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Dissipativity analysis for discrete time-delay fuzzy
neural networks with Markovian jumps

Yingqi Zhang, Peng Shi,Fellow, IEEE,Ramesh K. Agarwal,Fellow, IEEE,and Yan Shi

Abstract—This paper is concerned with the dissipativity anal-
ysis and design of discrete Markovian jumping neural networks
with sector-bounded nonlinear activation functions and time-
varying delays represented by Takagi-Sugeno fuzzy model. The
augmented fuzzy neural networks with Markovian jumps are
firstly constructed based on estimator of Luenberger observer
type. Then, applying piecewise Lyapunov-Krasovskii functional
approach and stochastic analysis technique, a sufficient condi-
tion is provided to guarantee that the augmented fuzzy jump
neural networks are stochastically dissipative. Moreover, a less
conservative criterion is established to solve the dissipative state
estimation problem by using matrix decomposition approach.
Furthermore, to reduce the computational complexity of the
algorithm, a dissipative estimator is designed to ensure stochastic
dissipativity of the error fuzzy jump neural networks. As a special
case, we have also considered the mixedH∞ and passive analysis
of fuzzy jump neural networks. All criteria can be formulated
in terms of linear matrix inequalities. Finally, two examples are
given to show the effectiveness and potential of the new design
techniques.

Index Terms—Fuzzy neural networks; dissipativity; Marko-
vian jump parameters; stochastic state estimation; time-varying
delays.

I. I NTRODUCTION

In the past decades, neural networks have received increas-
ing interest due to their extensive applications in a variety of
areas, such as pattern recognition, signal processing, solving
optimization problems, associative memories, and target track-
ing, and so forth [1, 2]. It has been recognized that the exis-
tence of time delay can render the instability and poor perfor-
mance of network dynamics in the signal transmission between
neurons, and much work of time-delay neural networks has
been reported in the literature, such as exponential stability, the
existence of an equivalent point, global asymptotic stability,
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passivity analysis, and synchronization [3-8]. In reality, neural
networks often accompany the information latching. In other
words, a neural network can have finite modes switching
from one to another at different time, which can lead to
the switching between different modes being governed by a
Markov chain. Therefore, neural networks with Markovian
jump parameters have become the focus of increasing re-
search attention in control communities and mathematics, and
many appealing results have been investigated by utilizing
linear matrix inequality (LMI) approach. For example, the
exponential stability criteria were investigated for time-delay
recurrent neural networks with Markovian jumps in [9]. The
authors in [10] discussed the stability and synchronization
of discrete Markovian jumping neural networks with mixed
mode-dependent time delays. In [11], the passivity conditions
were conducted for discrete jump neural networks with mixed
time delays, and the case of Markov chain with partially
unknown transition probabilities was also considered. More
results related to Markovian jump neural networks involving
time delays can also be found in [12, 13] and the references
therein.

On the other hand, Takagi-Sugeno (T-S) fuzzy model has
been recognized as a popular and effective approach in an-
alyzing, synthesizing and approximating complex nonlinear
systems in [14]. Consequently, stability analysis,H∞ control,
reliable control, filter design, and adaptive control problems for
T-S fuzzy systems have attracted considerable attention, and
many important results have been reported in the references
[15-18]. Recently, T-S fuzzy model has been successfully used
to represent complex nonlinear neural networks, see [19-22].
Based on the Lyapunov stability theory and the stochastic
analysis technique, the authors in [23] addressed the robust
stability analysis of continuous-time uncertain fuzzy Hopfield
neural networks with Markovian jumps and time-delays. In
[24], the robust stochastic stability criteria were presented for
uncertain fuzzy jump discrete-time neural networks with vari-
ous activation functions and mixed time delay. It is necessary
to point out that the states of neural networks can generally
be not completely available in the network outputs. Thus,
in real applications, we need to estimate the neuron states
through available measurements and then exploit the estimated
neuron states to obtain the design requirements. Much work
has been investigated for the state estimation of the neural
networks, see the references [25, 26]. It should noted that
state estimation problems were also studied for continuous-
time T-S fuzzy neural networks in [27-29]. Therefore, as
an analogue of the continuous-time case, it is essential to
deal with state estimation of discrete-time T-S fuzzy neural
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networks due to both theoretical and practical importance to
study the dynamics of discrete-time neural networks.

Another area that has been well studied is dissipative theory,
which was originally introduced in [30] and subsequently
developed in [31, 32]. The dissipativity has played an im-
portant role in system analysis and synthesis. The dissipa-
tivity theorem extends many basic system theorems, such as
bounded real theorem, passivity theorem, and sector-bounded
nonlinearity. For example, by utilizing the delay partitioning
technique, the authors in [33] tackled dissipativity analysis
of stochastic neural networks with time delays. In [34], the
problems of dissipativity analysis and synthesis were investi-
gated for discrete delayed T-S fuzzy systems with stochastic
perturbation. By applying the novel model transformation
approach combined with the Lyapunov-Krasovskii technique,
sufficient criteria of dissipativity were established in the form
of LMIs and a fuzzy controller was also designed to ensure the
dissipative performance of the closed-loop system. This work
is the first attempt, to the best of the authors’ knowledge,
to explore the dissipativity analysis and synthesis for discrete
delayed fuzzy neural networks with Markovian jumps and
sector-bounded nonlinear activation functions.

In this paper, the dissipativity analysis and design are tack-
led for discrete time-delay neural networks with Markovian
jump parameters and sector-bounded nonlinear activation func-
tions represented by T-S fuzzy model. Using Lyapunov sta-
bility theory and matrix decomposition approach, a sufficient
condition is initially provided to ensure that the augmented
fuzzy jump neural networks are stochastically dissipative.
Then, a less conservative criterion is established to solve the
dissipative state estimation problem. Moreover, to reduce the
computing complexity of the algorithm, a dissipative estimator
is also designed to guarantee that the error fuzzy neural
networks with Markovian jumps are stochastically dissipative.
As a special case, the mixedH∞ and passive analysis are also
tackled for the class of fuzzy jump neural networks. These
criteria can be characterized in terms of LMIs. Finally, two
numerical examples are presented to show the effectiveness
of the proposed results. The major contributions of this paper
are as follows: (i) by applying piecewise Lyapunov-Krasovskii
functional approach and stochastic analysis technique, the
dissipativity analysis and design are presented for discrete
fuzzy jump neural networks; (ii) the mixedH∞ and passive
analysis and design of the class of fuzzy jump neural networks
are derived; (iii) the obtained criteria are characterized in
terms of LMIs by applying matrix decomposition techniques.
Therefore, the main aim of this paper is to make the first
attempt to tackle the listed contributions.

