 

Additionally, pheromone evaporation is applied to suboptions of schedules 

that do not perform well, which in turn deters the algorithm from choosing 

these paths again. 
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Once an iteration has been completed by an ant, the resulting schedule is 

evaluated using fitness functions, which are the objective functions (i.e. 

Equations 3.1 and 3.2) transformed in order to efficiently guide the search of 

the algorithms. Further details regarding the fitness functions are given in 

Section 3.3.5.4. The calculation of the fitness functions is achieved with the 

aid of the hydrological model of the case study area (see Section 3.3.4). This 

model is also used to assess whether there are any constraint violations (see 

Section 3.3.5.4). The process of selecting an EFMA schedule and evaluating it 

against the fitness functions is repeated for each ant. The pheromone levels are 

then updated and this process continues until the maximum iteration, w, is 

reached. It should be noted, that once the final iteration is complete, the 

convergence of the Pareto front is checked using the hypervolume, which 

measures the volume of area dominated by the approximated Pareto front set 

(Zitzler and Thiele, 1999). This has been selected to indicate the point at 

which there is no further reduction in the volume of the Pareto front, thereby 

suggesting convergence has been reached. 

 

As part of this study, the performance of three multi-objective ACO 

algorithms that utilize the traditional ACO procedure (shown in Figure 3.4) 

has been compared to determine the most suitable algorithm for the case study 

area. The algorithms considered include the Pareto Ant Colony Optimization 

Algorithm (PACOA) (Doerner et al., 2004), COMPETants (Doerner et al., 

2003) and m-ACO variant 3 (m-ACO3) (Alaya et al., 2007). These algorithms 

have been selected because they use different pheromone updating approaches 

in determining the optimal or near optimal trade-off. PACOA uses multiple 

pheromone matrices, as well as the best and second best solution during the 
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pheromone update process, COMPETants uses multiple colonies and 

pheromone matrices, while m-ACO3 employs a single pheromone matrix and 

updates the pheromone level using the non-dominated solutions determined 

after each iteration. It should be noted that other ACO algorithms, such as the 

population based ACO (Guntsch and Middendorf, 2003), have not been 

considered in this comparison, as they do not follow the traditional ACO 

process shown in Figure 3.4. A description of the three algorithms used, and 

the pheromone update process utilized in each, is presented in the following 

sections. 

 

Figure 3.4: Traditional Ant Colony Optimization Procedure 
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3.3.5.1 Pareto Ant Colony Optimization 

The PACOA developed by Doerner et al. (2004) utilizes Ant Colony Systems 

(Dorigo and Gambardella, 1997a) as the underlying ACO algorithm, 

however, unlike Ant Colony Systems, it uses both the first and second best 

solutions during the global pheromone update (García-Martínez et al., 2007). 

In addition, the algorithm employs multiple pheromone matrices, one for each 

objective considered. The pheromone update process is given by the following 

equation:  

j
t

j
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where the pheromone level on all suboptions is reduced at a rate that is 

controlled by the pheromone evaporation factor (ρ), while an increase in 

pheromone levels for each j-th fitness function (Δτj) is based on whether that 

particular suboption is part of the best or second best solution. The b trial 

schedules generated by the b ants then undergo a non-dominated sorting 

process in order to determine the schedules that are on the Pareto front for that 

particular iteration and are subsequently stored in an offline storage matrix. 

Readers are referred to Doerner et al. (2004) for a detailed description and the 

equations used in the PACOA. 

 

3.3.5.2 COMPETants  

The COMPETants algorithm proposed by Doerner et al. (2003) utilizes 

multiple colonies and pheromone matrices to determine the optimal or near-
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optimal Pareto front. Each colony focuses on one objective and constructs 

solutions independently from each other, with the exception of a group of ants, 

called spies, that use a weighted sum approach that aggregates the pheromone 

matrices for each objective.  

 

As was done by López-Ibáñez and Stützle (2012), the COMPETants algorithm 

is formulated using a single-colony algorithm in which the ants are divided 

into subgroups that either focus on a given objective or act as spies. The 

pheromone levels for each subgroup are then updated using Equation 3.8, with 

the level of pheromone increase for each jth objective, j
t , given in Equation 

3.9 as follows: 

otherwise.
objective,jth  for thesolution best in  issuboption  if        

0
10





 j
t           (3.9) 

The update process is independent for each subgroup, such that ants from each 

subgroup update their own pheromone matrix using the best solution. 

 

As was done by López-Ibáñez and Stützle (2012), the COMPETants algorithm 

employed in this study equally portioned the number of ants used between the 

j objectives and spy subgroups. For further information regarding the 

COMPETants algorithm, readers are referred to Doerner et al. (2003) and 

López-Ibáñez and Stützle (2012). 

 

3.3.5.3 m-ACO variant 3 (m-ACO3)  

The ACO variant suggested by Alaya et al. (2007) proposes the use of a single 

pheromone matrix, which is updated using the non-dominated solution 
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determined in the current iteration set. The pheromone values, j
t , are updated 

using Equation 3.8 (with j=1.0) and the increase in pheromone level ( j
t ) 

during the pheromone update process is based on whether a sub-option is in 

the non-dominated solution set for the current iterations, P, which is shown in 

Equation 3.10. 

otherwise.
P,in  issuboption  if        

0
10





 j
t                              (3.10) 

This is different to the two previous algorithms, which use the best solutions to 

update pheromone levels after each iteration. 

 

3.3.5.4 Fitness Function 

Before the performance of the multi-objective ACO algorithms can be 

compared, the objectives defined in Equations 3.1 and 3.2 need to be 

transformed to fitness functions (i.e. Equations 3.11 and 3.12) in order to 

effectively guide the search of the algorithms, as the algorithms (i) attempt to 

minimize all objectives, whereas the aim of this study involves the 

minimization of the environmental water allocation objective and the 

maximization of the fg ecological response objectives (i.e. MFAT score), and 

(ii) like other evolutionary algorithms, are unable to explicitly take into 

account the constraints that are not directly related to the decision variables, 

necessitating the inclusion of penalties in the fitness functions. Therefore, the 

following fitness function/s  (YE,fg) have been developed, such that FE,fg would 

be maximized: 
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




 violationconstraint system if     

   violationconstraint no if
000,1
0

,gEPenalty ,          g = 1 to fg 

As can be seen, a penalty of 1,000 is used if the system flow constraints at the 

South Australia border are violated for the fg ecological response objectives 

considered. This value was found to produce good results as part of 

preliminary trials. 

 

The fitness function corresponding to the objective of minimizing the total 

environmental water allocation (FW, Equation 3.2), YW, is shown below. 

WWW PenaltyFY                                             (3.12) 
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    violationconstraint no if
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In order to take into account the system flow constraints, the fitness function 

above also includes a penalty to deter the algorithms from selecting infeasible 

solutions and instead encourage the determination of optimal schedules within 

the given constraints. The optimal form of the penalty was determined as part 

of preliminary trials and has been selected since it is able to severely penalize 

solutions that include flows that significantly exceed system constraints, while 

marginally penalizing solutions that include only slight violations of system 

constraints. This deters the algorithm from developing infeasible solutions, 

while simultaneously encouraging the search for good solutions and quicker 

convergence. 
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3.3.5.5 Comparison of Performance of Multi-objective Optimisation 

Algorithms 

 

Before the performance of the multi-objective ACO algorithms can be 

compared, a comprehensive sensitivity analysis is required to determine the 

optimal values of the parameters that control the searching behavior of each 

algorithm. The range of values tested, as well as the final values selected, are 

given in Tables 3.3 and 4. As can be seen in Table 3.4, two different sets of 

optimal parameter sets are selected, depending on the size of the search space, 

as dictated by the number of management alternatives (h) considered within 

the EFMA schedule development. It should be noted that each sensitivity run 

was repeated ten times (i.e. with 10 random starting positions in decision 

space) so as to minimize the impact of the starting position on the results 

obtained. 

Table 3.3: Range of ACO parameters investigated for each algorithm 

ACO Parameter Range of Values Tested 

Number of ants (ant) 30,300,510,1200 
Initial pheromone (  

 ) 1.0, 10.0 
Evaporation rate (ρ) 0.02, 0.1, 0.5, 0.9, 0.98  
Evaluations 102,000, 240,000 

 

Table 3.4: Adopted ACO parameters for each algorithm 

PACOA 
Parameter 

Adopted Value(s)  
h<4 h=6 

PACOA COMPETants m-ACO3 PACOA COMPETants m-ACO3 
Number of ants 
(ant) 300 510 30 510 1,200 300 
Initial 
pheromone (  

 ) 1.0 1.0 1.0 1.0 1.0 1.0 

Evaporation rate 
(ρ) 0.1 0.1 0.1 0.1 0.1 0.5 
Evaluations 102,000 240,000 
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Finally, to ensure that the Pareto fronts generated by each algorithm have 

converged when the optimal ACO parameters in Table 3.4 are used, the 

hypervolume of the Pareto front, as described in Section 3.3.5, has been 

assessed. The hypervolume convergence for each algorithm when the number 

of management alternatives is less than 4 is given in Figure 3.5. As can be 

seen, all algorithms have converged, with the PACOA converging to a 

hypervolume of approximately 3.0x105 at 160 iterations, COMPETants 

converging to a hypervolume of approximately 2.9x105 at 140 iterations, and 

m-ACO3 converging to a hypervolume of 2.7x105
 at 700 iterations. This 

indicates that the number of evaluations selected is sufficiently large for each 

of the algorithms to converge to a given Pareto front. It should be noted that 

hypervolume convergence has also been assessed for the case of six 

management alternatives, with the results obtained similar to those shown in 

Figure 3.5. 

 

Figure 3.5: Hypervolume convergence for each multi-objective ACO 
algorithm when h<4 
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In order to assess the quality of the Pareto fronts obtained, the empirical 

attainment function (EAF) developed by da Fonseca et al (2001) is used. This 

is because it enables Pareto fronts obtained by two algorithms to be compared, 

which is not the case for other measures, such as the chi-square-like deviation 

developed by Srinivas and Deb (Srinivas and Deb, 1994) (López-Ibáñez and 

Stützle, 2012).  Use of the EAF involves determining the probability that each 

point in the objective space is attained by an algorithm in a single run (López-

Ibáñez and Stützle, 2012). To assess two Pareto fronts, the difference in EAFs 

of each point in the objective space is determined. In this study, a graphical 

technique (López-Ibánez et al., 2006; 2010; López-Ibáñez and Stützle, 2012) is 

utilized in order to achieve this, with plots generated using the eaf R 

package, which is available at http://cran.r-project.org/package=eaf. 

 

In order to compare the performance of the three multi-objective algorithms, 

one of the studies (i.e. Investigation 3) described in Section 3.4 is used, which 

considers two objectives (i.e. total ecological response and environmental 

water allocation), three management alternatives (h) (i.e. flow releases and the 

operation of two wetland regulators) and an upstream flow constraint of 1,800 

GL/month. The number of flow magnitude suboptions (n) equals 28, while the 

number of duration suboptions equals 12 at the beginning of the year, but 

changes depending on selections made during the investigation. Further 

details, such as the asset (H), species (Ri) and year (V) sets for this 

investigation are given in Section 3.4.1 and Tables 3.5 and 3.6. The graphs 

comparing the Pareto fronts developed by PACOA, COMPETants and m-

ACO3 for Investigation 3 in terms of EAF difference are given in Figure 3.6. 

As can be seen, PACOA performs better than both COMPETants and m-

ACO3 (top and middle plots). This is shown by the black region in the 
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PACOA graphs (i.e. left graphs), indicating that the PACOA algorithm 

attained the points in the objective space at least 80% more than COMPETants 

and m-ACO3, whereas the regions of white in the m-ACO3 and COMPETants 

plots (i.e. right graphs) suggest that the same probability of attaining these 

points is achieved by all algorithms. On the other hand, the graph that 

compares the performance of COMPETants and m-ACO3 (bottom plot) 

indicates that COMPETants performs better for solutions that minimize 

environmental water allocation, as indicated by the black region in the top left 

corner (see left graph), while m-ACO3 finds solutions that maximize the 

MFAT score and, in turn, the ecological response of the wetlands and 

floodplains in the case study area. 

 

The results of the comparison study indicate that the PACOA performs best, 

given that it is able to develop Pareto fronts with solutions that favor the 

objectives investigated (i.e. water allocation and ecological response), as 

indicated by the spread of the black region in the upper EAF difference plots 

in Figure 3.6. It should be noted that additional analyses have been conducted 

for the case where the number of management alternatives, h, equaled 6, with 

results obtained following a similar a trend as those shown in Figure 3.6. 

