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Dissipativity analysis for discrete time-delay fuzzy
neural networks with Markovian jumps

Yingqgi Zhang, Peng Shiellow, IEEE,Ramesh K. AgarwalFellow, IEEE,and Yan Shi

Abstract—This paper is concerned with the dissipativity anal- passivity analysis, and synchronization [3-8]. In reality, neural
ysis and design of discrete Markovian jumping neural networks networks often accompany the information latching. In other

with sector-bounded nonlinear activation functions and time- words, a neural network can have finite modes switching
varying delays represented by Takagi-Sugeno fuzzy model. The from one to another at different time, which can lead to
augmented fuzzy neural networks with Markovian jumps are '

firstly constructed based on estimator of Luenberger observer the switching between different modes being governed by a
type. Then, applying piecewise Lyapunov-Krasovskii functional Markov chain. Therefore, neural networks with Markovian

approach and stochastic analysis technique, a sufficient condi- jump parameters have become the focus of increasing re-
tion is provided to guarantee that the augmented fuzzy jump gearch attention in control communities and mathematics, and

neural networks are stochastically dissipative. Moreover, a less i Its h b . tigated by utilizi
conservative criterion is established to solve the dissipative state many appealing results have been Investigated by uulizing

estimation problem by using matrix decomposition approach. linear matrix inequality (LMI) approach. For example, the
Furthermore, to reduce the computational complexity of the exponential stability criteria were investigated for time-delay
algorithm, a dissipative estimator is designed to ensure stochastic recurrent neural networks with Markovian jumps in [9]. The
dissipativity of the error fuzzy jump neural networks. As a special authors in [10] discussed the stability and synchronization

case, we have also considered the mixdd., and passive analysis f di te Markovian i . | networks with mixed
of fuzzy jump neural networks. All criteria can be formulated of discrete Markovian jumping neural networks with- mixe

in terms of linear matrix inequalities. Finally, two examples are Mode-dependent time delays. In [11], the passivity conditions
given to show the effectiveness and potential of the new designwere conducted for discrete jump neural networks with mixed
techniques. time delays, and the case of Markov chain with partially

Index Terms_Fuzzy neural networks; d|ss|pat|v|ty, Marko- unknown transition probabi”ties was also considered. More
vian jump parameters; stochastic state estimation; time-varying results related to Markovian jump neural networks involving
delays. time delays can also be found in [12, 13] and the references
therein.

On the other hand, Takagi-Sugeno (T-S) fuzzy model has
) ) been recognized as a popular and effective approach in an-
~ In the past decades, neural networks have received increg§zing, synthesizing and approximating complex nonlinear
ing interest due to their extensive apphca‘uons in a variety Qf/stems in [14]. Consequently, stability analysis,, control,
areas, such as pattern recognition, signal processing, solvidgable control, filter design, and adaptive control problems for
optimization problems, associative memories, and target tragks fuzzy systems have attracted considerable attention, and
ing, and so forth [1, 2]. It has been recognized that the exigrany important results have been reported in the references
tence of time delay can render the instability and poor perfqits.18). Recently, T-S fuzzy model has been successfully used
mance of network dynamics in the signal transmission betweg@represent complex nonlinear neural networks, see [19-22].
neurons, and much work of time-delay neural networks h@gsed on the Lyapunov stability theory and the stochastic
been reported in the literature, such as exponential stability, galysis technique, the authors in [23] addressed the robust
existence of an equivalent point, global asymptotic stabilitytapility analysis of continuous-time uncertain fuzzy Hopfield

. . . neural networks with Markovian jumps and time-delays. In
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networks due to both theoretical and practical importance sabsets of the sample space &nid the probability measure on

study the dynamics of discrete-time neural networks. F. I,, denotes the identity of dimension,E{.} represents the
Another area that has been well studied is dissipative theogypectation operator with some probability measirel > 0

which was originally introduced in [30] and subsequentlyor A < 0) denotes a symmetric positive (or negative) matrix.

developed in [31, 32]. The dissipativity has played an infFhe symbolx refers to the term of a matrix which can be

portant role in system analysis and synthesis. The dissipaferred by symmetry and didg- -} denotes a block-diagonal

tivity theorem extends many basic system theorems, suchnaatrix. Matrices, if their dimensions are not explicitly stated,

bounded real theorem, passivity theorem, and sector-bounded assumed to be compatible for algebraic operatidrs.

nonlinearity. For example, by utilizing the delay partitioningind A~! stand for the matrix transpose and matrix inverse,

technique, the authors in [33] tackled dissipativity analysiespectively.