The rest of this paper is organized as follows. Section
II is problem statement and preliminaries. The results on
dissipativity analysis and design are provided for discrete T-
S fuzzy jump neural networks with sector-bounded nonlinear
activation functions in Section III. Section IV gives simulation
results to demonstrate the validity of the proposed methods
and, finally, the conclusions are drawn in Section V.

Notations.Rn andRn×m represent the sets ofn component
real vectors andn×m real matrices, respectively.(Ω,F,P) is
probability space,Ω is the sample space,F is theσ-algebra of

subsets of the sample space andP is the probability measure on
F. In denotes the identity ofn dimension,E{.} represents the
expectation operator with some probability measureP. A > 0
(or A < 0) denotes a symmetric positive (or negative) matrix.
The symbol∗ refers to the term of a matrix which can be
inferred by symmetry and diag{· · ·} denotes a block-diagonal
matrix. Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operations.AT

and A−1 stand for the matrix transpose and matrix inverse,
respectively.

II. PROBLEM FORMULATION

Fix a probability space(Ω,F,P) and consider the following
discrete Markovian jump neural networks (DMJNNs) with
time-varying delays which could be described by a T-S fuzzy
model:

Plant Rules i, i = 1, 2, · · · , f : IF θ1 is µi1, θ2 is µi2, · · ·,
θg is µig, THEN

x(k + 1) = Ai(rk)x(k) + Bi(rk)f(x(k))
+Ci(rk)g(x(k − d(k)))
+Bωi(rk)ω(k),

y(k) = C1i(rk)x(k) + C2i(rk)x(k − d(k)),
z(k) = Ei(rk)x(k),
x(j) = φ(j), j ∈ {−d2, · · · ,−1, 0},

(1)

where x(k) ∈ Rn, y(k) ∈ Rp, z(k) ∈ Rq and φ(j) are
the neuron state vector, the network output measured vector,
the signal to be estimated and the compatible vector-valued
initial condition, respectively. The external disturbance input
ω(k) ∈ Rm belongs tol2[0,+∞). The stochastic jump process
{rk, k ≥ 0} is a discrete-time, discrete-state Markov chain tak-
ing values in a finite setL = {1, 2, · · · , s} with transition prob-
abilities πlm given by

∑s
m=1 πlm = 1, πlm > 0, l ∈ L. The

mode-dependent matricesBi(rk), Ci(rk), Bωi(rk), C1i(rk),
C2i(rk) andEi(rk) are known the real matrices of appropriate
dimensions.d(k) denotes the transmission delay satisfying
0 < d1 ≤ d(k) ≤ d2, which d1 andd2 are prescribed positive
integers representing the lower and upper bounds of the delay,
respectively.f(x(k)) andg(x(k−d(k))) are the neuron activa-
tion functions.Ai(rk) = diag(a1i(rk), a2i(rk), · · · , ani(rk))
is the known mode-dependent diagonal matrix.θj and
µij (i = 1, · · · , f, j = 1, · · · , g) are respectively the
premise variables and the fuzzy sets,f is the number
of IF-THEN rules. The fuzzy basis functions are given
by hi(θ(k)) =

∏g
j=1 µij(θj(k))/

∑f
i=1

∏g
j=1 µij(θj(k)), in

whichµij(θj(k)) represents the grade of membership ofθj(k)
in µij . It follows that

∑f
i=1 hi(θ(k)) = 1 with hi(θ(k)) > 0.

To simplify the presentation of this paper, in the sequel, for
each possiblerk = l, l ∈ L, matrix Mi(rk) will be denoted
by Mi,l; for instance,Ai(rk) will be denoted byAi,l, Adi(rk)
by Adi,l, and so on. In addition,hi(k), Λ and P̌l represent
hi(θ(k)), {1, · · · , f} and

∑s
j=1 πljP̄j , respectively.

By applying the fuzzy blending method, the overall fuzzy
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DMJNNs could be rewritten as follows:

x(k + 1) =
∑f

i=1 hi(k)[Ai,lx(k) + Bi,lf(x(k))
+Ci,lg(x(k − d(k)))
+Bωi,lω(k)],

y(k) =
∑f

i=1 hi(k)[C1i,lx(k)
+C2i,lx(k − d(k))],

z(k) =
∑f

i=1 hi(k)[Ei,lx(k)],
x(j) = φ(j), j ∈ {−d2, · · · , 0}.

(2)

The estimator of a Luenberger observer type in this paper is
performed through the parallel distributed compensation and
the overall estimator is thus inferred as follows

x̃(k + 1) =
∑f

i=1 hi(k)[Ai,lx̃(k) + Bi,lf(x̃(k))
+Ci,lg(x̃(k − d(k)))
+Hi,l(y(k)− ỹ(k)],

ỹ(k) =
∑f

i=1 hi(k)[C1i,lx̃(k)
+C2i,lx̃(k − d(k))],

z̃(k) =
∑f

i=1 hi(k)[Ei,lx̃(k)],
x̃(j) = φ̃(j), j ∈ {−d2, · · · , 0}.

(3)

where x̃(k), ỹ(k), and z̃(k) are, respectively, the esti-
mated state, the estimated output and the estimated sig-
nal, φ̃(j) is a compatible state estimation vector-valued
initial condition, Hi,l is to be designed the parame-
ter matrices of appropriate dimensions. Definee(k) =
x(k) − x̃(k), x̄T (k) =

[
xT (k) eT (k)

]
and z̄T (k) =[

zT (k) zT (k)− z̃T (k)
]
. Then, the resulting augmented

fuzzy DMJNNs can be obtained as:

x̄(k + 1) = Ālx̄(k) + Ād,lx̄(k − d(k))
+B̄lF (x̄(k)) + C̄lG(x̄(k − d(k)))
+B̄ω,lω(k),

z̄(k) = Ēlx̄(k),

(4)

where

Āl =
∑f

i=1

∑f
j=1 hi(k)hj(k)

[
Ai,l 0
0 Ai,l −Hi,lC1j,l

]
,

Ād,l =
∑f

i=1

∑f
j=1 hi(k)hj(k)

[
0 0
0 −Hi,lC2j,l

]
,

B̄l =
∑f

i=1 hi(k)
[

Bi,l 0
0 Bi,l

]
,

B̄ω,l =
∑f

i=1 hi(k)
[

Bωi,l

Bωi,l

]
,

C̄l =
∑f

i=1 hi(k)
[

Ci,l 0
0 Ci,l

]
,

Ēl =
∑f

i=1 hi(k)
[

Ei,l 0
0 Ei,l

]
,

FT (x̄(k)) =
[

fT (x(k)) fT (x(k))− fT (x̃(k))
]
,

GT (x̄(k)) =
[

gT (x(k)) ĜT (e(k − d(k)))
]
,

Ĝ(e(k − d(k))) = g(x(k − d(k)))− g(x̃(k − d(k))).