Based on these findings, the PACOA is used for the analysis for the case study 

area, with details of the analysis conducted and results given in Sections 3.4 

and 3.5, respectively. 
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Figure 3.6: Comparison of PACOA, COMPETants and m-ACO3 using EAF 
differences plots 
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3.4 Analyses Conducted 

In order to meet the objectives stated in the Introduction, two studies have 

been formulated. The first of these (Section 3.4.1) focuses on the impact of 

upstream flow constraints on the optimal trade-offs between environmental 

flow and ecological response. Two analyses have been conducted as part of 

this study. The first examines the trade-offs between environmental flow and 

the total ecological response of the case study area for a range of upstream 

system constraints, while the second investigates the trade-offs between 

environmental flow, the wetland ecological response and the floodplain 

ecological response. The second study (Section 3.4.2) examines the impact of 

the number of regulators on the optimal trade-offs between environmental 

water allocation and resulting ecological score in the case study area. Details 

of the two studies and corresponding investigations are given in Tables 3.5-

3.7, and are discussed in detail in the following subsections. It should be noted 

that minimum monthly flows within the river channel have been set to South 

Australian entitlement flows (MDBA, 2012a), while weights for recruitment 

and maintenance within MFAT have been set to 0.5 each, with the exception 

of the weight for the wetland flora species, which has been set to 0.25 for 

recruitment and 0.75 for maintenance (CRCFW, 2003). An equal preference 

has been given to all species and assets, and each optimization run has been 

repeated 10 times with different starting positions in the solution space. 

Table 3.5: Details of investigations for trade-offs between environmental 
allocation and total ecological response 

Investigation 
Upstream System 
Flow Constraint, 
Qtmax (GL/month) 

Magnitude 
Suboptions 

(n) 

Ecological 
Response 

Objectives (fg) 

Management 
Alternatives 

(h) 
Regulators 

1 1,200 20 

1 3 2 
2 1,650 26 
3 1,800 28 
4 2,400 37 
5 3,000 45 
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Table 3.6: Details of number of species per asset and number of years 
considered in total ecological response objective (g=1) for Investigations 1-5 

and 7-10 

Asset Set 
    

Number of species 
(s(i)) in Ri,1 (g=1) 

Number of years 
(YK,1) 

1 26 

5 

2 15 
3 28 
4 17 
5 53 
6 27 
7 27 
8 18 

 

Table 3.7: Details of investigations conducted as part of examining the trade-
offs between environmental flow, wetland ecological response and floodplain 

ecological response 

Investigation 
Upstream System 
Flow Constraint, 
Qtmax (GL/month) 

Magnitude 
Suboptions 

(n) 

Ecological 
Response 

Objectives (fg) 

Management 
Alternatives 

(h) 
Regulators 

6 1,800 28 2 3 2 
 

3.4.1 Impact of upstream flow constraints 

3.4.1.1 Trade-offs between environmental flow allocation and total 

ecological response  

As discussed in Section 3.2, the Murray-Darling Basin (MDB) is a highly 

regulated system with many users, resulting in a number of system constraints. 

Five investigations (i.e. Investigations 1-5 in Table 3.5) have been conducted 

in order to assess the effect different upstream flow constraints, including 

maximum upstream releases of 1,200, 1,650, 1,800, 2,400 and 3,000 

GL/month, have on the optimal trade-off between total environmental flow 

allocation and total ecological response. These constraints have been selected 

based on the current situation in the MDB, where flows less than or equal to 

1,200 GL/month (or 40,000ML/day) at the South Australian border can be 
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achieved relatively easily, whereas flows of 1,200-2,400 GL/month (or 40,000 

and 80,000 ML/day) are much more difficult to achieve due to upstream 

system constraints (Heneker and Higham, 2012), while flows equal to or 

greater than 3,000GL/month (or 100,000 ML/day) are not deliverable unless 

these constraints are relaxed by altering existing upstream flood mitigation 

constraints at times when there are large inflow events at a number of 

upstream tributaries (MDBA, 2011b; 2012b).  

 

It should be noted that for each investigation, the number of flow magnitude 

suboptions (n) differs, as shown in Table 3.5, while the duration suboptions 

for each investigation begin with 12 months at the beginning of each year, but 

are then dynamically changed depending on prior selections made during a 

particular iteration. As part of these investigations, only one ecological 

response objective is considered (i.e. g=1), that is, the total ecological 

response of the case study area, with the number of assets (i.e. i) in the H set 

equal to 8, while the number of species considered in each Ri set (s(i)) and the 

number of years (YK) are shown in Table 3.6. In addition, only the two existing 

regulators at Morgan and Brenda Park wetlands are taken into account 

resulting in three EFMAs (i.e. h=3), including upstream flow releases and the 

operation of these two regulators. Consequently, the total search space consists 

of 10135 discrete combinations of decision variable values.  

 

3.4.1.2 Trade-off between environmental flow allocation, wetland 

ecological response and floodplain ecological response  

The final investigation (i.e. Investigation 6) as part of this study examines the 

trade-off between three objectives, that is, the environmental water allocation, 

the ecological response of the wetlands and the ecological response of the 
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floodplains for a given upstream flow constraint. This investigation has been 

conducted because wetlands and floodplains lie on different regions of the 

flood gradient, each with different flow requirements (Rogers, 2011b), and the 

trade-off between these three aspects is currently unknown. Details of the 

investigation are given in Table 3.7, with the upstream system flow constraint 

set to 1,800 GL/month and the number of magnitude options (n) set to 28. The 

number of ecological objectives, fg, equals two, with one ecological response 

objective focusing on the wetlands (i.e. g=1), and the other on the floodplains 

(i.e. g=2). In order to account for the two ecological response objectives, fg 

subsets needed to be defined, with details of each asset subset (Hg), number of 

species subset in each asset (Ri,g) and the number of years subset V (i.e. YK) 

given in Table 3.8. As in Investigations 1-5, two regulators at Brenda and 

Morgan are in operation resulting in to a total of three EFMAs (i.e. flow 

releases and 2 regulators), with a total search space of 10122 discrete 

combinations of decision variables. 

 

Table 3.8: Details of number of species per asset and number of years 
considered in wetland ecological response (g=1) and floodplain ecological 

response (g=2) objectives for Investigation 6 

Asset Set 
     

Number of species 
(s(i)) in Ri,1 (g=1) 

Number of species 
(s(i)) in Ri,2 (g=2) 

Number of years 
for g=1 and g=2 

(YK,g) 
1 13 13 

5 

2 1 10 
3 14 14 
4 8 9 
5 19 34 
6 4 23 
7 13 14 
8 7 11 
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3.4.2 Impact of additional regulators  

In recent years, it has been suggested that the flow regime within a wetland 

should be controlled in order to maximize ecological health, while maintaining 

the same level of water use and reducing evaporation loss (Overton et al., 

2010). As mentioned previously, two of the wetlands in the case study area 

currently have regulators, with an additional three wetlands proposed to have 

such control structures (see Table 3.2). However, the impact of these control 

structures on the optimal trade-off between environmental flow allocation and 

ecological response has not been assessed in previous studies. Consequently, 

an additional four studies have been formulated, the results of which can be 

compared with results obtained in Investigations 1 and 3. Thus, the effect of 

zero and five regulators is examined under the current system constraint of 

1,200GL/month in Investigations 7 and 8, respectively, and under an increased 

system constraint of 1,800GL/month in Investigations 9 and 10, respectively. 

The number of management alternatives for each Investigation ranges from 1 

to 6, depending on the number of regulators considered (Table 3.5 and 3.9), 

resulting in a search space ranging from 1087 to 10177discrete combinations of 

decision variable values. It should be noted that the total ecological response 

objective (i.e. g=1) of the case study area is considered in Investigations 7-10 

and thus uses the same asset (H), species (Ri) and year (V) sets as defined in 

Investigations 1-5, which are given in Table 3.6. 

Table 3.9: Details of investigations conducted as part of the assessment of the 
impact of additional regulators 

Investigation 
Upstream 

System Flow 
Constraint, Qtmax 

(GL/month) 

Magnitude 
Suboptions 

(n) 

Ecological 
Response 

Objectives (fg) 

Management 
Alternatives 

(h) 
Regulators 

7 1,200 20 
1 

1 0 
8 6 5 
9 1,800 28 1 0 
10 6 5 



119 

 

3.5 Results and Discussion 

The results obtained are in the form of optimal trade-offs between the total 

amount of water available for environmental purposes and ecological 

response. In order to assess the impact of different upstream flow constraints , 

and numbers of regulators on the optimal trade-off between environmental 

flows and ecological response, as per the stated objectives of the paper, the 

discussion of the results focuses on the following issues: 

1. The impact of different upstream flow constraints and numbers of regulators 

on various aspects of the optimal trade-off curve between environmental flow 

and ecological response, such as changes in the rate of increase in ecological 

response relative to the rate of increase in environmental flow, changes in the 

presence and location of “break points”, at which a change in the relative rate 

of change in one objective occurs relative to that of the other, and changes in 

the best possible ecological response (Sections 3.5.1.1 and 3.5.2.1). 

 

2. The impact of different upstream flow constraints and numbers of regulators 

on the effectiveness of a number of proposed environmental flow allocations 

(Sections 3.5.1.2 and 3.5.2.2). These include the current (2012) allocation of 

2,105 GL/yr (i.e. 10,525 GL over 5 years) (Allocation 1), the allocation of 

4,023 GL/yr (i.e. 20,115 GL over 5 years) that the MDBA is trying to achieve 

by 2019 (MDBA, 2012c) (Allocation 2), and the allocation of 4,823 GL/yr (or 

24,115 GL over 5 years) (GSA, 2012) (Allocation 3), which has been 

suggested by independent scientists, such that required salt exportation from 

the Lower Murray Region and adequate water for significant floodplains along 

the South Australian River Murray can be met (Bloss et al., 2012; Higham, 

2012). 
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3.5.1 Impact of upstream flow constraints 

3.5.1.1 Impact on Optimal Trade-off Curve  

Trade-offs between environmental flow allocation and total ecological 

response 

The optimal trade-offs between environmental water allocation and 

corresponding MFAT score obtained as part of each investigation described in 

Section 3.4.1 are shown in Figure 3.7. It can be seen that there is little 

improvement in MFAT score with increased environmental water allocation at 

the current upstream flow constraint of 1,200 GL/month. In contrast, as the 

upstream flow constraint is relaxed to between 1,650 GL/month to 3,000 

GL/month (Investigations 2 – 5), there is an almost linear increase in MFAT 

score with an increase in environmental flow allocation up to a certain point, 

at which there is an almost negligible increase in MFAT score with increased 

flow allocation. This point is termed a breakpoint and identifies a solution at 

which there is a significant change in the ecological benefit obtained per unit 

allocation of environmental water, as mentioned previously. The locations of 

the breakpoints are shown in Figure 3.7, with BP1 through to BP5 referring to 

the breakpoints for Investigations 1-5, respectively. 
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Figure 3.7: Optimal trade-offs between environmental flow allocation 
(GL/5yr) and MFAT score for Investigations 1-5  

 

The breakpoint values for each of the five investigations are given in Table 10. 

As can be seen, for Investigation 1, the breakpoint occurs at an MFAT score of 

0.15 and an allocation of 5,324 GL/5yr. After this point, there is very little 

additional benefit in allocating more water, since the rate of MFAT score 

increase per 1,000GL is only 0.003, whereas the same value is 0.022 before 

the break point. The break points for the remaining four investigations are 

much more distinct (Figure 7, Table 10). For Investigations 2 to 5, the increase 

in MFAT score / 1,000GL of additional upstream release before the break 

point is approximately the same at around 0.02 (ranging from 0.028 for 

Investigation 5 to 0.035 for Investigation 3) and reduces significantly to less 

than 0.004 after the break point (ranging from 0.002 for Investigation 3 to 

0.003 for Investigation 4). However, the flow allocation, and hence MFAT 
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score, at which the breakpoints occur increases significantly from 

Investigation 2 to Investigation 5, indicating the increased benefits of 

additional environmental flow allocations as the upstream system constraints 

related to the maximum flow release are relaxed. 

Table 3.10: MFAT Score and allocation at the breakpoint for each 
investigation, as well as the rate at which the MFAT score increases per 

1,000GL environmental allocation before and after the breakpoints 

Investigation MFAT 
Score 

Allocation 
(GL/5yr) 

Change in MFAT 
score/1,000GL in 

Region before 
Breakpoint 

Change in MFAT 
score/1,000GL in 

Region after 
Breakpoint 

1 0.15 5,324 0.022 0.002 
2 0.25 7,350 0.034 0.003 
3 0.28 8,055 0.035 0.002 
4 0.33 11,055 0.030 0.002 
5 0.38 13,200 0.028 0.002 

 

The increased benefit of additional environmental flow allocations as 

upstream system constraints are relaxed can also be seen from the maximum 

MFAT scores that can be achieved, and the corresponding flow allocations 

(Table 3.11). The maximum MFAT score that can be achieved with the 

current system constraint (Investigation 1) is 0.17, which is much lower than 

those obtained as part of the other Investigations, which ranged from 0.27 for 

Investigation 2 (i.e. 1,650GL/month upstream flow release constraint) to 0.41 

for Investigation 5 (i.e. 3,000GL/month upstream flow release constraint).  