of stochastic neural networks with time delays. In [34], the

problems of dissipativity analysis and synthesis were investi-

gated for discrete delayed T-S fuzzy systems with stochastic

perturbation. By applying the novel model transformation

approach combined with the Lyapunov-Krasovskii technique,

sufficient criteria of dissipativity were established in the form Fix a probability spac€Q, F, P) and consider the following

of LMIs and a fuzzy controller was also designed to ensure théscrete Markovian jump neural networks (DMJNNSs) with

dissipative performance of the closed-loop system. This wolikne-varying delays which could be described by a T-S fuzzy

is the first attempt, to the best of the authors’ knowledgg)odel:

to explore the dissipativity analysis and synthesis for discretePlant Rulesi,i = 1,2,---, f: IF 0y is w1, 02 1S pio, -+ -,

delayed fuzzy neural networks with Markovian jumps ang, is 1;,, THEN

sector-bounded nonlinear activation functions.

II. PROBLEM FORMULATION

In this paper, the dissipativity analysis and design are tack- ek +1) = A;(ri)z(k) + Bi(rs) f(z(k))
led for discrete time-delay neural networks with Markovian +Ci(re)g(z(k — d(k)))
jump parameters and sector-bounded nonlinear activation func- +Boi(re)w(k),
tions represented by T-S fuzzy model. Using Lyapunov sta- (k) = Cua(ra)z(k) 4 Coi(ri)a(k — d(k)), 1)
bility theory and matrix decomposition approach, a sufficient k) = Ei(rp)z(k),
condition is initially provided to ensure that the augmented 2(j) = ¢(j),/ je{—dy,--,—1,0},

fuzzy jump neural networks are stochastically dissipative.
Then, a less conservative criterion is established to solve th
dissipative state estimation problem. Moreover, to reduce t
computing complexity of the algorithm, a dissipative estimat € neuron state ve(_:tor, the network output_measured vector,
is also designed to guarantee that the error fuzzy neu 4 signal _tq - estlmaFed and the compatl_ble vector-yalued
networks with Markovian jumps are stochastically dissipativép't'aI COI’:}?IIIOH, respectively. The external d_lst[urbance nput
As a special case, the mixdd,, and passive analysis are alséu(@ €R pelongs tdy [O’. +OO)'. The stochastic jump process
tackled for the class of fuzzy jump neural networks. These* k > 0} is a discrete-time, discrete-state Markov chain tak-
criteria can be characterized in terms of LMIs. Finally, twd'9 values in a finite sef . {1,2,- -+, s} with transition prob-
numerical examples are presented to show the ef'fectiven@gg't'eS Tim QIVEN byzm=1 Mim = 1,Mm > 0,1 € L. The

of the proposed results. The major contributions of this pap de-dependent matricds;(rx), Ci(rx), Bui(rs), Cui(re),

are as follows: (i) by applying piecewise Lyapunov-Krasovsk 2i(7k) and E;(r;) are known the real matrices of appropriate
functional approach and stochastic analysis technique, g1en5|0ns.d(k;) denot_es the transmission d?'ay satl_sfylng
dissipativity analysis and design are presented for discréte” 1 < d(k) < da, whichd, andd, are prescribed positive
fuzzy jump neural networks; (i) the mixeH., and passive integers representing the lower and upper bounds of the delay,

analysis and design of the class of fuzzy jump neural networigSPECtvely/ (x(k)) andg(x(k—d(k))) are the neuron activa-

are derived; (iii) the obtained criteria are characterized [P" k:‘unclitions.Ai(rkd) :d diag(dau(rkgz a%(rkl)"“’a,m(r"?)zj
terms of LMIs by applying matrix decomposition techniqueé? t ? hown mo ?' ependent diagona matr'sg. an
¢t = 1,---,f,j = 1,---,g) are respectively the

Therefore, the main aim of this paper is to make the fir§t7 \ ) .
attempt to tackle the listed contributions. premise variables and the fuzzy set§, is the number

The rest of this paper is organized as follows. Secti (Hf IF-THEN rules. The fuzzy basis functions are given

i iminari hi(0(k)) = TT9= piy (05 (R))/ Sy Ty 113y (65()), in

Il is problem statement and preliminaries. The results , J=1 1"y i=1115=1 Mg \"j\"
dissipativity analysis and design are provided for discrete ﬂv-h'Ch pij (0;(k)) represcjacnts the grade of membershuﬁ}ﬂs)
It follows that "7, h;(6(k)) = 1 with h;(6(k)) > 0.