For the neuron activation functions, the following assump-
tion is required.

Assumption 1 (Sector-bounded conditions, see [26, 35]).
The neuron state-based nonlinear functionsf(·) andg(·) in (1)
are continuous and satisfyf(0) = 0, g(0) = 0, and there exist
real matricesU1, U2, V1 and V2 with appropriate dimensions

such that

fT (x, y, U1)f(x, y, U2) ≤ 0, (5a)

gT (x, y, V1)g(x, y, V2) ≤ 0 (5b)

with f(x, y, U) = f(x)− f(y)− U(x− y) andg(x, y, V ) =
g(x)− g(y)− V (x− y).

Remark 1. Observe that, whenU1 = −U2 = U andV1 =
−V2 = V , conditions (5a) and (5b) are respectively reduced
to

[f(x)− f(y)]T [f(x)− f(y)] ≤ [x− y]T UT U [x− y],
[g(x)− g(y)]T [g(x)− g(y)] ≤ [x− y]T V T V [x− y].

Furthermore,|f(x) − f(y)| ≤ U |x − y| and |g(x) − g(y)| ≤
V |x− y| hold whenU > 0 andV > 0. Therefore, the neuron
activation functions under Assumption 1 are more general
than those usual or analogous Lipschitz-type conditions by
[9-13, 22-24, 27, 28]. Moreover, the nonlinear functionsf(x)
and g(x) are said to belong to sectors[U1, U2] and [V1, V2],
respectively (see Ref. [35]). The systems with sector-bounded
nonlinearity have been intensively studied (see Refs. [36-38]).

Before ending this section, we recall the following definition
and lemma, which will be used in the proof of our main results.

The ”energy supply function” of the augmented fuzzy
DMJNNs (4) is defined as

J̄∗l (ω, z̄, N∗) =
N∗∑

k=0

ψl(ω(k), z̄(k)),∀N∗ ≥ 0, (6)

whereψl(ω, z̄) = z̄TXlz̄ + 2z̄TSlω + ωTRlω with X T
l = Xl

andRT
l = Rl.

Definition 1 (Strictly stochastic dissipativity). Under zero
initial state, the augmented fuzzy DMJNNs (4) are said to
be strictly stochastically(Xl,Sl,Rl)-α-dissipative, if for some
sufficiently small scalarα > 0, for all l ∈ L and ω(k) ∈
l2[0,+∞), the energy supply function satisfies:

E{J̄∗l (ω, z̄, N∗)} ≥ α
N∗∑

k=0

ωT (k)ω(k). (7)

In addition, the system (4) is called stochastically(Xl,Sl,Rl)-
dissipative whenα = 0. In many cases, it is assumed that
Xl < 0.

Remark 2. In [30], the dissipative notion of continuous-
time systems was first given by Willems, and then Good-
win and Sin extended it to discrete-time case in [32]. The
dissipative systems including continuous- and discrete- time
cases satisfy a time-based property that relates an input-output
energy supply function to a state based storage function. The
original notions of dissipativity are defined for deterministic
systems. Until recently, the authors in [34] expended the
original definition into stochastic dissipativity for T-S fuzzy
systems. In this paper, the system (4) are said to be strictly
stochastically(Xl,Sl,Rl)-α-dissipative, if the energy supply
function J̄∗l (ω, z̄, N∗) satisfies the condition (7) for every
model ∈ L, which is similar to the definition in [34].

Remark 3. It should be noted that the dissipative perfor-
mance analysis is a generalized form of the bounded real
lemma, passivity and mixedH∞ and passive performance. If
dimensions of̄z(k) and ω(k) are assumed to be compatible,
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that is to say thatm and q satisfy m = 2q. Then, it follows
that (7) is reduced to the standardH∞ performance when
Rl = γ2I, γ > 0, Sl = 0, Xl = −I and α = 0; (7) is
reduced to the strictly positive real performance whenRl = 0,
Sl = I andXl = 0; and (7) is reduced to the strictly mixed
H∞ and passive performance whenRl = δγ2I, γ > 0,
Sl = (1− δ)I, δ ∈ [0, 1] andXl = −δI.

Lemma 1 (Discrete Jensen Inequality, see [11, 13, 34]). For
any constant positive definite symmetric matrixZ ∈ Rn×n,
positive integersd1 andd2 satisfyingd2 ≥ d1, the following
inequality holds:

(d2 − d1 + 1)
d2∑

k=d1

ξT (k)Zξ(k) ≥ (
d2∑

k=d1

ξ(k))T Z(
d2∑

k=d1

ξ(k)).

(8)

III. M AIN RESULTS

In this section, we firstly consider estimator design of
the form (3) which can guarantee that the augmented
fuzzy DMJNNs (4) are strictly stochastically(Xl,Sl,Rl)-
α-dissipative, and whenω(k) ≡ 0, the model in (4) is
exponentially stable in mean square sense. We introduce the
following denotation for presentation convenience:

F1 = diag{(UT
1 U2 + U1U

T
2 )/2, (UT

1 U2 + U1U
T
2 )/2},

F2 = diag{−(U1 + U2)/2,−(U1 + U2)/2},
G1 = diag{(V T

1 V2 + V1V
T
2 )/2, (V T

1 V2 + V1V
T
2 )/2},

G2 = diag{−(V1 + V2)/2,−(V1 + V2)/2},
η̄T
1 (k) =

[
x̄T (k) x̄T (k − d1) x̄T (k − d(k))

]
,

η̄T
2 (k) =

[
x̄T (k − d2) FT (x̄(k)) GT (x̄(k − d(k))

]
,

η̄T (k) =
[

η̄T
1 (k) η̄T

2 (k)
]
;

In addition,ξ(k) = x(k + 1)− x(k), Φ =
[

In 0n×n

]
and

ēν =
[

02n×2(ν−1)n I2n 02n×2(6−ν)n

]
(ν = 1, 2, · · · , 6).