Table 3.11: Maximum MFAT Scores and corresponding allocations (GL/5yr) 
for each Investigation 

Investigation MFAT Score Allocation 
(GL/5yr) 

1 0.17 12,000 
2 0.27 14,400 
3 0.31 22,125 
4 0.36 26,000 
5 0.41 29,500 
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The reason for the increase in MFAT scores with increasing system 

constraints is a corresponding increase in the maximum water level that can be 

achieved. For example, with the current system constraint (Investigation 1), 

some of the temporary wetlands, such as Cadell, and the higher elevated 

floodplains containing river red gums (Eucalyptus camaldulensis) and black 

box woodland (Eucalyptus largiflorens), which account for the majority of the 

species in the case study area (see Table 3.2), cannot be inundated. This, and 

the effect of drought, have resulted in the deterioration of many of the high 

lying floodplain species in the South Australian River Murray (GSA, 2012; 

Overton et al., 2010). In addition, current system constraints prevent the 

inundation of 50% or more of the floodplain area, which is a requirement for 

achieving higher MFAT scores for the floodplain species (Young et al., 2003). 

As discussed above and illustrated in Figure 3.7, at the current system 

constraint, MFAT scores are virtually independent of any additional 

environmental flow allocation, as the occurrence of the larger flow events 

needed to inundate key ecological assets is prevented. 

 

As the upstream flow constraints are relaxed to 1,650 and 1,800 GL/month, 

there are significant benefits associated with increased environmental flow 

allocations (Figure 3.7), as greater areas of the wetlands and floodplains can 

be inundated and two of the temporary wetlands (Cadell and Markaranka) can 

be filled, almost doubling the corresponding MFAT scores to 0.27 and 0.31, 

respectively (Table 3.11). This enables some of the important flora species to 

be restored or maintained. This trend continues as the constraints are relaxed 

further to 2,400 and 3,000 GL/month, with increased environmental flow 

allocations resulting in maximum MFAT scores of 0.36 and 0.41, respectively 

(Table 3.11). 
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As can be seen in Figure 3.7, there are a number of step changes in the trade-

off curves for Investigations 2 – 5, with points along the step changes for 

Investigations 2 (i.e. Points A – F) and 5 (i.e. Points 1 – 6) labeled and shown 

in Figure 3.8. For Investigations 2 and 5, each step change is the result of an 

additional major flow release (where a major flow release is defined as the 

largest flow release relative to other monthly flow releases) over the five year 

planning horizon. For example, for Investigation 2, the region between points 

A and B included one major flow release, while the regions between points C 

and D and points E and F, included two and three major flow releases, 

respectively. Similarly, for Investigation 5, the regions between points 1 and 2 

and points 5 and 6 included one and three major flow releases, respectively. 

For regions of the trade-off curves that included a particular number of major 

releases (e.g. regions A – B, E – F, 1 – 2, and 3 – 4, Figure 3.8), MFAT scores 

increased with little additional environmental water allocation as a result of 

the inundation of the temporary wetlands, Cadell and Markaranka. For 

example, flows greater than 1,500 GL/month are required to inundate Cadell, 

which can only be achieved when the environmental allocation is greater than 

1,375 GL. Once this allocation is obtained for the planning horizon, Cadell’s 

MFAT score can increase from 0.04 to 0.14, resulting in a significant increase 

in MFAT score with minimum additional environmental water (i.e. regions A 

– B).  
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Figure 3.8: Optimal trade-offs between environmental water allocation 
(GL/5yr) and MFAT score for Investigations 2 (i.e. 1650 GL/month) and 5 

(i.e. 3,000GL/month) 

 

Overall, the results highlight the need to assess the impact of a range of 

upstream system flow constraints on the ecological integrity of the case study 

area. The limited ecological benefit of increasing environmental flow 

allocations at the current system constraints and the step changes in the trade-

off curves, provide valuable insight to water managers and ensures that 

optimal EFMA schedules can be developed that use the available water in the 

most efficient manner, while also maintaining the integrity of the biota. 

 

Trade-off between environmental flow allocation, wetland ecological response 

and floodplain ecological response 

The optimal tradeoffs between environmental water allocation, the ecological 

response of the wetlands and the ecological response of the floodplains in 

terms of the MFAT score that have been developed as part of Investigation 6 
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can be seen in Figure 3.9, where two slices of the three objective trade-off are 

shown.  It can be seen in the graph on the left that the wetland MFAT score 

ranges from 0.20 to 0.45 as the environmental water allocation increases from 

0 to 50,000 GL/5 yr. Additionally, there is an increase of 0.10 in the MFAT 

score as the allocation increases from 0 to the 10,000 GL/5 yr mark.  

However, after this point, an additional allocation of 30,000 GL/5 yr is 

required to achieve the same increase of 0.10 in the wetland MFAT score. 

This suggests that after the 10,000 GL/5 yr environmental water allocation 

point, the ecological benefit for the wetlands as more water is added into the 

case study area is minor.  

 

It can also be seen in the graph on the left that there is very little spread in the 

points along the wetland MFAT score axis, indicating that the same wetland 

MFAT score can be achieved at a given environmental allocation, irrespective 

of the timing, magnitude and duration of the management alternatives selected 

as part of the development of an EFMA schedule. In contrast, when comparing 

the trade-off between floodplain MFAT score and environmental water 

allocation in the graph on the right in Figure 3.9, it can be seen that the spread 

of points along the floodplain MFAT axis becomes greater at higher 

allocations. This suggests that at higher allocations, the scheduling of 

management alternatives (e.g. magnitude, duration) can have a major impact 

on the overall floodplain MFAT score, with differences in floodplain MFAT 

scores of 0.1 being obtained for a given allocation and wetland MFAT score.  

In addition, it can be seen that once the environmental water allocation of 

40,000 GL/5 yr has been exceeded, the floodplain MFAT score begins to 

decrease to 0.10, suggesting that too much environmental water has been 

released, thereby prolonging inundation of these areas and reducing the overall 

ecological integrity of the floodplains. Finally, it can be seen that the overall 
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floodplain MFAT score achieved is much less than that achieved for the 

wetlands. This is because of the system constraint (i.e. 1,800 GL/month) 

considered in this investigation, which is not high enough to result in 

inundation of larger portions of the floodplains at higher elevations. 

 

Figure 3.9: Optimal trade-off between environmental water allocation (EWA 
(100 GL/5yr)) and the wetland and floodplain MFAT score for Investigation 6  

Overall, this study highlights the valuable insight that can be obtained when 

assessing the trade-offs between different components of ecological response 

(in this case the wetlands and floodplains) and environmental water allocation. 

In particular, the sensitivity of the floodplain MFAT scores at higher 

allocations can provide further information to water managers, specifically in 

the selection of the best EFMA schedule at higher allocations, which will 

ensure not only the best wetland ecological outcome, but also that for the 

floodplains. 
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3.5.1.2 Impact on Effectiveness of Various Environmental Flow 

Allocations  

The MFAT scores at the three suggested environmental flow allocations 

considered for each investigation are shown in Figure 3.7 and Table 3.12. It 

can be seen that for Investigation 1, an MFAT score of approximately 0.17 is 

achieved at each allocation, indicating that at the current system constraint of 

maximum upstream releases of 1,200 GL/month, the allocation of 

environmental water above the current allocation in the MDB does not 

increase the overall ecological benefit within the case study area. As discussed 

in Section 5.1.1, this is because the maximum possible flows are not sufficient 

to inundate the temporary wetlands and achieve the 50% floodplain area 

inundation needed in the MFAT calculation (Young et al., 2003). Similarly, 

there is very little change in MFAT scores for the different flow allocations for 

Investigations 2 and 3, with increases ranging from 0.01 to 0.02 when moving 

from Allocation 1 to Allocation 2, and no further increase in the scores when 

moving to Allocation 3. On the other hand, there is a slight increase in MFAT 

scores when moving from flow Allocations 1 to 3 for Investigations 4 and 5, 

with a maximum increase in MFAT score of 0.04 for Investigation 4 and a 

maximum increase of 0.06 for Investigation 5, suggesting that there is only a 

slight ecological benefit associated with increased environmental water 

allocations if the upstream flow release constraint is increased to 2,400 

GL/month or greater.  

Table 3.12: Maximum MFAT scores for each Allocation and Investigation 

Investigation 
Allocation 

1 2 3 
1 0.16 0.17 0.17 
2 0.26 0.27 0.27 
3 0.29 0.31 0.31 
4 0.33 0.36 0.37 
5 0.34 0.40 0.40 
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Overall, the results suggest that there is limited ecological benefit beyond 

Allocation 1 (i.e. the current environmental allocation), while the upstream 

flow constraint has a significant impact. As discussed above, this is because 

the major factor affecting the ecological health of the case study area is 

whether the high lying wetlands and floodplains can be inundated or not. This 

requires the occurrence of high-magnitude flows, which simply cannot be 

achieved unless the upstream flow constraints are relaxed. However, this 

results in flooding of upstream agricultural and recreational (e.g. holiday 

houses) areas located adjacent to the Murray River, which can result in other 

problems, such as the loss of crops and profits. On the other hand, unless the 

system constraints are relaxed, the required ecological benefits within the case 

study area can only be achieved if natural major flooding occurs.  

 

3.5.2 Impact of Additional Regulators 

3.5.2.1 Impact on Optimal Trade-off Curve  

The optimal trade-offs between environmental water allocation and MFAT 

score developed as part of the investigations discussed in Section 3.4.2 are 

shown in Figure 3.10. As can be seen, the general shape of the trade-off curves 

is not affected by the number of regulators (i.e. zero, two or five) for both 

upstream system flow constraints considered (i.e. 1,200 and 1,800 GL/month). 

However, there was a distinct advantage in the addition of more regulators, as 

indicated by a shift in the trade-off curves to the right with an increase in the 

number of regulators for both of the upstream system constraints.  
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Figure 3.10: Optimal trade-offs between environmental flow allocation and 
MFAT score for Investigations 1, 3 and 7-10 

 

The maximum MFAT scores and associated environmental flow allocations 

for each investigation are given in Table 3.13. For Investigations 7 and 9, 

where no regulators are present, an environmental allocation greater than 

29,000 GL/5 yr is required to achieve MFAT scores of 0.18 and 0.30, 

respectively. Once two regulators are in operation within the case study area 

(i.e. Investigations 1 and 3), a water saving of 20,000 GL/5 yr is achieved in 

order to obtain MFAT scores that are similar to those obtained in the 

corresponding investigations that considered no regulators. As the number of 

regulators in operation increases to five in Investigations 7 and 9, there is little 

difference in the scores and allocations obtained compared with those obtained 

in the investigations where two regulators are used (i.e. Investigations 1 and 

3). 
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Table 3.13: Maximum MFAT Scores and associated allocations achieved for 
each regulator in operation  

Regulators 
System 

Constraint 
(GL/month) 

Investigation MFAT Score Allocation 
(GL/5yr) 

0 1,200 7 0.18 32,478 
1,800 9 0.30 29,100 

2 1,200 1 0.17 12,000 
1,800 3 0.31 22,125 

5 1,200 8 0.18 17,750 
1,800 10 0.34 15,225 

 

Overall, the use of two regulators for both system constraints considered does 

not alter the maximum MFAT score, but results in a substantial reduction in 

the environmental water allocation required to achieve this score. This 

suggests that the regulators are best used as water saving measures and would 

benefit areas where limited water is available as a result of drought or when 

multiple users are present, as is the case in the South Australian reaches of the 

River Murray. 

 

3.5.2.2 Impact on Effectiveness of Various Environmental Flow 

Allocations  

The MFAT scores at the three suggested environmental flow allocations for 

each investigation are shown in Figure 3.10 and Tables 3.14 and 3.15. It can 

be seen in Table 3.14 that at the current environmental allocation (i.e. 

Allocation 1), for the upstream system flow constraint of 1,200 GL/month, the 

MFAT score increases marginally by 0.01 as the number of regulators 

increases from two to five. Once the allocation increases to the volume 

proposed by the MDBA (i.e. Allocation 2), the MFAT score gradually 

increases from 0.16 to 0.18 as more regulators are considered, while at 

Allocation 3 (i.e. the allocations proposed by environmental scientists), a 0.01 

improvement in MFAT score is obtained when five regulators are taken into 
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account. This indicates that at lower allocations, a marginal ecological benefit 

is achieved with the operation of two regulators, however, once the allocation 

increases to Allocation 3, a small improvement in MFAT score is only 

obtained when five regulators are in operation.  

Table 3.14: MFAT scores achieved for each Allocation and Investigation for 
the 1,200 GL/month system constraint 

Regulators Investigation Allocations 
1 2 3 

0 7 0.15 0.16 0.17 
2 1 0.16 0.17 0.18 
5 8 0.17 0.18 0.18 

 

Table 3.15: MFAT scores achieved for each Allocation and Investigation for 
the 1,800 GL/month system constraint 

Regulators Investigation Allocations 
1 2 3 

0 9 0.26 0.29 0.31 
2 3 0.29 0.31 0.33 
5 10 0.30 0.34 0.34 

 

The MFAT scores achieved for a system constraint of 1,800 GL/month are 

given in Table 3.15 for each of the three environmental water allocations 

considered. It can be seen that at Allocation 1, there is a marginal increase in 

MFAT score of 0.03 when two regulators are considered, while the addition of 

three regulators increases the MFAT score by 0.01. On the other hand, for 

Allocations 2 – 3, a score of approximately 0.29 is achieved when no 

regulators are in operation, which increases to 0.31 and 0.34 as the number of 

regulators increases from two to five, respectively. This suggests that a 

positive impact can only be achieved at larger allocations when 5 regulators 

are considered, compared with the use of two regulators, which improved the 

score for all allocations. 
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In summary, this study showed the improvement in MFAT scores achieved as 

additional regulators are introduced in the case study area for different 

environmental flow allocations. It showed that if five regulators are in 

operation, an improvement in MFAT score can only be achieved at higher 

allocations, while the use of two regulators can marginally improve the 

ecological health at lower allocations.  