S fuzzy jump neural networks with sector-bounded nonline4t “ij'_ _ _ _ _
activation functions in Section Ill. Section IV gives simulation To simplify the presentation of this paper, in the sequel, for
results to demonstrate the validity of the proposed methogch possible, = [,1 € L, matrix M;(r)) will be denoted

erex(k) € R y(k) € RP, z(k) € R? and ¢(j) are

and, finally, the conclusions are drawn in Section V. by M; ; for instance A, (r).) will be denoted byA; ;, Aai(rx)
Notations. R andR™*™ represent the sets efcomponent bY Aqi,;, and so on. In a(idltlonhi(k:), A and P, represent
real vectors and. x m real matrices, respectivelfQ), F,P) is  hi(0(k)), {1,---, f} and}_;_, m; P;, respectively.

probability spacef) is the sample spacé,is theos-algebra of By applying the fuzzy blending method, the overall fuzzy
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DMJNNSs could be rewritten as follows: such that
r(k+1) = 25:1 hi(k)[Ai 2z (k) + Bigf (x(k)) @,y U1) f(z,y,Uz) <0, (5a)
igi,zg(x(%]— d(k))) 9" (@9, Vi)g(x,y,V2) <0 (5h)
B = L ROk @ w(lth) f(afé " U) : f(x))— fly) = Ulx —y) andg(z,y. V) =
el g(x) —gly) = V(z—y).
+€2”lx(k d(k))l, Remark 1. Observe that, wheb/; = —U, = U andV; =
;((];; - %(Sl hi(;“)e[b;i’lz(kﬂ’ 0} -V, = V, conditions (5a) and (5b) are respectively reduced
= 5 —U2," ", . to

The estimator of a Luenberger observer type in this paper is [f(z) — f(¥)]T[f(z) — f(y)] < [z — y)TUTU[z — 9],
performed through the parallel distributed compensation and [g(z) — g(y)|T[g(z) — 9(y)] < [z — y]TVIV[z — y].

the overall estimator is thus inferred as follows
Furthermore||f(z) — f(y)| < Ulz —y| and|g(z) — g(y)| <

ik+1) = Zf L hi(k)[Ai (k) + Biyf(3(k)) V|« —y| hold whenU > 0 andV > 0. Therefore, the neuron

+C19(2(k — d(k))) activation functions under Assumption 1 are more general
+H; (y(k) — g(k)), than those usual or analogous Lipschit_z—type con.ditions by

g(k) = Zlf:l (k) [Crai (k) 3) [9-13, 22-24, 2?, 28]. Moreover, the nonlinear functigi(s;)
O i (k — d(k))], and g(x) are said to belong to sectof&, UQJ and [Vq, V5],

k) = Zf (k) [Bii# (k)] respectively (see Ref. [35]). The systems with sector-bounded

- = e nonlinearity have been intensively studied (see Refs. [36-38]).

() (), J€{-dz,---,0} Before ending this section, we recall the following definition

where i(k), j(k), and Z(k) are, respectively, the esti- and lemma, which will be used in the proof of our main results.
mated state, the estimated output and the estimated sig!Ne “"energy supply function” of the augmented fuzzy
nal, (j) is a compatible state estimation vector-valueBMJINNSs (4) is defined as

initial condition, H,; is to be designed the parame-

ter matrices of appropriate dimensions. Defielc) = J(w, 2z, N¥) Zwl ),VN* >0, (6)
z(k) — @(k), z7(k) = [ aT(k) €T(k) ] and zT(k) =
[ 2T(k) 2T(k)—z"(k) |. Then, the resulting augmentedyhere, (w, 7) — ZTXZZ+22TSlw+wTle with 7 = X,
fuzzy DMJNNSs can be obtalned as: andR” = R,.
1
_ 3 Definition 1 (Strictly stochastic dissipativity). Under zero
#k+1) = ﬁlg(F) + Aok~ d(k)) initial state, the augmented fuzzy DMJNNs (4) are said to
1F(z(k ))+Cz (@(k — d(k))) : , I
+ By gw(k) (4) be gtrlctly stochastically;, S;, R;)-a-dissipative, if for some
k) = Eak), sufficiently small scalarx > 0, for all [ € £ andw(k) €
[2]0, +00), the energy supply function satisfies:
where N*
S>> SUNCICI RN A BU (@5 N} 2 a ) W (Bt ()
It e 0 Aiy—HiiCja k=0
- 0 0 In addition, the system (4) is called stochastically, S;, R;)-
A =YL, Zé‘c:l hi(R)h; (k)| —H; ;Csj, } dissipative whern = 0. In many cases, it isajalisumed) that
By 0 X < 0.
B = ZZ 1 hi(k) 0 B |’ Remark 2. In [30], the dissipative notion of continuous-
B =S k:_ B time systems was first given by Willems, and then Good-
wt = D= hi(R) Buig |’ win and Sin extended it to discrete-time case in [32]. The
C— ha(k [ Cii O dissipative systems including continuous- and discrete- time
b= Z’ 1 (k) 0 Cii |’ cases satisfy a time-based property that relates an input-output
B =S ik (B, 0 energy supply function to a state based storage function. The
b= 2z hilR) 0 El-yl ’ original notions of dissipativity are defined for deterministic
Frzk) = f -(x(k)) ( (k) — fT(@(k)) ], systems. Until recently, the authors in [34] expended the
GT(z(k)) = [ (e( d(k))) ] original definition into stochastic dissipativity for T-S fuzzy
Gle(k — d(k))) = ( ( d(k))) — g(z(k — d(k))). systems. In this paper, the system (4) are said to be strictly