Then, the fuzzy DMJNNs (4) can be rewritten as

x̄(k + 1) = Γ̄lη̄(k) + B̄ω,lω(k), (9a)

z̄(k) = Ēlē1η̄(k), (9b)

whereΓ̄l = Ālē1 + Ād,lē3 + B̄lē5 + C̄lē6.
Theorem 1. Under Assumption 1, the augmented fuzzy

DMJNNs (4) are strictly stochastically(Xl,Sl,Rl)-α-
dissipative if there exist a scalarα > 0, sets of scalars
{θ1,l > 0, l ∈ L} and {θ2,l > 0, l ∈ L}, symmetric
positive-definite matricesQ1, Q2, Q3, Z1, Z2, a set of sym-
metric positive-definite matrices{P̄l, l ∈ L}, a set of matrices
{Hi,l, i ∈ Λ, l ∈ L}, for all l ∈ L and i, j ∈ Λ, such that

Ξ̄ij,l + Ξ̄ji,l < 0, i < j, (10a)

Ξ̄ii,l < 0, (10b)

where

Ξ̄ij,l =




Ξ̄11i,l ∗ ∗ ∗ ∗
P̂lL̄1ij,l −Ξ̄22,l ∗ ∗ ∗
L̄2i,l 0 −Z1 ∗ ∗
L̄3i,l 0 0 −Z2 ∗
L̄4i,l 0 0 0 Xl




,

Ξ̄11i,l =
[

Ξ̄11
11,l ∗

−ST
l Ēi,lē1 −(Rl − αIm)

]
,

Ξ̄11
11,l = ēT

1 (Q1 + Q2 + (d12 + 1)Q3 − P̄l)ē1

−ēT
2 Q1ē2 − ēT

3 Q3ē3 − ēT
4 Q2ē4

−(ē1 − ē2)T ΦT Z1Φ(ē1 − ē2)
−(ē2 − ē4)T ΦT Z2Φ(ē2 − ē4)

−θ1,l

[
ē1

ē5

]T [
F1 ∗
F2 I2n

][
ē1

ē5

]

−θ2,l

[
ē3

ē6

]T [
G1 ∗
G2 I2n

][
ē3

ē6

]
,

L̄1ij,l = π̄T
l

[
Γ̄ij,l B̄ωi,l

]
,

π̄l =
[ √

πl1I2n
√

πl2I2n · · · √
πlsI2n

]
,

L̄2i,l = d1Z1Φ
[

Γ̄ij,l − ē1 B̄ωi,l

]
,

L̄3i,l = d12Z2Φ
[

Γ̄ij,l − ē1 B̄ωi,l

]
,

L̄4i,l =
[ XlĒi,lē1 02q×m

]
, d12 = d2 − d1,

Γ̄ij,l = Āij,lē1 + Ādij,lē3 + B̄i,lē5 + C̄i,lē6,

Āij,l =
[

Ai,l 0
0 Ai,l −Hi,lC1j,l

]
,

Ādij,l =
[

0 0
0 −Hi,lC2j,l

]
, B̄ωi,l =

[
Bωi,l

Bωi,l

]
,

B̄i,l =
[

Bi,l 0
0 Bi,l

]
, C̄i,l =

[
Ci,l 0
0 Ci,l

]
,

Ēi,l =
[

Ei,l 0
0 Ei,l

]
, P̂l = diag{P̄l, P̄l, · · · , P̄l}

Ξ̄22,l = diag{2P̄l − P̄1, 2P̄l − P̄2, · · · , 2P̄l − P̄s}.

Proof. Consider the following piecewise stochastic
Lyapunov-Krasovskii functional:

V (x̄(k), rk = l, k) =
∑5

j=1 Vj(x̄(k), rk = l, k), (11)

where

V1(x̄(k), rk = l, k) = x̄T (k)P̄lx̄(k),
V2(x̄(k), rk = l, k) =

∑k−1
m=k−d1

x̄T (m)Q1x̄(m)
+

∑k−1
m=k−d2

x̄T (m)Q2x̄(m),
V3(x̄(k), rk = l, k) =

∑k−1
m=k−d(k) x̄T (m)Q3x̄(m)

+
∑−d1

j=−d2+1

∑k−1
m=k+j x̄T (m)Q3x̄(m),

V4(x̄(k), rk = l, k) = d1

∑−1
j=−d1

∑k−1
m=k+j ξT (m)Z1ξ(m),

V5(x̄(k), rk = l, k) = d12

∑−d1−1
j=−d2

∑k−1
m=k+j ξT (m)Z2ξ(m).

Define E{∆V (k)} = E{V (x̄(k + 1), rk+1 = j, k + 1|rk =
l)} − V (x̄(k), rk = l, k), and note thatx(k) = Φx̄(k)
and ξ(k) = (ΦΓ̄ω,l)

[
η̄T (k) ωT (k)

]T
with Γ̄ω,l =[

Γ̄l − ē1 B̄ω,l

]
. Then, calculating the valueE{∆V (k)}

along the solution of (4), we have

E{∆V1(k)}
=

∑s
j=1 πlj x̄

T (k + 1)P̄j x̄(k + 1)− x̄T (k)P̄lx̄(k)

=
[

η̄(k)
ω(k)

]T [
Γ̄l B̄ω,l

]T
P̌l

[
Γ̄l B̄ω,l

][ η̄(k)
ω(k)

]

−η̄T (k)ēT
1 P̄lē1η̄(k),

(12)

E{∆V2(k)}
= η̄T (k)(ēT

1 (Q1 + Q2)ē1 − ēT
2 Q1ē2 − ēT

4 Q2ē4)η̄(k),
(13)

E{∆V3(k)}
≤ η̄T (k)((d12 + 1)ēT

1 Q3ē1 − ēT
3 Q3ē3)η̄(k), (14)
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E{∆V4(k)}
= d2

1ξ
T (k)Z1ξ(k)− d1

k−1∑
m=k−d1

ξT (m)Z1ξ(m),

≤ d2
1ξ

T (k)Z1ξ(k)− (
k−1∑

m=k−d1

ξ(m))T Z1(
k−1∑

m=k−d1

ξ(m))

= d2
1ξ

T (k)Z1ξ(k)
−(x(k)− x(k − d1))T Z1(x(k)− x(k − d1))

= d2
1

[
η̄(k)
ω(k)

]T

Γ̄T
ω,lΦ

T Z1ΦΓ̄ω,l

[
η̄(k)
ω(k)

]

−η̄T (k)(ē1 − ē2)T ΦT Z1Φ(ē1 − ē2)η̄(k),
(15)

E{∆V5(k)}
= d2

12ξ
T (k)Z2ξ(k)− d12

k−d1−1∑
m=k−d2

ξT (m)Z2ξ(m),

≤ d2
12ξ

T (k)Z2ξ(k)− (
k−d1−1∑
m=k−d2

ξ(m))T Z2(
k−d1−1∑
m=k−d2

ξ(m))

= d2
12ξ

T (k)Z2ξ(k)
−(x(k − d1)− x(k − d2))T Z2(x(k − d1)− x(k − d2))

= d2
12

[
η̄(k)
ω(k)

]T

Γ̄T
ω,lΦ

T Z2ΦΓ̄ω,l

[
η̄(k)
ω(k)

]