 

3.5.3 Limitations 

While the results obtained provide valuable insight into the management of 

environmental water in order to maximize ecological response, there are some 

limitations with the findings as a result of the uncertainties associated with the 

ecological scores calculated using the Murray Flow Assessment Tool 

(MFAT). The MFAT model uses preference curves to develop a relationship 

between flow and ecological response for species types, however, knowledge 

of these ecological relationships is imperfect, thereby introducing uncertainty 

into the model and the final results (Baihua and Merritt, 2012).  To overcome 

this shortcoming, a sensitivity analysis, as conducted by Norton and Andrews 

(2006) and Baihua and Merritt (2012) on the preference curves and/or 

aggregation approach, could be performed. Such an analysis would examine 

the robustness and variance of the likely ecological response that could be 

obtained for a given EFMA schedule. This would provide detailed information 

to water managers and further understanding of the likely ecological benefit 

that could be achieved for a particular EFMA schedule. However, such an 

analysis is beyond the scope of this study. Finally, it should be noted that the 

results and conclusions obtained from this analysis are only applicable to the 

case study area. 
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3.6 Summary and Conclusion 

In this paper, the optimization framework developed by Szemis et al.(2012) is 

extended to incorporate multiple objectives and applied to a real case study in 

the South Australian River Murray. The aim is to assess the trade-offs between 

environmental flow allocations and ecological benefits based on the impact of 

(a) upstream system flow constraints and (b) the number of regulators used to 

control the flow at wetlands. In order to achieve this, the performance of three 

multi-objective ACO algorithms (i.e. COMPETants  (Doerner et al., 2003) 

and m-ACO3 (Alaya et al., 2007) and PACOA (Doerner et al., 2004)) is 

compared, with the PACO algorithm found to perform best (see Section 

3.5.5). The PACOA is coupled with a hydrological model consisting of eight 

wetlands, five of which can be regulated. Each wetland is composed of a 

variety of flora and fauna species, obtained using DEM and baseline survey 

data of the case study area. The management options considered as part of the 

development of EFMA schedules include the scheduling of environmental 

flow allocations and regulator operations. The ecological benefit of each 

EFMA schedule developed is assessed using the Murray Flow Assessment 

Tool developed by Young et al., (2003), while a hydrological model is used to 

determine the total environmental water allocation. 

 

Two studies are undertaken to achieve the objectives of the paper. In the first 

study, the impact of upstream system flow constraints on the optimal trade-off 

between environmental water allocation and ecological benefit is assessed, 

while in the second study, the effect of additional regulators on these trade-

offs is investigated. The shape of the trade-off curve, the effectiveness of three 
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different environmental water allocations and the impact of flow releases and 

gate operations on EFMA schedule development are analysed for each study. 

 

The results of the first study indicate that increased environmental water 

allocations only have a positive ecological impact if the current upstream flow 

constraints are relaxed, which enables large areas of floodplain flora to be 

inundated. In addition, results from assessing the trade-offs between 

environmental flow allocation, floodplain ecological response and wetland 

ecological response indicate that floodplain scores are more sensitive at higher 

allocations compared with the wetland ecological response. The results of the 

second study indicate that the addition of regulators only marginally improves 

the ecological response in the case study area, but that this can be achieved 

with significantly smaller volumes of water. In addition, the results obtained 

indicate that at lower system constraints (e.g. 1,200 – 1,800 GL/month), the 

allocations recommended by the MDBA and environmental scientists may be 

too large for the case study area, as only a marginal ecological benefit is 

achieved for Allocations 1 – 3. However, once the system constraints are 

relaxed, there is a significant improvement in the MFAT scores as 

environmental allocations increase from those recommend by the MDBA to 

those proposed by the environmental scientists.  

 

Overall, the studies provide valuable insight into the EFMA scheduling 

problem, particularly the ecological benefit gained from an increase in 

environmental allocation for a range of upstream system flow constraints and 

numbers of regulators. The approach presented in this study enables water 

managers to make informed decisions regarding the management of 

environmental releases, regulator operation, and investment in additional 
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infrastructure, particularly when there is limited water available, as is the case 

for the South Australian River Murray. 
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Abstract 

 
Human use of water is ever increasing and, as such, water for the environment 

is limited and needs to be managed efficiently. One method for achieving this 

is the scheduling of environmental flow management alternatives (EFMAs) 

(e.g. releases, wetland gate operation), with these schedules generally 

developed over a number of years. However, availability of environmental 

water changes from year to year as a result of natural variability (e.g. 

drought, wet years). To take this variation into account, an adaptive multi-

objective optimization approach for the development of EFMA schedules in an 

operational setting is proposed. As part of this approach, optimal schedules 

are updated at regular intervals during the planning horizon based on 

forecasts of future environmental water allocations. In addition, the changes 

between current and updated schedules are minimized to reduce any 

disruptions to long-term planning. The utility of the approach is assessed by 

applying it to an 89km section of the River Murray in South Australia. Results 

indicate that the proposed approach is beneficial under a range of 

hydrological conditions and can successfully produce optimal trade-offs 

between the number of disruptions made to existing schedules and the 

resulting ecological response. Overall, the results indicate that the 

information obtained using the proposed approach has the potential to aid 

managers in the efficient and effective management of environmental. 
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4.1 Introduction 

Environmental flow management aims to ensure that ecological flow 

requirements of flora and fauna, which can be represented by the timing, 

duration, rate of change, and magnitude of flow (Poff et al., 1997), are 

satisfied in regulated river systems (Junk et al., 1989; Poff et al., 1997). 

However, due to the competing water demands for the environment and for 

human purposes (e.g. water supply, industrial, agricultural and recreational), 

the water available for environmental purposes is generally insufficient to 

meet all ecological flow requirements (Arthington et al., 2006; Poff and 

Zimmerman, 2010). This conflict over water use is exacerbated by the rapid 

growth of the global population and by climate change (Arthington et al., 

2006; Castelletti et al., 2010). Given that there is limited water available for 

environmental purposes, there is a need to make best use of this water so as to 

achieve the best possible ecological outcomes. 

 

This is not an easy task because the available environmental water: (i) has to 

be allocated not only within the river channel but also to the surrounding 

wetlands and floodplains, which accommodate a range of different species of 

flora and fauna; (ii) has to be scheduled at various times and released in 

various volumes and for various durations in order to maintain and restore the 

ecological integrity of different species, which generally have varying flow 

requirements (Rogers, 2011b); (iii) can be managed using a range of 

alternatives at different spatial scales, such as at the individual wetland scale 

(e.g. wetland regulators/pumps) or at a the landscape scale (e.g. flow releases 

and weir pool manipulation); and (iv) has to be managed over multiple years, 

since there are species that require dry periods over multiple years, such as the 

Black Box woodland (Eucalyptus largiflorens), or require the maintenance of 
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a flood frequency of 1 in 2 to 5 years (Rogers, 2011b), resulting in temporal 

dependencies between scheduling decisions. 

 

In order to address this problem, optimization approaches have been used 

extensively to obtain optimal monthly reservoir flow releases or operating rule 

parameters for reservoirs/weirs (e.g. (Chang et al., 2010; Chaves et al., 2003; 

Higgins et al., 2011; Homa et al., 2005; Shiau and Wu, 2004; 2007; 2013; 

Suen and Eheart, 2006; Tilmant et al., 2010; Yang, 2011; Yin et al., 2011; Yin 

et al., 2010)), or monthly schedules of optimal environmental flow 

management alternatives (EFMAs), such as wetland gate operations and 

reservoir releases (Szemis et al., 2012; Szemis et al., 2013). However, all of the 

above approaches rely either on the historical natural flow hydrograph or an 

assumed known volume of available environmental water. While optimized 

schedules developed over extended time periods based on assumed water 

availabilities are useful for longer-term planning purposes (as in Szemis et al. 

(2013)), they are not suitable for use in an operational setting (e.g. 

determining optimal EFMA schedules under actual and predicted flow 

conditions), in which flows available for environmental purposes are likely to 

change from year to year as a result of natural hydrologic variability (e.g. 

droughts, floods). Consequently, there is a need to develop an optimal EFMA 

scheduling approach that takes changes in actual environmental water 

availability into account, and can therefore be used for operational purposes. 

 

As has been demonstrated successfully in other areas of water resources 

management, such as irrigation scheduling, this can be achieved by updating 

schedules as new information becomes available (Rao et al., 1992). 

Alternatively, the development of optimal schedules can be based on forecasts 
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of future conditions, rather than on historical or assumed future conditions, 

which can then be updated in an adaptive manner at regular time intervals (e.g. 

Gowing and Ejieji, 2001). However, such approaches have not yet been 

applied to the optimal scheduling of EFMAs. Consequently, there is a need to 

develop an adaptive optimization approach that can be used for operational 

purposes, in which optimal EFMA schedules are (i) developed based on 

forecasts of available environmental water and (ii) updated at regular intervals 

throughout the planning horizon in order to take account of updated 

knowledge of hydrological conditions. However, in order to comply with 

practical requirements, any changes to existing EFMA schedules should be 

kept as small as possible during the adaptation process so as to minimize the 

negative impacts on related operational strategies and resource scheduling 

(e.g. human resources and equipment). Consequently, there is a need to 

develop a novel optimization formulation that enables an appropriate trade-off 

between ecological outcomes and practical considerations to be considered. 

 

In order to address the research needs outlined above, the objectives of this 

paper are to (i) develop a novel adaptive approach to the optimal scheduling of 

EFMAs for rivers and their associated wetlands and floodplains that (a) is 

based on forecasts of available environmental water over the time period over 

which optimal EFMA schedules are developed (b) enables updated 

hydrological information to be incorporated at regular intervals and (c) is able 

to consider optimal trade-offs between the minimization of changes to existing 

optimal schedules and the maximization of ecological response; and (ii) to test 

the utility of the overall approach and its features for a real case study of a 

section of the River Murray in South Australia under various hydrological 

conditions over a 20 year period (1983-2003).  
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 The remainder of this paper is organized as follows. The proposed adaptive 

optimization approach is introduced in Section 4.2, with details of how the 

approach was applied to the case study given in Section 4.3. The analyses 

performed to achieve the objectives are given in Section 4.4, after which the 

results and discussion are presented in Section 4.5. Concluding remarks are 

then presented in Section 4.6 

 

4.2 Proposed Adaptive Optimization Approach for the 

Optimal Scheduling of Environmental Flow Management 

Alternatives 

The main steps in the proposed framework are shown in Figure 4.1, which are 

based on the approaches introduced by Szemis et al. (2012; 2013). The 

primary differences between this approach and those presented in Szemis et al. 

(2012; 2013) are: 

1. Rather than assuming that the water that is available for environmental 

flow allocation purposes is known and fixed over the required planning 

horizon, optimal EFMA schedules over the planning horizon are (i) 

obtained initially based on forecasts of environmental water allocation 

over the planning horizon (i.e. at timestep ut = 1) and (ii) updated at 

regular intervals (at timesteps ut = 2, 3, …ft), taking into account 

updated forecasts of environmental water allocation, as highlighted by 

the grey boxes in Figure 1. The forecast environmental water allocation 

is defined as Amax_ni(pd), where pd is the number of periods of estimated 

environmental water allocations, ranging from 1 to np. It should be 

noted that this general approach is similar to that adopted by Gowing 

and Ejieji (2001) for real-time irrigation scheduling. While the 
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approach has elements in common with model-predictive control 

methods used in other areas of water resources management (e.g. 

Bakker et al., 2013; Park et al., 2009; Prasad et al., 2013; Xu et al., 

2013), its aim is not to control the system to achieve a desired output 

(i.e. to minimize the difference between actual and desired system 

response), but to optimize system response. 

2.  In order to ensure that any changes to the EFMA schedules due to the 

updating process (i.e. from ut-1 to ut) are minimized, while still 

maximizing ecological response, a novel multi-objective optimization 

formulation is introduced. It should be noted that the specific changes 

that are minimized are case study dependent (e.g. which of the 

resources affected by potential changes to an EFMA schedule are 

constrained, what the dependencies between different operational 

strategies are) and need to be selected by the relevant authorities (e.g. 

water manager or river operator). 

 

As can be seen in Figure 4.1, the proposed approach begins with the 

formulation of the problem, which includes identifying: (i) the wetlands, 

floodplains and river reaches that are to be managed; (ii) appropriate 

ecological indicators (e.g. vegetation or fish species); (iii) the planning horizon 

over which the schedule for the EFMAs is to be developed (e.g. 5 years), as 

well as the planning period (e.g. 20 years); (iv) the time interval, t, at which 

schedules are to be developed (e.g. monthly), which ranges from 1 to T 

intervals; and (v) the EFMAs, Ma that are available for achieving the desired 

ecological response (e.g. flow release options, regulator settings, pumping 

schedule), where a ranges from 1 to h. EFMAs, as well as the sub-options 

associated with each of these alternatives (e.g. magnitude, duration), are 

discussed in Szemis et al. (2012; 2013). In order to cater to the adaptive 
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elements of the approach, additional variables that control the number of 

updates within the planning horizon, ut ranging between 1 and ft, where ft is 

the maximum number of updates and the update interval, xu, (i.e. annual, 

quarterly), are also defined. 