−η̄T (k)(ē2 − ē4)T ΦT Z2Φ(ē2 − ē4)η̄(k),
(16)

where Lemma 1 is applied in (15) and (16). From Assumption
1, we can obtain that

[
x̄(k)

F (x̄(k))

]T [
F1 ∗
F2 I2n

][
x̄(k)

F (x̄(k))

]
≤ 0, (17)

[
x̄(k − d(k))

G(x̄(k − d(k)))

]T [
G1 ∗
G2 I2n

][
x̄(k − d(k))

G(x̄(k − d(k)))

]

≤ 0
(18)

which are, respectively, equivalent to

η̄T (k)
[

ē1

ē5

]T [
F1 ∗
F2 I2n

][
ē1

ē5

]
η̄(k) ≤ 0, (19)

η̄T (k)
[

ē3

ē6

]T [
G1 ∗
G2 I2n

][
ē3

ē6

]
η̄(k) ≤ 0. (20)

Given thatθ1,l > 0 andθ2,l > 0, it follows from (19) and (20)
that

J̄l(k)
, E{∆V (k)− z̄T (k)Xlz̄(k)− 2z̄T (k)Slω(k)

−ωT (k)(Rl − αIm)ω(k)}
≤ E{∆V (k)} −E{z̄T (k)Xlz̄(k) + 2z̄T (k)Slω(k)

+ωT (k)(Rl − αIm)ω(k)}
−θ1,lη̄

T (k)
[

ē1

ē5

]T [
F1 ∗
F2 I2n

][
ē1

ē5

]
η̄(k)

−θ2,lη̄
T (k)

[
ē3

ē6

]T [
G1 ∗
G2 I2n

][
ē3

ē6

]
η̄(k).

(21)
Let

Ξ̄11,l =
[

Ξ̄11
11,l ∗

−ST Ēlē1 −(Rl − αIm)

]
,

L̄1,l = π̄T
l

[
Γ̄l B̄ω,l

]
, L̄2,l = d1Z1ΦΓ̄ω,l,

L̄3,l = d12Z2ΦΓ̄ω,l, L̄4,l =
[ XlĒlē1 02q×m

]
,

P̃ = diag{P̄1, P̄2, · · · , P̄s}, P̂l = diag{P̄l, P̄l, · · · , P̄l}.

Then, it follows from (11)-(16) that (21) is equivalent to

J̄l(k) ≤
[

η̄(k)
ω(k)

]T

Θ̄l

[
η̄(k)
ω(k)

]
, (22)

where

Θ̄l = Ξ̄11,l + L̄T
1,lP̃ L̄1,l − L̄T

2,l(−Z1)−1L̄2,l

−L̄T
3,l(−Z2)−1L̄3,l − L̄T

4,lX−1
l L̄4,l

= Ξ̄11,l − (P̂lL̄1,l)T (−P̂lP̃
−1P̂l)−1(P̂lL̄1,l)

−L̄T
2,l(−Z1)−1L̄2,l − L̄T

3,l(−Z2)−1L̄3,l

−L̄T
4,lX−1

l L̄4,l.

(23)

Taking into account that(P̄m−P̄l)T P̄−1
m (P̄m−P̄l) ≥ 0, which

is equivalent to

P̄m − 2P̄l ≥ −P̄lP̄
−1
m P̄l, ∀l, m = 1, 2, · · · , s. (24)

DenoteΞ̄22,l = diag{2P̄l−P̄1, 2P̄l−P̄2, · · · , 2P̄l−P̄s}. Hence,
Θ̄l < 0 if the following condition holds:

Ξ̄11,l − (P̂lL̄1,l)T (−Ξ̄22,l)−1(P̂lL̄1,l)
−L̄T

2,l(−Z1)−1L̄2,l − L̄T
3,l(−Z2)−1L̄3,l

−L̄T
4,lX−1

l L̄4,l < 0.

(25)

Using the Schur complement, condition (25) holds if and only
if the following inequality holds:




Ξ̄11,l ∗ ∗ ∗ ∗
P̂lL̄1,l −Ξ̄22,l ∗ ∗ ∗
L̄2,l 0 −Z1 ∗ ∗
L̄3,l 0 0 −Z2 ∗
L̄4,l 0 0 0 Xl




< 0. (26)

Condition (26) can be rewritten as

f∑

i=1

f∑

j=1

hi(k)hj(k)Ξ̄ij(l) < 0. (27)

Thus, we can deduce that condition (27) is equivalent to the
following inequality:

∑f
i=1

∑f
j>i hi(k)hj(k)[Ξ̄ij(l) + Ξ̄ji(l)]
+

∑f
i=1 h2

i (k)Ξ̄ii(l) < 0.
(28)

Note that (10a) and (10b) can guarantee that (28) holds. Thus,
we have

J̄l(k)
= E{∆V (k)− z̄T (k)Xlz̄(k)− 2z̄T (k)Slω(k)

−wT (k)(Rl − αIm)ω(k)} < 0.
(29)

Summating both sides of the above inequality from0 to N∗

leads to

V (x̄∗(N∗ + 1))− V (x̄(0))
< E{J̄∗l (ω, z̄,N∗)} − α

∑N∗

k=0 ωT (k)ω(k).
(30)

Thus, E{J̄∗l (ω, z̄,N∗)} > α
∑N∗

k=0 ωT (k)ω(k) because of
V (0) = 0 under zero initial condition andV (x̄∗(N∗+1)) ≥ 0.
Therefore, the augmented fuzzy DMJNNs (4) are strictly
stochastically(Xl,Sl,Rl)-α-dissipative. This completes this
proof.

Next, LMI criterion of dissipativity-based stochastic state
estimation can be obtained for the augmented fuzzy DMJNNs
(4) as follows.
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Theorem 2. Under Assumption 1, the augmented fuzzy
DMJNNs (4) are strictly stochastically(Xl,Sl,Rl)-α-
dissipative if there exist a scalarα > 0, sets of scalars
{θ1,l > 0, l ∈ L} and {θ2,l > 0, l ∈ L}, symmetric
positive-definite matricesQ1, Q2, Q3, Z1, Z2, sets of symmet-
ric positive-definite matrices{P1,l, l ∈ L} and{P2,l, l ∈ L}, a
set of matrices{Wi,l, i ∈ Λ, l ∈ L}, for all l ∈ L andi, j ∈ Λ,
such that

Ξij,l + Ξji,l < 0, i < j, (31a)

Ξii,l < 0, (31b)

where

Ξij,l =




Ξ̄11i,l ∗ ∗ ∗ ∗
L̃1ij,l −Ξ̄22,l ∗ ∗ ∗
L̄2i,l 0 −Z1 ∗ ∗
L̄3i,l 0 0 −Z2 ∗
L̄4i,l 0 0 0 Xl




,

L̃1ij,l = π̄T
l

[
Γ̃ij,l B̃ωi,l

]
, P̄l = diag{P1,l, P2,l},

Γ̃ij,l = Ãij,lē1 + Ãdij,lē3 + B̃i,lē5 + C̃i,lē6,

Ãij,l =
[

P1,lAi,l 0
0 P2,lAi,l −Wi,lC1j,l

]
,

Ãdij,l =
[

0 0
0 −Wi,lC2j,l

]
,

B̃i,l =
[

P1,lBi,l 0
0 P2,lBi,l

]
,

C̃i,l =
[

P1,lCi,l 0
0 P2i,lCi,l

]
, B̃ωi,l =

[
P1,lBωi,l

P2,lBωi,l

]
,

and other matrix parameters are defined in Theorem 1. More-
over, the desired state estimator is given by

Hi,l = P−1
2,l Wi,l. (32)

Proof. Note thatΦ =
[

In 0n×n

]
, it follows that L̄2i,l

and L̄3i,l are relevant toZ1 and Z2, respectively. Therefore,
to solve Theorem 1, taking account into the special forms
of Āij,l, Ādij,l, B̄i,l, C̄ij,l, B̄ωi,l, letting P̄l = diag{P1,l, P2,l}
andWi,l = P2,lHi,l. Then, (10a) and (10b) are equivalent to
standard LMIs (31a) and (31b), respectively. This completes
the proof.

Remark 4. Theorem 2 gives the less conservative LMI
conditions on strictly stochastic(Xl,Sl,Rl)-α-dissipativity of
the augmented fuzzy DMJNNs (4). It can be seen from the
proof of Theorem 1 that, whenω(k) ≡ 0, we can deduce from
(29) that thatE{∆V (k)} < 0 holds, which imply that there
exists a scalarε > 0 such that

E{∆V (k)} < −ε‖x̄(k)‖2. (33)

Taking into account that the specific forms of (11) and
E{∆V (k)}, we can be easily verify that the augmented fuzzy
DMJNNs (4) are exponentially stable in mean square sense.

Assumingm = 2q, and choosingRl = δγ2I, γ > 0, Sl =
(1 − δ)I, δ ∈ [0, 1] andXl = −δI, we give the mixedH∞
and passive performance of the augmented DMJNNs (4) as
follows.

Corollary 1. Given scalarδ ∈ [0, 1], under Assumption 1,
the augmented DMJNNs (4) are with a strictly mixedH∞
and passive performance, if there exist scalarsα > 0, γ > 0,

sets of scalars{θ1,l > 0, l ∈ L} and {θ2,l > 0, l ∈ L},
symmetric positive-definite matricesQ1, Q2, Q3, Z1, Z2, sets
of symmetric positive-definite matrices{P1,l, l ∈ L} and
{P2,l, l ∈ L}, a set of matrices{Wi,l, i ∈ Λ, l ∈ L}, for
all l ∈ L and i, j ∈ Λ, such that

Ξ̃ij,l + Ξ̃ji,l < 0, i < j, (34a)

Ξ̃ii,l < 0, (34b)

where

Ξ̃ij,l =




Ξ̃11i,l ∗ ∗ ∗ ∗
L̃1ij,l −Ξ̄22,l ∗ ∗ ∗
L̄2i,l 0 −Z1 ∗ ∗
L̄3i,l 0 0 −Z2 ∗
L̃4i,l 0 0 0 −δIm




,

Ξ̃11i,l =
[

Ξ̄11
11,l ∗

−(1− δ)Ēi,lē1 −(δγ2 − α)Im

]
,

L̃4i,l =
[ −δĒi,lē1 0m×m

]
,

and other matrix parameters are showed in Theorem 2. More-
over, the desired state estimator can be chosen by (32).

In the following, to reduce the dimensions of LMIs in
Theorem 2, we consider the dissipativity analysis of the error
dynamics of (2) and (3). Let̂z(k) = z(k) − z̃(k). Then, the
resulting error fuzzy DMJNNs can be described as

e(k + 1) = Âle(k) + Âd,le(k − d(k))
+B̂lF̂ (e(k)) + ĈlĜ(e(k − d(k)))
+B̂ω,lω(k),

ẑ(k) = Êle(k),

(35)

where

Âl =
∑f

i=1

∑f
j=1 hi(k)hj(k)(Ai,l −Hi,lC1j,l),

Âd,l =
∑f

i=1

∑f
j=1 hi(k)hj(k)(−Hi,lC2j,l),

B̂l =
∑f

i=1 hi(k)Bi,l, B̂ω,l =
∑f

i=1 hi(k)Bωi,l,

Ĉl =
∑f

i=1 hi(k)Ci,l, Êl =
∑f

i=1 hi(k)Ei,l,

F̂ (e(k)) = f(x(k))− f(x̃(k)),
Ĝ(e(k − d(k))) = g(x(k − d(k)))− g(x̃(k − d(k))).

We choose the following stochastic Lyapunov functional:

V̂ (x(k), e(k), rk = l, k) =
∑3

j=1 V̂j(e(k), rk = l, k),
(36)

where

V̂1(e(k), rk = l, k) = eT (k)Ple(k),
V̂2(e(k), rk = l, k) =

∑k−1
m=k−d1

eT (m)Q̂1e(m)
+

∑k−1
m=k−d2

eT (m)Q̂2e(m),
V̂3(e(k), rk = l, k) =

∑k−1
m=k−d(k) eT (m)Q̂3e(m)

+
∑−d1

j=−d2+1

∑k−1
m=k+j eT (m)Q̂3e(m).

Then, by using the similar approach in Theorems 1 and 2, we
can obtain the dissipative result of the error fuzzy DMJNNs
(35) as follows.