 

 

Figure 4.1: Steps in Proposed Adaptive Optimization Framework 

Once the problem has been formulated, the objectives (i.e. maximize 

ecological response and minimize differences between schedules) and 

constraints (e.g. environmental allocation constraints) need to be defined. 

Next, the optimal scheduling process can commence. The first step of this 

process involves the forecasting of the water allocation that will be available 

for environmental purposes over the planning horizon with the aid of a 
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forecasting model. The selection and development of an appropriate 

forecasting model is dependent on the problem at hand, as well as the previous 

and current hydrological data that are available within the case study area. 

 

Next, a number of potential EFMA schedules are developed and their utility is 

assessed via the objective functions and constraints. This is undertaken by 

linking a multi-objective ant colony optimization algorithm (ACOA) with 

appropriate hydrological and ecological models. For a discussion on the 

justification of the use of the use of ACOAs in preference to other 

optimization approaches, such as dynamic programming or genetic algorithms, 

the reader is referred to Szemis et al., (2012). The optimization process 

continues until certain stopping criteria, such as hypervolume convergence 

(Zitzler and Thiele, 1999), have been met. The outcome of this process is an 

optimal EFMA schedule over the selected planning horizon at timestep ut =1, 

based on the forecasts of future environmental water allocations at this 

timestep.  

 

At timestep ut = 2, the forecasts of the water allocation that will be available 

for environmental purposes over the planning horizon are updated based on 

the latest available information and the process of obtaining optimal EFMA 

schedules is repeated. In order to minimize the differences between the 

existing optimal schedule and the new optimal schedule based on updated 

water availability estimates (Figure 4.1), the following objective, FD, should 

be used in addition to the objective of maximizing ecological response:  
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where the number of differences between the initial schedule at ut-1 and the 

new schedule at ut is defined as Dmc,t for the mcth management alternative 

scheduled over K years and ti(v) to tf(v) time intervals. The number of 

management alternatives (Ma) that will be compared, mc ranges from nc(1) to 

nc(fnc), while wD,v, specifies the weight value that indicates the relative 

importance of minimizing the difference between subsequent schedules for 

year v. A value for Dmc,t of 1 is given when the option selected for the mcth 

management alternative at timestep ut and at time interval t is not the same as 

the corresponding option for the EFMA schedule at ut-1. In contrast, a value 

of 0 is assigned to Dmc,t when the selected options are the same. For example, 

if a regulator is open as part of the optimal schedule developed at ut-1, at the 

tth timestep, and the regulator is closed at the tth timestep as part of the 

optimal schedule at ut, then the corresponding value of Dmc,t is 1. As can be 

seen from Equation 4.1, the values of Dmc are summed over the time intervals 

at which schedules are to be developed, as well as the fnc user-defined 

management alternatives for which the minimization of differences between 

management options is considered important. 

 

The process of updating the forecasts of the available environmental water 

allocations and re-optimizing the EFMA schedules in light of this information, 

while ensuring that any changes to updated schedules are limited, is repeated 

for ut=3, 4, …,ft.  
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4.3 Methodology 

In this section, the utility of the approach introduced in Section 4.2 is assessed 

by applying it to a section of the River Murray in South Australia under 

various hydrological conditions. Details of the case study, which was adapted 

from Szemis et al. (2013), are given in Section 4.3.1, followed by details of 

how the proposed adaptive optimal EFMA scheduling approach (Figure 4.1) is 

applied to the case study in Sections 4.3.2 to 4.3.8.   

4.3.1 Case Study 

The case study area under investigation is a reach of the South Australian 

River Murray between Locks 1 and 2 (Figure 4.2). In this figure, the River 

flows from Lock 2 to Lock 1. The South Australian River Murray is part of a 

larger river system (the Murray-Darling Basin (MDB)) that is located in south 

eastern Australia and includes portions of four states, namely Victoria, 

Queensland, New South Wales and South Australia (see Figure 4.2) (Reid and 

Brooks, 2000). Over the years, it has become highly regulated due to the 

construction of six locks along the river channel, as well as a number of 

upstream structures, such as Hume Dam, located on the border between 

Victoria and New South Wales (George et al., 2005). As result of this 

regulation and the over-allocation of water, the flow variability within the 

river section in Figure 4.2 has reduced and caused much of the biota in the 

river and adjacent wetlands and floodplains to be stressed or altered (Overton 

et al., 2010). In response, a basin-wide plan developed by the Murray Darling 

Basin Authority and approved by the Government of Australia now recognizes 

the environment as a key stakeholder within the MDB. However, how any 

environmental water allocations should be prioritized to maximize ecological 

response is unclear, particularly given that the environmental allocation is not 
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constant from one year to the next, but is reduced during times of drought and 

increased during times of flooding (GSA, 2013). 

 

Figure 4.2: Map of case study area (adapted from Murray-Darling Basin 

Authority website, http://www.mdba.gov.au/river-data/spatial-data-

services/spatial-information) 

The river reach under investigation spans 89.0 kilometers and currently 

accommodates two regulated wetlands and a large number of high lying 
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floodplains along the river channel. As a result of the construction of the 

locks, the wetlands closer to Lock 1 have become permanently inundated (i.e. 

continual connection to the river) and experience no drying, whereas, wetlands 

closer to Lock 2 are temporary and rarely inundated due to upstream system 

constraints (Overton et al., 2010). Each wetland and surrounding floodplain 

houses a variety of flora and fauna, ranging from high-lying black box 

woodland (Eucalyptus largiflorens) to water birds and fish (e.g. ibis and carp 

gudgeon) (Turner, 2007). 

 

In order to preserve and maintain the ecological integrity of the wetlands 

within this river section, it has been suggested to not only release 

environmental water upstream at the South Australian border, but to also 

operate gates at the wetland inlets, with two wetlands within the case study 

area currently falling into this category (Schultz, 2007; Turner, 2007). 

4.3.2 Problem Formulation 

4.3.2.1 Specification of Ecological Assets and Indicators  

The first step of the problem formulation stage involves identifying the 

ecological assets (i.e. wetlands, floodplains, river) to be managed, Hi, where i 

ranges from 1 to q. In this case study, the management of two wetlands, 

Morgan Lagoon and Brenda Park, is considered (i.e. q=2) (Table 4.1). This 

includes the wetlands themselves, the high-lying floodplain areas surrounding 

the wetlands, and the adjacent main river channel. These wetlands have been 

selected because they are the only wetlands within the case study area that 

currently have operational regulators. The vegetation areas within the wetland 

and floodplain, as well as the location of the fish and water bird species within 

the wetlands themselves, are identified with the aid of existing wetland 

management plans (Schultz, 2007; Turner, 2007). 
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Table 4.1: Details of Problem Formulation for Case Study 

Problem Formulation Steps Specification 

1 Managed Ecological Assets  
Hi, i=1 to q 

q = 2 
(Morgan Lagoon and Brenda Park) 

2 Ecological Indicator 
Ei,r r=1 to s(i) 

Murray Flow Assessment Tool (MFAT) 
(Young et al., 2003) 

 
Total Number of Species Types = 10 

3 

Planning Horizon and period 
Yv, v=1 to K 
Yp =1 to P  

K= 5 years 
P= 20 years 

Time Interval 
 t,  t=1 to T Monthly, T  =  60 months 
Update Interval, xu 
Number of Updates 
ut, ut=1 to ft 

xu = 1 (i.e. year),  ft = 20  

4 Management Alternatives 
Ma ,  a=1 to h 

h = 3 
(1 reach and 2 asset scale) 

5 
 

Management Alternative 
Suboptions (i.e. magnitude, Ma,m, 
and/or duration, Ma,d) 

Reach – magnitude & duration 
Asset – duration 

6 
Number of Management 
Alternatives compared  
mc, mc=1 to fn. 

fn = 3 

 

Next, the ecological response indicator, Ei,r, is identified, which is the Murray 

Flow Assessment Tool (MFAT) developed by Young et al. (2003). This was 

also used by Szemis et al. (2012; 2013). This indicator quantifies the 

ecological response of each species (including vegetation, waterbird and fish) 

within the river, and adjacent wetlands and floodplains (Table 4.1). MFAT 

was developed specifically for the River Murray and can be used to investigate 

the impact of different flow scenarios on the ecological response of flora and 

fauna in terms of two ecological processes, that is, recruitment (e.g. promoting 
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seed germination) and maintenance (e.g. preserving adult habitat) (Young et 

al., 2003). In order to determine the ecological response using MFAT, 

response curves are used, which are based on five flow components, that is 

frequency, duration, timing, rate of change and magnitude. The response 

curves used for the case study area are those given in CRCFW (2003) and 

Overton et al (2010), and include species such as river red gum (Eucalyptus 

camaldulensis), wetland specialists (e.g. carp gudgeons) and waterbirds (e.g. 

grebes). In addition, weights for the recruitment and maintenance processes 

need to be selected and are chosen based on literature or expert knowledge. A 

total of 10 species are defined for the case study area and the proportions of 

each species type per wetland are given in Table 4.2.  

Table 4.2: Species Composition in Case Study Area 

Asset 
Wetland 

Name 

Species Composition (% per asset) 
Floodplain 

Flora 
Wetland 

Flora 
Waterbird Fish 

1 Morgan 
Lagoon 50.0 11.0 25.0 14.0 

2 Brenda Park 53.0 0.0 29.0 18.0 
 

4.3.2.2 Identification of Planning Horizon, Time and Update Intervals 

The planning horizon, Yv (v=1, K years), time interval, t, where t ranges from 

1 to the final interval, T and the variables introduced as part of the proposed 

adaptive optimization approach, that is, the update interval, xu, and the 

number of updates, ut, (which ranges from 1 to ft) need to be selected (see 

Table 4.1). In this case, a planning horizon of five years is chosen, as wetland 

management plans in the study area are generally developed over five years 

(EA, 2007; Schultz, 2007), while a monthly timestep is selected, since wetland 

gate operations are set on a month by month basis (Schultz, 2007; Turner, 

2007), with the total number of time intervals, T, being 60. Finally, the update 
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interval, xu, is set to one year, while the EFMA schedule will be updated along 

a 20 year planning period (Yp) from 1983 to 2003, thus ft, equals 20. 

4.3.2.3 Selection of Management Alternatives and Suboptions  

This step of the problem formulation stage involves the determination of the 

management alternatives, Ma, where a is between 1 and h, and the 

corresponding suboptions. The environmental flow releases at the South 

Australia border are selected as the only reach scale management alternative, 

while the operations of gates at the two wetlands (i.e. Morgan and Brenda 

Park, see Figure 2) constitute the chosen asset scale management alternatives. 

As a result, there are three management alternatives (i.e. h = 3) that can be 

considered in the development of the optimal EFMA schedules. The 

suboptions for the reach scale management alternative include magnitude, 

Ma,m, and duration Ma,d suboptions, while only the duration suboption is 

required for asset scale management alternatives (i.e. regulators open or 

closed), as shown in Table 4.1. The selection of the maximum number of 

magnitude suboptions, n, is dependent on the case study area and system 

constraints, where the number of potential duration suboptions at each 

timestep equals p, where p varies between 12 in July and 1 in June the 

following year. 

 

Finally, the management alternatives for which changes between current (i.e. 

at ut-1) and updated (i.e. at ut) schedules are to be limited, Mmc, need to be 

selected, where mc ranges from 1 to fn management alternatives. For the case 

study, fn is set to three (Table 4.1), since the differences are compared for all 

selected management alternatives. 
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4.3.3 Specification of Objective Function and Constraints 

Once the problem has been formulated, the objective functions and constraints 

are defined (Figure 4.1). As per the methodology introduced in Section 4.2, 

the two objectives include the maximization of ecological response and the 

minimization of changes to optimized EFMA schedules. Details of the 

formulation of these objectives for the case study are given below. As 

described in Szemis et al. (2013), the ecological response can be comprised of 

a number of different components, including different types of assets (e.g. 

wetland or floodplain) and different ecological processes (e.g. recruitment or 

maintenance). As a result, the number of assets, species and years considered 

need to be defined as sets, where the number of assets in set H ranges from 1 

to q, while the number of species per ith asset is identified as the Ri set, with 

each ith asset accommodating s(i) species. Finally, the total year set, V, 

ranging from 1 to a maximum year of YK is also defined, with the sets shown 

below. 

    {       }                                                  (4.2) 

   {          }                                                   (4.3) 

  {        }                                                       (4.4) 

The ecological components (e.g. fauna species or recruitment process) that are 

to be investigated as part of the gth ecological response objective, where g 

ranges from 1 to fg, are then defined in the form of g subsets, which also range 

from 1 to fg. In this study, the aim is to maximize the overall ecological 

response within the case study area, which results in a single ecological 

objective (FE,1), where fg=1. 
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The corresponding Equation is as follows:  

     ∑    

    

∑    

      

∑
         

    
    

                                            

where Ei,v,r is the ecological indicator value for asset i, for indicator type r, in 

the vth yearly time interval. The subset H1 contains the number of assets that 

enable the assessment of the river, wetland and floodplain ecological response, 

which in this case is three (including two regulated wetlands and their 

surrounding floodplains, as well as the river channel). On the other hand, Ri,1 

contains information about which species (e.g. waterbirds) are incorporated in 

the ecological response objective (FE,1). The number of species per ith asset 

can be seen in Table 4.3. Finally, V1 specifies the number of years for which 

the ecological response objective is calculated, which is five in this study (i.e. 

K=5). Weights, w1i, w2r and, w3v place emphasis on the ith wetlands, 

floodplains or river reaches, rth ecological indicator and YKth year, 

respectively. For this case study, the values of the weights are set equal to one 

to give equal preference to each asset, species and year.  

 

Table 4.3: Details of the Number of Species per Asset in the Total Ecological 

Response Objective (g=1) for all Investigations 

Asset Set 
    

Number of species 

(s(i)) in Ri,1 (g=1) 
1 28 
2 17 

 

The objective function used for the minimization of differences between 

EFMA schedules at subsequent time steps is given in Equation 4.1. 

Preliminary testing indicated that increasing the weighting for differences in 
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early years produced the best trade-offs between the objectives. Thus, the 

weight values used in this case study are, wD,1 equals 5, wD,2 equals 2, and wD,3 

to wD,5 equal 1. 

 

The constraints considered include the number of suboptions available for 

each management alternative (i.e. Equations 4.6 and 4.7), and the annual 

environmental water allocation available (i.e. Equation 4.8). The constraints 

on the number of magnitude and duration suboptions per management 

alternative, Ma, are as follows: 

      max_,,min_, mamama MMM  ,       nm   to1                         (4.6) 

  max_,,min_, dadada MMM   ,          pd   to1                         (4.7) 

where the magnitude suboptions (Ma,m) are constrained by minimum and 

maximum values of Ma,m_min and Ma,m_max, respectively, and the duration 

suboptions (Ma,d) are constrained by minimum and maximum values of 

Ma,d_min and Ma,d_max, respectively, for each management alternative. The 

specification of Ma,m_min, Ma,m_max, Ma,d_min and Ma,d_max is user-defined, based 

on the requirements of the case study area under consideration (e.g. Ma,m_max 

could be selected based on a maximum achievable flow in the case study 

area). In this case, the minimum magnitude option for the environmental flow 

releases at the border, M1,m_min, is set to 0 GL/month, while the maximum 

value, M1,m_max, is dependent on the forecasted annual environmental water 

allocation each year. If the asset scale management alternative (i.e. a=2,3), 

Ma,m_min, equals 1, the gate is closed, whereas if Ma,m_max equals 2, the gate is 

open. In addition, Ma,d_min is set to 1, while the maximum number of duration 
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sub-options, Ma,d_max, is set to 12 to correspond to the number of months in a 

given water year. 

 

The second constraint considered is associated with the environmental water 

allocation, which can vary over a set planning horizon (e.g. annually) due to 

the forecasts of environmental water made each year, Amax_ni(pd) (see Section 

4.2). This information is then used to update the schedule at regular times in 

the planning horizon. The constraint is given as: 

  )(max_

)(_

)(_
pdni

pdnif

pdniit
t AA 



                                           (4.8) 

where, At is the environmental water allocation at the tth timestep, pd is the 

number of periods of constrained environmental water allocations, ranging 

from 1 to np, while the number of increments in each period, ni(p) ranges from 

1 to Vp, and i_ni(pd) and f_ni(pd) are the corresponding initial and final time 

steps for pd, over which a particular water allocation is released. The duration 

of each increment is defined as dni(p), and the summation of all duration 

increments for each period must equal the total duration interval, Td. In this 

case, the environmental water allocation varies annually making the number of 

periods, pd, five, whereas the number of increments in each period equals 12, 

corresponding to the number of months in a year.  

 

4.3.4 Forecasting of Future Environmental Water Allocation  

In order to obtain forecasts of environmental water allocations over the 

planning horizon of five years, five artificial neural networks (ANNs) are 

developed to obtain forecasts at t+1, t+2, t+3, t+4 and t+5. ANNs are used as 
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they have been used successfully for water resources modeling in a variety of 

applications (Abrahart et al., 2012; Maier et al., 2010; Wu et al., 2014). The 

ANNs are developed using the procedure outlined in Wu et al.(2014), 

including input selection, data splitting, architecture selection, structure 

selection, calibration and validation. In total, 106 years of reconstructed 

environmental water allocation and inflow storage data from 1897 to 2003 are 

available for model development (see MDBA (2012b)). 

 

Input selection is performed using a combination of system understanding and 

the partial mutual information (PMI) algorithm, which accounts for both input 

significance and independence and has been applied successfully in other 

water resources studies (Bowden et al., 2005; May et al., 2008a; May et al., 

2008b). The candidate inputs considered before application of the PMI 

algorithm are shown in Table 4.4 and have been selected based on the 

assumption that the past five years of inflows, storages and environmental 

allocation in the Murray Darling Basin can influence future environmental 

allocations. The final inputs selected are summarized in Table 4.4, which 

indicate that future environmental flow allocations are a function of 

environmental flow allocations, system storage and system inflows in current 

and previous years. 
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Table 4.4: Details of Candidate Inputs and Selected Inputs for all five ANNs 

Candidate 

Inputs 

Selected Inputs 

Environmental 

Allocation 
 (t+1) 

Environmental 

Allocation 
(t+2) 

Environmental 

Allocation 
(t+3) 

Environmental 

Allocation 
(t+4) 

Environmental 

Allocation 
(t+5) 

Inflows 
(t, t-1, t-2, t-3, t-4) t, t-1 t, t-1, t-2 t t-4 t-2, t-4 

Storage 
(t, t-1, t-2, t-3,t-4) t, t-3 t-2 t-1, t-2, t-3 t, t-2, t-4 t-1, t-3, t-4 

Environmental 
Allocations 

(t, t-1, t-2, t-3, t-4) 
t t t-1, t-4 t, t-2, t-3 t-2, t-3 

 

The available data are split into training (50%), testing (30%) and validation 

(20%) subsets using a modified version of the DUPLEX algorithm (see May et 

al., 2008a). This data splitting algorithm is used as it is deterministic and 

suitable for data that are skewed and peaked and have low to medium 

variability (see May et al., 2010; Wu et al., 2013), which is the case here 

(Table 4.5). Both input selection and data splitting approaches are 

implemented using a Neural Network Excel Add-in (http://www.ecms.adelaid 

e.edu.au/civeng/research/water/software/). 

 

Table 4.5: Statistical Properties of the Data (Number of Observations = 106) 

Variables Mean S.D. Skewness Kurtosis 

Inflows 18348.4 8183.7 1.54 3.69 
Storage 11731.2 2803.5 -0.75 0.33 

Environmental 
Allocations 2229.0 288.6 -1.73 4.96 
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Multilayer perceptrons (MLPs) are used for the model architecture, as they are 

the most commonly used form of ANN in water resources and have been used 

successfully in many applications (Maier et al., 2010; Wu et al., 2014). A 

single hidden layer is used, as MLPs with a single hidden layer have been 

proven to be universal function approximators. The number of hidden nodes is 

determined by trial and error based on model performance on the testing set, 

which has also been used effectively in a large number of studies (Wu et al., 

2014). The number of hidden nodes tried varied from 1 to 7 and the optimal 

number of hidden nodes for each ANN model is given in Table 4.6. 

Table 4.6: Parameter Values Ranges Tested and Final Selected Parameters for 
each ANN 

Parameter 

Parameter 

Value 

Ranges 

Selected Parameter Values  

ANN 

1 (t+1) 

ANN 2 

(t+2) 

ANN 3 

(t+3) 

ANN 4 

(t+4) 

ANN 5 

(t+5) 

Number of Hidden 
Layer Nodes 1 – 7 3 5 4 6 5 

Learning Rate 0.05 – 0.75 0.05 0.05 0.05 0.05 0.05 
Momentum 0.0 – 0.9 0.0 0.1 0.1 0.0 0.1 

 

The back-propagation (BP) algorithm is employed for calibration, since it is 

the most frequently used method for calibrating MLPs (Maier et al., 2010; Wu 

et al., 2014). The optimal values of the parameters controlling BP searching 

behaviour (i.e. momentum and learning rate) are determined by trial and error 

based on model performance on the testing set, with the parameter ranges 

tested and the optimal values given in Table 4.6. It should be noted that each 

calibration run is repeated 10 times using a different random seeds.  

 

To check the replicative validity of the ANN models, the residuals of the 

training data are examined, with the standardized residuals for the ANN 1 
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model shown in Figure 4.3. The fact that the residuals are approximately white 

noise and the auto-correlation coefficient is 0.3 suggests that the selected 

model is able to adequately capture the relationships contained in the data. In 

addition, almost all of the residuals are within the 95% confidence intervals. 

Similar results are obtained for the remaining ANN models. 

 

Figure 4.3: Graph of Training Data Standardized Residuals for the ANN 1 

model. 

Predictive validity is checked with the aid of the validation set and a number 

of performance metrics, including Root Mean Square Error (RMSE), Mean 

Average Error (MAE) and Mean Absolute Percentage Error (MAPE) (Bennett 

et al., 2013; Dawson et al., 2007), with the resulting values shown in Table 

4.7. As can be seen, all models performed well, with MAPEs of the validation 

data varying between 7.3 and 9.6%. 
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Table 4.7: Error Measures for all Forecasting ANN Models 

Model Data set MAE RMSE MAPE 

ANN 1 
(t+1) 

Training 122.7 171.8 5.8% 
Testing 139.7 198.7 6.7% 

Validation 151.6 204.7 7.3% 

ANN 2 
(t+2) 

Training 123.7 163.3 5.7% 
Testing 176.7 228.5 8.5% 

Validation 202.4 250.3 9.6% 

ANN 3 
(t+3) 

Training 157.8 195.9 6.9% 
Testing 183.0 221.4 8.8% 

Validation 165.8 201.4 8.0% 

ANN 4 
(t+4) 

Training 125.8 166.2 6.0% 
Testing 177.0 226.2 7.9% 

Validation 186.1 241.0 8.5% 

ANN 5 
(t+5) 

Training 138.0 179.8 6.4% 
Testing 222.9 291.8 10.6% 

Validation 187.3 242.2 8.9% 
 

4.3.5 Development of Environmental Flow Management Schedules  

Once the problem is formulated and the environmental water allocations are 

forecast for each period for the EFMA schedule at ut, trial EFMA schedules 

can be developed. As the decision variables chosen at one time period, such as 

the duration of an environmental flow release, potentially have an impact on 

options available at subsequent time steps, trial schedules are developed with 

the aid of a decision tree graph consisting of the management alternatives and 

suboptions, which can be adjusted dynamically based on selected options 

(Foong et al., 2008a; Foong et al., 2008b; Szemis et al., 2012; Szemis et al., 

2013).  

 

An example decision tree graph that considers environmental flow release, as 

well as magnitude and duration suboptions, is given in Figure 4.4. The 
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example considers four magnitude options (i.e. 0, 100, 200 and 300 gigalitres 

(GL)) and three duration suboptions, and is constructed over three time steps. 

If the maximum duration (i.e. 3 time intervals) is chosen at the first time step, 

the graph is adjusted dynamically so that no other decision paths are made 

available at subsequent time steps (decision points), as shown by the bottom 

path in Figure 4. On the other hand, if a duration option of one is chosen at the 

first time step (top path), then the number of available options decreases from 

three to two, as there are only two more time steps remaining. This results in a 

reduced search space, increasing the likelihood that optimal and near optimal 

schedules can be found (Szemis et al., 2013). A detailed discussion of this 

approach for the development of EFMA schedules is given in Szemis et al. 

(2012; 2013). 

 

 

Figure 4.4: Example of an EFMA Schedule Graph for Environmental Flow 

Releases (In Gigalitres (GL)) incorporating Dynamic Constraints 

4.3.6 Calculation of Objective Function and Assessment of Constraints  

Once an EFMA schedule has been developed, its utility needs to be assessed, 

which is done via the objective function and constraints. In order to enable 

calculation of the objective function and constraint values, a hydrological 
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model of the river system is developed so that the ecological response of the 

river system to changes in the flow regime can be determined with the aid of 

MFAT.  

 

The hydrological model is based on backwater curves that relate flows at the 

South Australian border to the corresponding river height (T. Bjornsson, South 

Australian Department of Water, personal communication, December 8, 2010) 

and is used to develop relationships between the flow at the South Australian 

border and river height at the Brenda Park and Morgan Lagoon wetlands. Fill 

values, that is, the river height at which a particular wetland or floodplain is 

inundated, as well as area vs. average depth curves for each specified 

vegetation area, are determined using ArcGIS and a range of data sources that 

include a Digital Elevation Model (DEM) obtained from the Department of 

Environment, Water and Natural Resources baseline surveys (SKM, 2004; 

Smith and Fleer, 2006; Waanders, 2007) and wetland management plans 

(Schultz, 2007; Turner, 2007). Once this is completed, the hydrological 

models for the wetlands and floodplains are developed using the water balance 

equations described in Szemis et al. (2013). 