Theorem 3.Under Assumption 1, the error fuzzy DMJNNs
(35) are strictly stochastically(Xl,Sl,Rl)-α-dissipative if
there exist a scalarα > 0, sets of scalars{θ1,l > 0, l ∈ L}
and {θ2,l > 0, l ∈ L}, symmetric positive-definite matri-
cesQ̂1, Q̂2, Q̂3, a set of symmetric positive-definite matrices
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{Pl, l ∈ L}, a set of matrices{Wi,l, i ∈ Λ, l ∈ L}, for all
l ∈ L and i, j ∈ Λ, such that

Λij,l + Λji,l < 0, i < j, (37a)

Λii,l < 0, (37b)

where

Λij,l =




Λ11i,l ∗ ∗
Λ21ij,l −Λ22,l ∗
Λ31i,l 0 Xl


,

Λ11i,l =
[

Λ11
11,l ∗

−ST
l Ei,le1 −(Rl − αIm)

]
,

Λ11
11,l = eT

1 (Q̂1 + Q̂2 + (d12 + 1)Q̂3 − Pl)e1

−eT
2 Q̂1e2 − eT

3 Q̂3e3 − eT
4 Q̂2e4

−θ1,l

[
e1

e5

]T [
F̂1 ∗
F̂2 In

][
e1

e5

]

−θ2,l

[
e3

e6

]T [
Ĝ1 ∗
Ĝ2 In

][
e3

e6

]
,

F̂1 = (UT
1 U2 + U1U

T
2 )/2, F̂2 = −(U1 + U2)/2,

Ĝ1 = (V T
1 V2 + V1V

T
2 )/2, Ĝ2 = −(V1 + V2)/2,

Λ21ij,l = πT
l

[
Υij,l PlBωi,l

]
,

πl =
[ √

πl1In
√

πl2In · · · √
πlsIn

]
,

Λ31i,l =
[ XlEi,le1 0q×m

]
,

Λ22,l = diag{2Pl − P1, 2Pl − P2, · · · , 2Pl − Ps},
Υij,l = (PlAi,l −Wi,lC1j,l)e1 −Wi,lC2j,le3

+PlBi,le5 + PlCi,le6,
eν =

[
0n×(ν−1)n In 0n×(6−ν)n

]
(ν = 1, 2, · · · , 6).

In addition, the desired state estimator is constructed by

Hi,l = P−1
l Wi,l. (38)

Remark 5. To reduce the computational complexity, the
provided sufficient criteria in Theorem 3 can guarantee that the
error fuzzy DMJNNs (35) are stochastically dissipative, which
can not verify that the fuzzy neural networks (1) are stochas-
tically dissipative. However, the obtained feasible criteria in
Theorem 2 can ensure stochastic dissipativity of the fuzzy
DMJNNs (1), and we can see from the following numerical
examples that the estimated states can better approximate the
real states. Moreover, delay-divisioning technique and slack
matrix approach have been also adapted to get the dissipative
conditions with less conservatism at the expense of heavier
computing burden in [34].

Assumingm = q, and choosingRl = δγ2I, γ > 0, Sl =
(1 − δ)I, δ ∈ [0, 1] andXl = −δI, we give the mixedH∞
and passive performance of the error fuzzy DMJNNs (35) as
follows.

Corollary 2. Given scalarδ ∈ [0, 1], under Assumption 1,
the error fuzzy DMJNNs (35) are with a strictly mixedH∞
and passive performance, if there exist scalarsα > 0, γ > 0,
sets of scalars{θ1,l > 0, l ∈ L} and {θ2,l > 0, l ∈ L},
symmetric positive-definite matriceŝQ1, Q̂2, Q̂3, sets of sym-
metric positive-definite matrices{Pl, l ∈ L}, a set of matrices
{Wi,l, i ∈ Λ, l ∈ L}, for all l ∈ L and i, j ∈ Λ, such that

Λ̃ij,l + Λ̃ji,l < 0, i < j, (39a)

Λ̃ii,l < 0, (39b)

where

Λ̃ij,l =




Λ̃11i,l ∗ ∗
Λ21ij,l −Λ22,l ∗
Λ̃31i,l 0 −δIm


,

Λ̃11i,l =
[

Λ11
11,l ∗

−(1− δ)Ei,le1 −(δγ2 − α)Im

]
,

Λ̃31i,l =
[ −δEi,le1 0m×m

]
,

and other matrix parameters are defined in Theorem 3. More-
over, the desired state estimator is in the form of (38).

Remark 6. In our main results, the criteria of dissipativity
and mixedH∞ and passivity are derived for fuzzy DMJNNs
in terms of LMIs. The conditions can be readily checked by
the solvability of feasible problems based on LMIs. Note that,
given specific parameters ofXl,Sl and Rl in (7), related
results on stability analysis,H∞ performance and positive
real performance can be also derived for the class of fuzzy
DMJNNs by applying the similar techniques.

IV. N UMERICAL EXAMPLES

In this section, we give two simulation examples to illustrate
the effectiveness of the developed methods.

Example 1. Consider the fuzzy DMJNNs involving two
modes in model (1) described as follows:

Plant Rule 1: IFx1(k) is µ11, THEN

x(k + 1) = A1,lx(k) + B1,lf(x(k))
+C1,lg(x(k − d(k))) + Bω1,lω(k),

y(k) = C11,lx(k) + C21,lx(k − d(k)),
z(k) = E1,lx(k),

Plant Rule 2: IFx1(k) is µ21, THEN

x(k + 1) = A2,lx(k) + B2,lf(x(k))
+C2,lg(x(k − d(k))) + Bω2,lω(k),

y(k) = C12,lx(k) + C22,lx(k − d(k)),
z(k) = E2,lx(k),

where the membership functionsh1(k) andh2(k) are defined,
respectively, ash1(k) = h(x1(k)) andh2(k) = 1− h(x1(k))
with

h(x1(k)) =
{

0.5(1− x1(k)), | x1(k) |< 1
1, | x1(k) |≥ 1.

and

A1,1 =
[

0.05 0
0 0.04

]
, B1,1 =

[
0.03 0.02
−0.02 0.01

]
,

C1,1 =
[

0.05 0.03
−0.01 0.03

]
, A2,1 =

[
0.06 0
0 0.03

]
,

B2,1 =
[

0.05 0.02
−0.04 0.02

]
, C2,1 =

[
0.02 0
−0.02 0.01

]
,

A1,2 =
[

0.06 0
0 0.04

]
, B1,2 =

[
0.04 0.02
−0.04 0.01

]
,

C1,2 =
[ −0.05 0.03
−0.01 0.03

]
, A2,2 =

[
0.06 0
0 0.05

]
,
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B2,2 =
[

0.04 0.02
−0.01 0.02

]
, C2,2 =

[
0.06 0
0.05 0.01

]
,

Bw1,1 = Bw2,1 = Bw1,2 = Bw2,2 =
[

0.1 0
0 0.1

]
,

C11,1 = C12,1 = C11,2 = C12,2 =
[

1 1
]
,

C21,1 = C22,1 = C21,2 = C22,2 =
[ −0.01 0.02

]
,

E1,1 = E2,1 = E1,2 = E2,2 =
[

1 0
]
.

The nonlinear activation functionsf(x(k)) and g(x(k)) are
taken as

f(x(k)) = g(x(k)) =
[

0.01x1 + tanh(0.01x2)
0.01x1 − 0.01x2 + tanh(0.02x1)

]
.

Then, it follows that the conditions (5a) and (5b) can be
satisfied with

U1 = V1 =
[

0.01 0
0.01 −0.01

]
, U2 = V2 =

[
0.01 0.01
0.03 −0.01

]
.