 

Average monthly evaporation data are obtained from the Australian Bureau of 

Meteorology website (http://www.bom.gov.au/climate/data/). A value of 0.7 is 

chosen as the pan coefficient, as this is a commonly used value in the Murray 

Darling Basin (Gippel, 2006). To account for rainfall, average monthly rainfall 

data for the case study area are used, which are also obtained from the 

Australian Bureau of Meteorology website (http://www.bom.gov.au/climate/d 

ata/). It should be noted that both models are subject to a number of 

assumptions, including (i) water seepage is negligible since it is small 
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compared with evaporation loss, and (ii) the rate of river level rise and fall 

occurs gradually over each month. The storage capacity of the wetlands is 

very small compared with the magnitude of streamflow, and thus has a 

negligible effect on downstream flow. Further details on the models are 

provided in Szemis et al. (2013). 

  

4.3.7 Optimization  

The Pareto Ant Colony Optimisation Algorithm (PACOA) (Doerner et al., 

2004) is used, as it has been used successfully for this problem and achieved 

better result than alternative multi-objective ACO variants in Szemis et al. 

(2013). To account for multiple objectives, this algorithm uses multiple 

pheromone matrices and updates the pheromone based on the first and second 

best solution. The steps in the optimization procedure are given in Figure 4.5. 

The first step is the initialization of the PACOA control parameters, after 

which the optimization process takes place. As part of this process, b ants 

generate b trial EFMA schedules by selecting a management alternative and 

associated sub-options (i.e. magnitude and/or duration) at each time step, as 

illustrated in the example in Figure 4.4. This is repeated for a large number of 

iterations (its).  
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Figure 4.5: Pareto Ant Colony Optimization Algorithm Procedure 

Once a complete trial EFMA schedule has been developed by an ant, the 

utility of this schedule is assessed using a fitness function, which utilizes 

objective function and constraint values. Fitness functions are used to drive the 

optimization process because ACO algorithms do not explicitly consider the 

constraints apart from upper and lower bounds on the decision variables, 

making it necessary to include penalties within the fitness function.  
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A number of different fitness function formulations are investigated for the 

case study, with the fitness function that performs best and is hence used in 

this study given below: 

     
 

    
                                                                

where FE,1 is the ecological response score calculated using MFAT (Equation 

4.5) (which is inversed to ensure that the score is maximized), and Penaltya1 is 

a penalty function that ensures the water allocation constraints for each period 

are adhered to, as given by: 
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where the variables in Equation 4.10 are defined in Equation 4.5. In this case, 

there is only one period (i.e. pd=1), where iin(pd)=1 and fin(pd)=60. It should be 

noted that the second objective, the minimization of differences between 

subsequent schedules, does not need to be transformed into a fitness function 

and as a result, Equation 4.1 is used within the optimization process. After 

each iteration, the b trial schedules generated by the b ants undergo a non-

dominated sorting process in order to determine the schedules that are on the 

Pareto front for that particular iteration and are subsequently stored in an 

offline storage matrix.  
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As mentioned earlier, the first and second best solution for each j objective are 

used to update the j-pheromone matrices as part of the global update, using the 

following equation.   

j
t

j
t

j
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where the pheromone value for each tth sub-option and jth objective ( j
t ) is 

reduced by pheromone evaporation, ρ, and increased by a pheromone value 

(Δτj), which is based on whether a given sub-option is within the best and/or 

second best solution. Pheromone evaporation is applied to sub-options of 

schedules that perform poorly, which deters the algorithm from selecting these 

sub-options again. In this manner, the environment is modified to guide the 

ants into regions of the search space that contain non-dominated schedules. 

The process of developing, assessing and updating the pheromone trails to 

guide the PACOA to near-optimal trade-offs continues until the specified 

stopping criterion has been satisfied, which corresponds to hypervolume 

convergence in this case.  

 
Before the PACOA is applied, a sensitivity analysis is conducted such that 

optimal values of the parameters that control the searching behavior of the 

algorithm are identified. The ranges of parameter values tested and the final 

parameters selected are given in Table 4.8.  
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Table 4.8: Range of PACOA Parameters Investigated and Values Selected 

PACOA Parameter Range of Values Tested Selected Value 

Number of ants (ant) 20, 200, 300,500 500 
Initial pheromone (  ) 0.5, 1.0, 10.0 0.5 
Evaporation rate (ρ) 0.5, 0.1, 0.15, 0.2, 0.5  0.1 
Evaluations 90,000 90,000 

 

4.3.8 Updating of EFMA Schedule  

An update interval, xu, of 1 year is used (see Table 4.1). Consequently, 20 

updates of estimates of future environmental water allocations and optimal 

EFMA schedules are performed over the 5 year planning horizon over a 20 

year period (1982-2002). 

4.4 Analysis Conducted 

In order to assess the utility of the proposed adaptive multi-objective 

optimization approach for the optimal scheduling of EFMA alternatives in an 

operational setting, its performance in terms of overall ecological response is 

compared with that of a number of alternative approaches over a 20 year 

period from 1982 to 2002, as detailed below. In all tests (Methods 1 to 4, 

Table 4.9), the number of magnitude options (n) is set to 37, while the 

maximum number of durations equals 12. The details of each asset subset 

(Hg), the number of species subsets in each asset (Ri,g), the number of years 

subset V (i.e. YK) and the allocation constraint period are given in Tables 4.1 

and 4.3. It should be noted that minimum monthly flows within the river 

channel are set to South Australian entitlement flows (MDBA, 2012a), while 

weights for recruitment and maintenance within MFAT are set to 0.5 each, 

with the exception of the weight for the wetland flora species, which is set to 

0.25 for recruitment and 0.75 for maintenance (CRCFW, 2003). An equal 
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preference is given to all species and assets, and each optimization run is 

repeated 10 times with different starting positions in the solution space.  

Table 4.9: Details of Methods Used  

Method 
Method for Obtaining 

Environmental Water 

Allocations 

Annual Updating of 

Optimal Schedules 

Minimization of 

Changes to 

Schedules 

1 Fixed (570 GL/year) No No 
2 ANN Models Yes Yes 
3 ANN Models Yes No 
4 Actual Yes No 

 

4.4.1 Effectiveness of Using Optimal EFMA Scheduling  

In order to test the effectiveness of using optimal EFMA scheduling as a 

means of maximizing ecological response for a given environmental water 

allocation, the performance of the proposed approach is compared with that of 

a benchmark approach that does not include any management of 

environmental water allocations (i.e. using the actual flows with no wetland 

regulators). It should be noted that as part of the proposed approach (Method 

2, Table 4.9), the ANN models are used to obtain forecasts of environmental 

water availability over the next five years, optimal EFMA schedules are 

obtained over a five year period and these schedules are updated annually by 

re-optimizing using the multi-objective ACO approach that trades-off 

maximizing ecological response with minimizing changes to existing 

schedules. It should also be noted that optimal updated schedules selected 

from the Pareto fronts correspond to an inflection point on the trade-off curve 

(i.e. an EFMA schedule that determines a good balance between minimization 

of differences between subsequent schedules and maximizing the MFAT 

score). 
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4.4.2 Effectiveness of Adaptive Optimization Approach 

In order to test the effectiveness of the proposed adaptive optimization 

approach (Method 2, Table 4.9) in improving ecological response, its 

performance is compared with that of the approach used in Szemis et al. 

[2013] (Method 1, Table 4.9), in which a known, constant environmental flow 

allocation of 570 GL/year is assumed each year and hence the updating of 

optimal schedules is not required. 

4.4.3 Effectiveness of Minimization of Differences between Successive 

Schedules  

In order to test the effectiveness of the proposed multi-objective formulation 

in being able minimize changes to existing schedules while maximizing 

ecological response, the performance of the proposed approach (Method 2, 

Table 4.9) is compared with that of an approach that only maximizes 

ecological response, without consideration of minimizing changes to 

subsequent schedules (Method 3, Table 4.9). It should be noted that the 

solutions for Method 3 are extracted from the same Pareto front as the 

solutions for Method 2, but correspond to the solutions that result in the 

highest MFAT score. 

4.4.4 Effectiveness of ANN Forecasting Model  

In order to test the effectiveness of the ANN models in producing forecasts of 

environmental water availability that maximize ecological response, the 

performance of Method 3 (Table 4.9), which utilizes the ANN forecasts but 

only maximizes ecological response, is compared with that of an approach that 

is identical, apart from using perfect knowledge of future environmental water 

allocations, instead of those produced by the ANN models (Method 4, Table 

4.9). 
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4.5 Results and Discussion 

4.5.1 Effectiveness of using Optimal EFMA Scheduling  

As can be seen from Figure 4.6 by comparing the MFAT scores obtained 

using the benchmark (Actual) and the proposed (Method 2) approaches, there 

is significant benefit in optimal EFMA scheduling, as indicated by the 

substantial increases in ecological response. This indicates that it is 

worthwhile to operate regulators at the Morgan Lagoon and Brenda Park 

wetlands, particularly at times when there are lower flows, as is the case for 

the water years of 1994-1995, 1997-1998 and 2002-2003 (see Figure 4.7). 

 

Figure 4.6: Average Annual MFAT Scores Achieved for each Method and 
Actual Data Between the Years 1983-2003 

 

Figure 4.7: Actual Flows at the South Australian Border 
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4.5.2 Effectiveness of Adaptive Optimization Approach  

When the proposed approach (i.e. Method 2) is used, annual MFAT scores are 

generally higher than those obtained using known, constant environmental 

water allocations (Method 1), as shown in Figure 4.6. This is particularly 

evident at higher flows (see years 1990-1991, 1992-1993, 1995-1996 and 

1996-1997 in Figure 4.7), where the ANN models are able to forecast above 

average environmental water allocations, enabling releases and regulator 

operations to be altered. In contrast, when an average environmental allocation 

is assumed and higher flows are actually released, the EFMA schedule 

developed is sub-optimal, producing lower ecological response.  

 

In order to better understand the reasons for the differences in MFAT scores, it 

is worthwhile to compare the MFAT scores for different wetlands, species and 

ecological processes (Figure 4.8), as these are aggregated to produce the 

annual scores presented in Figure 4.6. As can be seen in Figure 4.8a, there are 

generally only small differences in MFAT scores for Morgan Lagoon. 

However, the differences are more pronounced in water years 1990-1991 and 

1996-1997, which is due primarily to the increased maintenance ecological 

response that could be achieved for river red gums by using the adaptive 

scheduling approach (Method 2 – Figure 4.8c). This is because when Method 

1 is used, it is assumed that an average environmental allocation is available, 

which is not enough to overtop the regulator and inundate the higher lying 

vegetation, such as river red gums. Because of this, in 1990-1991, the 

regulator is opened for 8 months (i.e. July to January) to promote a response 

for lower lying vegetation.  
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Figure 4.8: Average Annual MFAT Scores Achieved for Method1 and 2 for 

the Years 1983-2003 
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However, when higher environmental allocations are released, as is the case in 

1990-1991, the Morgan Lagoon regulator is opened when it would normally 

be closed in order to obtain an ideal dry period. In comparison, Method 2, 

taking into consideration predicted higher environmental allocation, was able 

to adjust the schedule to open the gate in December, thereby achieving the 

required dry period. 

 

While the MFAT scores obtained using Methods 1 and 2 are different for 

Morgan Lagoon (Figure 4.8a), this is not the case for Brenda Park (Figure 

4.8b), suggesting that there is much more benefit in using the proposed 

adaptive scheduling approach for the former wetland. The only differences in 

the MFAT scores for Brenda Park (i.e. 1995-1996 and 1996-1997) when using 

the deterministic and adaptive approaches are primarily due to the 

maintenance MFAT scores achieved for the floodplain flora, as shown in 

Figure 4.8d. The largest difference occurs in 1996-1997, where a score of 0.17 

is obtained when Method 1 is used, whereas a score of 0.39 is obtained when 

Method 2 is used. This increase in MFAT score for Brenda Park when Method 

2 is used is due to the ability of this method to update the optimal EFMA 

schedule at the beginning of 1996-1997 using improved environmental water 

allocation estimates. In order to achieve a maintenance response for floodplain 

flora, the flora must undergo a dry phase. However, prior to 1996-1997, for 

the EFMA schedule developed using Method 1, the gate is closed and the 

wetland is allowed to dry. However, closing the gate for greater than 15 

months has a negative impact on the floodplain flora. In contrast, in Method 2, 

the gate is closed from July to August, thereby providing sufficient time for 

the ideal dry period for the floodplain flora and achieve an overall 

maintenance score of 0.39. 
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The average MFAT score for the wetland and floodplain species within the 

case study area obtained using Methods 1 and 2 are shown in Figure 4.9. In 

the first four years, both methods achieve similar results, with wetland flora 

scores higher than those for floodplain flora. However, in the water year of 

1987-1988, a higher wetland score is achieved for Method 1 than Method 2 

because a higher environmental allocation is predicted using the latter method, 

and as such the EFMA schedule is adapted to suit higher lying vegetation. In 

reality, average flows were released and consequently, Method 1 achieves 

better results than Method 2. In 1991-1992, the floodplain flora scores for both 

Methods outperform the wetland flora scores, due to higher flow within the 

South Australian River Murray. This suggests that irrespective of the method 

used, when high flows are available, the floodplain flora will benefit more 

than the wetland flora, given that the latter will not experience ideal ecological 

conditions since it is flooded for a longer period. Finally, in 1995-1996 and 

1998-1999, it can be seen that for Method 1, the wetland score achieved is 

higher than that achieved for Method 2. However, this is the reverse for the 

floodplain score. This is because in Method 1, lower allocations are assumed, 

and as such, the EFMA schedule developed favors wetland flora, whereas 

higher allocations forecast in Method 2 place more emphasis on the floodplain 

flora. As a result, when low flows are released, as is the case in 1995-1996 and 

1998-1999, the predicted environmental allocations have an impact on which 

species should be favored. This suggests that at times of low flows, such as 

drought, managers should be aware of the impact the volume of environmental 

allocation has on these species, and as such should favor the species in need of 

improvement of ecological health. 
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Figure 4.9: Average Annual MFAT Scores for Floodplain and Wetland Flora 

Achieved for Methods 1 and 2 Between the Years 1983-2003 

4.5.3 Effectiveness of Minimization of Differences between Successive 

Schedules  

In general, the performances of Methods 2 (trade-off between maximizing 

ecological response and minimizing disruptions to optimal schedules) and 3 

(best possible ecological response) are very similar (Figure 4.6). In order to 

obtain a better understanding of the trade-offs between maximizing ecological 

response and minimizing changes to optimized EFMA schedules, the trade-off 

curves for the water years 1983-1984, 1992-1993 and 2002-2003 are shown in 

Figure 4.10. As can be seen, in all three years, substantial reductions in the 

number of changes to the optimal schedules can be achieved with very small 

reductions in MFAT score. These results indicate that the proposed multi-

objective formulation is successful in reducing disruptions to existing 

schedules with minimal impact on ecological response, which is important 

from a practical management perspective. However, the exact nature of the 

changes from one schedule to the next would have to be examined by the 

appropriate authorities in order to determine the significance of the changes. 
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Figure 4.10: Trade-off Curves Developed using Method 2 for the 1st Year 

(1983-1984), 10th Year (1992-1993) and 20th Year (2002-2003) 

 

4.5.4 Effectiveness of Minimization of Differences between Successive 

Schedules  

As can be seen from Figure 4.6, the MFAT scores obtained using Methods 3 

(using forecasts of future environmental water allocations using the ANN 

models) and 4 (using actual future environmental water allocations) are very 

similar. This suggests that the ANN models are performing well, as their use 

enables MFAT scores to be obtained that are close to the maximum scores that 

could be obtained with the aid of perfect knowledge of environmental water 

allocations over the next five years.  

 

4.6 Conclusions and Recommendations 

Overall, the results suggest that the use of optimal EFMA scheduling can 
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an operational setting, compared with approaches used previously. This is 

achieved by forecasting environmental water allocations over the next five 

years with the aid of artificial neural network models and updating schedules 

on an annual basis. From a practical perspective, the proposed multi-objective 

optimization formulation is able to reduce the number of changes to existing 

optimized schedules during the updating process at a very small reduction in 

ecological response.  

 

Even though the results demonstrate the utility of the proposed adaptive 

optimization approach, improvements could be made by considering 

uncertainties, such as those associated with the estimation of ecological 

response and the forecasting of future environmental flow availability. For 

example, the Murray Flow Assessment Tool (MFAT) uses response curves 

that are based on imperfect knowledge (Baihua and Merritt, 2012), thus 

introducing uncertainties in the objective function. In order to address this 

issue, comprehensive sensitivity analysis could be used to assess the impact of 

the uncertainties of MFAT, as suggested by Norton and Andrews (2006) and 

Baihua and Merritt (2012). There is also uncertainty in the ANN forecasting 

models, which could be taken into account by considering more sophisticated 

ANN model development approaches (e.g. Kingston et al., 2005; Kingston et 

al., 2008; Zhang et al., 2011) or by updating the ANN forecasting models as 

new data become available to extend their range of applicability (Bowden et 

al., 2012). 

 

Overall, the results demonstrate the utility and benefit of the proposed 

adaptive optimal EFMA scheduling approach in an operational setting. The 

approach has the potential to aid wetland managers in making informed 
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decisions on how to best schedule EFMAs in an operational setting at times 

when environmental water allocations are likely to vary from year to year and 

when there is a limited amount of water available for the environment, which 

needs to be efficiently used to achieve the best possible ecological outcomes. 

In addition, the ability to assess the number of differences between schedules 

and understand the resulting impact on the ecological health of the system is 

likely to minimize any disruptions to the long term planning of EFMAs, as 

well reduce the resources required to make these changes. 
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Chapter 5 

 

 

5 Conclusions 
The scheduling of environmental flow management alternatives is key to the 

preservation and restoration of rivers, wetlands and floodplains worldwide. 

However, the scheduling of EFMAs in river systems is a difficult and complex 

task for the following reasons: (i) there are multiple wetlands and floodplains 

all containing a variety of species that have different flow requirements that 

need to be considered; (ii) there is generally limited water allocated for 

environmental purposes since there multiple users (e.g. irrigation, domestic), 

all competing for the same water source; (iii) generally the schedules are 

developed over multiple years, introducing temporal dependencies; (iv) there 

are usually multiple competing objectives (e.g. water allocation and ecological 

response); and (v) flows in river systems are subject to constraints. Therefore, 

a generic adaptive multi-objective framework using ant colony optimization 

has been developed in this research to consider these key factors when 

scheduling EFMAs, which has been tested using hypothetical and real case 

studies. Information gathered from the application of the framework can aid 

wetland and water managers in making informed decision regarding the 

operation EFMAs at times when environmental water is limited and there exist 

restrictions associated with system constraints. 
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5.1 Research Contribution 

The overall contribution of this research is the development of an adaptive 

multi-objective framework for the scheduling of EFMAs using ant colony 

optimization. This framework enables optimal EFMA schedules to be 

developed in order to maximise the ecological response of rivers, wetlands and 

floodplains at times when there is limited water for environmental purposes 

and there are constraints limiting flows in the system. The utility of the 

framework is demonstrated using a real case study in the South Australian 

River Murray, with information gained being able to assist with the decision 

making of EFMA operation under a range of different hydrological conditions. 

Details of specific contributions of this research are as follows: 

1. An initial formulation of a single-objective framework using ant 

colony optimization is developed, which is able to account for the 

sequential nature of EFMA scheduling by representing the problem in 

the form of graphs. This representation allows for dynamically 

adjusting the tree as schedules are developed, thereby reducing the 

search space and increasing the likelihood that the global optimum will 

be found. This framework has been validated using a hypothetical case 

study based on the River Murray and its utility demonstrated using a 

range of investigations, including assessing the trade-off between 

recruitment and maintenance, assessing the trade-off between flora 

versus fauna and constraining allocations during certain time periods to 

assess the hydro inversion case. Results obtained provided further 

understanding in relation to: (i) when either recruitment, maintenance 

or a particularly species type is favoured and (ii) the allocation 

required to improve the ecological integrity of biota, in addition to the 

development of optimal EFMA schedules. Results also suggest the 
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framework presented is a valuable tool for determining the best 

possible ecological outcome at a given environmental water allocation. 

 

2. The framework is extended to incorporate multiple objectives and 

applied to a real case study in the South Australian River Murray in 

order to develop trade-offs between ecological benefit and 

environmental water allocation under a variety of conditions, 

including:  a) different system flow constraints; and b) different 

numbers of regulators. The performance of three multi-objective ant 

colony optimization algorithms (i.e. Pareto Ant Colony Optimization 

Algorithm (PACOA) (Doerner et al., 2004), COMPETants (Doerner 

et al., 2003) and m-ACO variant 3 (m-ACO3) (Alaya et al., 2007)) was 

compared, with the PACOA selected, as it performed the best. The 

results provide valuable insight into the management problem, 

particularly the ecological benefit gained in the case study area for an 

increased environmental allocation for a range of upstream flow 

constraints and different numbers of regulators. It was determined that 

as the system constraints became less restrictive, the ecological score 

increased, as a greater area was inundated.  In addition, as the number 

of regulators increased, the maximum ecological score did not, but the 

required water allocation to achieve this score is reduced. The 

application of the framework and the outcomes of these investigations 

enable managers to make informed decision in relation to the 

management of environmental water releases, regulator operations and 

investment in additional infrastructure, particularly at times when 

limited water is available, as is often the case in the South Australian 

River Murray. 
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3. An adaptive approach, which extends the framework by (i) developing 

a forecasting model to predict environmental water allocation and 

using these predictions in EFMA schedule development;  (ii) updating 

forecasts of future water allocation and optimal EFMA schedules at 

regular intervals over the planning horizon; and (iii) considering the 

trade-off between the minimization of the number of differences 

between optimal EFMA schedules at subsequent timesteps and 

ecological response. The approach is applied to a real case study in the 

South Australian River Murray.  Four different optimal scheduling 

methods are compared to test the utility of the different features of the 

proposed approach. Results indicate that the proposed adaptive 

scheduling approach results in improved ecological response by using 

artificial neural networks to forecast future environmental water 

allocation and updating the schedules annually. In addition, the multi-

objective optimization framework is able to decrease the number of 

disruption made to existing schedules with minimal affect on 

ecological response when the trade-off between ecological response 

and the number of differences between current and updated schedules 

is examined. In all, the approach has the potential to aid managers to 

make informed decision on how to best schedule EFMAs when 

environmental allocation varies annually and when there is limited 

water, while  also being able to assses the ecological impact that 

minimising the  number of changes to the EFMA schedules has on the 

area being investigated. 
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5.2 Limitations 

The limitations of this research are discussed below. 

1. A main limitation of this research is associated with the Murray Flow 

Assessment Tool (MFAT) developed by Young et al., (2003) and 

results obtained using this as an ecological indicator. MFAT uses a 

number of preference curves to develop relationships between flow 

and ecological response for a range of species types. However, 

knowledge of these ecological relationships is imperfect, thereby 

introducing uncertainty into the model. In addition to this, the flow 

components for the species and processes using MFAT are aggregated,  

therefore, the actual response for individual species, for example, can 

be lost, resulting in potential difficulties in interpreting the results. 

 

2. Another limitation is the uncertainties associated with the forecasting 

models developed to predict environmental water allocation. Limited 

data was usedto train, test and validate the models, thereby potentially 

not accounting for all the linear and non-linear relationships between 

the input and output data. As a result, forecasts may be incorrect, 

thereby potentially limiting the analysis and understanding gained 

about the area under investigation. 

 

3. A simple water balance model is used to describe the river channel and 

its interactions between wetlands and floodplains, which is based on 

backwater curves for the real case study in the South Australian River 

Murray. However, in reality, groundwater interaction with the 

vegetation also has an impact on the ecological response. For example, 

river red gums (Eucalyptus camaldulensis) are opportunistic and will 

seek out other sources of water, including groundwater to survive in 



188 

periods of drought (Mensforth et al., 1994). Therefore, the actual 

ecological response may be different to that modelled by the water 

balance model in conjunction with MFAT.  

 

4. A final limitation is associated with the fact that there is no 

consideration of other water uses when the balance of environmental 

water and ecological response is investigated. In reality, there is a 

major conflict over water resources between not only the environment, 

but for human purposes, such as domestic, irrigation and industrial use. 

Thus, the overall trade-off between the ecological response and 

environmental water allocation could be different given that there are 

other water users. 

 

5.3 Future Work 

A number of limitations of the current research presented in the previous 

section also represent opportunities of future research, including: 

1. Undertaking a sensitivity analysis on the response curves and 

aggregation approach used in MFAT, such as that used in Norton and 

Andrews (2006) and Baihua and Merritt (2012). This analysis would 

examine the robustness and variance of likely ecological response that 

could be obtained for a given EFMA schedule. 

 

2. Future work on the forecasting environmental water allocation model 

in order to reduce the uncertainties associated with the predictions. 

Increasing the number of data points will ensure that all the underlying 

relationships between the input and output data can be taken into 

account, thereby improving predictive capability of the models. In 

addition to this, other more sophisticated ANN model development 
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approaches such as Bayseain ANNs (Kingston et al., 2005; Kingston et 

al., 2008) could be assessed as well as the re-calibratation of the ANNs 

as new data becomes available, thereby improving the applicability of 

the models (Bowden et al., 2012). This would determine whether or not 

the ecological response within the area of interest obtained at regular 

intervals could be improved with a more sophisticated forecasting 

model. 

 
 

3. The ecological response of vegetation species is not only based on 

surface water interaction between river and floodplains, but also 

groundwater. Future work could extend the water balance model to 

incorporate groundwater interaction and potential other water sources, 

such that a more likely ecological response could be determined, given 

the flow scenario. This may mean that a different ecological indicator 

may have to be selected, given that MFAT only considers surface 

water responses. 

 

4. Finally, the conflict over water is real and generally environmental 

water allocation is the first to be reduced at times when water is limited 

(i.e. drought). Therefore, future work could incorporate additional 

water users (e.g. irrigation or domestic) by extending the framework to 

cater for more objectives (including economic and social objectives) 

and investigate the impact this has on the trade-off between water 

allocation and ecological response. 
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