In addition, assume that the transition rate matrix is given by

Π =
[

0.7 0.3
0.4 0.6

]
.

Furthermore, we chooseR1 = R2 = S1 = S2 = I2,
X1 = X2 = −I2 and α = 0.01. The time-varying delay is
chosen byd(k) = 0.5(3−cos(k)), which satisfies1 ≤ d(k) ≤
2. Applying Theorem 2, the feasible solutions of dissipative
performance are given by

P1,1 =
[

14.8489 2.4280
2.4280 13.9756

]
,

P2,1 =
[

17.5554 2.0248
2.0248 16.2925

]
,

P1,2 =
[

13.1281 3.2245
3.2245 12.2657

]
,

P2,2 =
[

14.3863 3.0052
3.0052 12.9964

]
,

Q1 =




1.2387 0.2445 −0.0279 0.0085
0.2445 2.1862 0.0775 −0.0117
−0.0279 0.0775 3.4007 0.3812
0.0085 −0.0117 0.3812 3.5489


,

Q2 =




2.9509 0.5073 −0.0327 0.0094
0.5073 2.9336 0.0771 −0.0117
−0.0327 0.0771 3.4006 0.3810
0.0094 −0.0117 0.3810 3.5451


,

Q3 =




3.1566 0.6289 −0.0276 0.0057
0.6289 3.1847 0.0824 −0.0083
−0.0276 0.0824 2.4433 0.3893
0.0057 −0.0083 0.3893 2.8312


,

Z1 =
[

3.0822 −0.2040
−0.2040 3.0928

]
,

Z2 =
[

3.0817 −0.2616
−0.2616 2.4913

]
,

W1,1 =
[ −1.8019
−1.1148

]
,W2,1 =

[ −0.8192
−0.2271

]
,

W1,2 =
[ −0.6393

0

]
,W2,2 =

[
0
0

]
,

θ1,1 = 0.8611, θ2,1 = 0.8361, θ1,2 = 1.1060, θ2,2 = 0.7866.

Therefore, the augmented fuzzy DMJNNs (4) are strictly
stochastically(I2, I2, I2)-0.01-dissipative, and the designed

state estimator is derived by

H1,1 =
[ −0.0961
−0.0565

]
,H2,1 =

[ −0.0457
−0.0083

]
,

H1,2 =
[ −0.0467

0.0108

]
,H2,2 =

[
0
0

]
.
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Fig. 1. The simulation of the system (4) in Example 1.

Now, we assume that the external disturbance inputω(k) =[
ω1(k) ω2(k)

]T
is a two-dimensional vector, which both

ω1(k) andω2(k) are Gaussian white noises with mean 0 and
variance 1. With the initial moder0 = 1 and the initial states
φT (j) =

[
0.15 0.25

]
and φ̃T (j) =

[
0.25 0.2

]
for all

j ∈ {−2,−1, 0}, the jump modes and state response of the
system (4) are given in Figure 1.
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Fig. 2. The optimal value ofγ.

Remark 7. Assume thatα = 0 and the other parameters
are defined in Example 1, LMIs (34a) and (34b) are feasible
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and the optimal value with different values ofδ ∈ [0, 1] is
shown in Figure 2. We can obtain from Corollary 1 that the
H∞ norm condition satisfiesγ ≤ 2.4479 whenδ = 1.

Example 2.Consider the fuzzy DMJNNs (1) involving two
modes with the following parameters

Bw1,1 = Bw2,1 = Bw1,2 = Bw2,2 =
[

0.1
0

]
.

Moreover, the other matrix parameters, the nonlinear activation
functions, the time-varying delay and the transition rate matrix
are defined in Example 1.

Let R1 = R2 = S1 = S2 = 1, X1 = X2 = −1 and
α = 0.01. Then, LMIs (37a) and (37b) are feasible, and the
optimal solutions of dissipative performance can be obtained
from Theorem 3 as follows

P1 =
[

25.8457 0.0098
0.0098 25.6312

]
,

P2 =
[

26.2510 0.0074
0.0074 26.0203

]
,

Q̂1 =
[

6.1179 0.0045
0.0045 6.3091

]
,

Q̂2 =
[

6.1179 0.0045
0.0045 6.3091

]
,

Q̂3 =
[

3.6147 0.0042
0.0042 3.7877

]
,

W1,1 =
[

0.2169
0.5031

]
,W2,1 =

[
0.3486
0.3717

]
,

W1,2 =
[

0.3241
0.4649

]
,W2,2 =

[
0.4242
0.6865

]
,

θ1,1 = 14.0885, θ2,1 = 14.0827,
θ1,2 = 14.0861, θ2,2 = 14.1041.

Therefore, the designed state estimator is derived by

H1,1 =
[

0.0084
0.0196

]
,H2,1 =

[
0.0135
0.0145

]
,

H1,2 =
[

0.0123
0.0179

]
,H2,2 =

[
0.0162
0.0264

]
.

Given that the same initial conditions as Example 1, and
supposed that the external disturbanceω(k) is a zero mean
Gaussian white noise with variance 1, then the simulation of
the model (35) is depicted in Figure 3, which reveals that the
model in (35) is exponentially stable in mean square sense.

Remark 8. Assume thatα = 0 and the other parameters are
defined in Example 2. We can chooseγ2 as the optimal value
and optimize over valueγ2 in LMIs (39a) and (39b). Figure
4 shows the optimal value with different values ofδ ∈ [0, 1].
When δ = 1, we can obtain from Corollary 2 that theH∞
norm condition satisfiesγ ≤ 8.0573.

From the above simulation results, we can see that all
the state variables including real states and estimated states
converge to their equilibrium points. Moreover, the estimated
states of Example 1 can better approximate real states.

V. CONCLUSIONS

This paper studied the dissipativity analysis and design
of DMJNNs with time-varying delays and involving sector-
bounded activation functions represented by Takagi-Sugeno
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Fig. 3. The simulation of the system (35) in Example 2.
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Fig. 4. The optimal value ofγ.

fuzzy model. Applying piecewise Lyapunov-Krasovskii func-
tional approach and stochastic analysis technique, sufficient
criteria were presented to guarantee that the augmented or
error fuzzy jump neural networks are stochastically dissipative.
Then, feasible problems of dissipativity were established to
solve the dissipative state estimation problems by using ma-
trix decomposition approaches. The mixedH∞ and passive
analysis and design are also derived for fuzzy DMJNNs.
These criteria can be developed in terms of LMIs. Numerical
examples are also given to illustrate the effectiveness of the
proposed approaches. An important future research direction
is to extend our dissipative conditions to the case when there
exist multiple discrete delays and distributed delays.
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