stochastically( X}, S;, R, )-«a-dissipative, if the energy supply
For the neuron activation functions, the following assumgunction J;*(w, z, N*) satisfies the condition (7) for every
tion is required. model € L, which is similar to the definition in [34].
Assumption 1 (Sector-bounded conditions, see [26, 35]). Remark 3. It should be noted that the dissipative perfor-
The neuron state-based nonlinear functigfig andg(-) in (1) mance analysis is a generalized form of the bounded real
are continuous and satisfi(0) = 0, g(0) = 0, and there exist lemma, passivity and mixe#, and passive performance. If
real matricesU,, Us, V1 and V, with appropriate dimensions dimensions ofz(k) andw(k) are assumed to be compatible,
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that is to say thatn and ¢ satisfy m = 2¢. Then, it follows
that (7) is reduced to the standafd,, performance when
R =L,y >0,8 =0, & =—-ITanda = 0; (7) is
reduced to the strictly positive real performance wign= 0,

S; =1 andX; = 0; and (7) is reduced to the strictly mixed
H,, and passive performance whé®, = 621,y > 0,
S;=(1-6§I1,6€]0,1] andx; = —0o1.

Lemma 1 (Discrete Jensen Inequality, see [11, 13, 34]). For
any constant positive definite symmetric matéixe R™*",
positive integersl; andds satisfyingds > dy, the following
inequality holds:

da
' Z() 7 &(k))

k=d,

da
(> &k)

k=d,

da
(dy—dy+1) Y &7 (k)ZE(K) >

k=d,

(8) A | A 0
il 0 Ay —H;Ciyy |’
[1l. M AIN RESULTS Ay = 0 0 B = { Buiy }
17, — i X y Pwi,l — i 9
In this section, we firstly consider estimator design of B(-) 1(')%,502],1 c. g“”’l
the form (3) which can guarantee that the augmented B, = 6’1 B ,Ci = { 6’1 C. }
fuzzy DMJNNs (4) are strictly stochastically;, S;, R;)- B OZJ ol
a-dissipative, and whenw(k) = 0, the model in (4) is B = éfl 5 e =diag{P, P;,---, P}
exponentially stable in mean square sense. We introduce the - L. il _ _ -
following denotation for presentation convenience: o2 = diaQ{2P; — Py, 2P — Py, -+, 2P — Pa}.
Fy =diag{(U{ Uz + U1 U5) /2, (U{ Uy + U1 UY ) /23, Proof. Consider the following piecewise stochastic

Fy = diag{—(Uy + Us)/2, —(Uy + Us)/2},

=11

S, = 61 T(Q1+ Q2+ (di2 +1)Q3 — P)ey
—62 Qleg — égQgég — EZQ254
_(él - ég)T@TZ1<I>(él — éz)
—(ey — &4)T®T Z,®(ey — &)

a2 ][5 n 2]

" es F I, es

wl o] 6 nlle]

"1 €e Gs Iz, € |’
Llij,l = 7_71 [ FZ]Z szl ]7

m [ ﬁj2n WIQ’IL o \/FZSIQTL ]7
Lml =diZ;®[ T zyl - 61 B 1,

LS’Ll - d1222(1)[ ij,l — szl ]7
Lyig = [ XEi e 02q><m |, dia = dy — dy,
Fz],l - A’L] €1+ Adlj 1€3 + Bz 165 + Cz l66a

Lyapunov-Krasovskii functional:

Gy = diag{ (VI Vo + ViViE) /2, (VIE Vo + Vi V) /23,
Gy = diag{— (V1 +V2)/2, —(V1 + V2)/2}, V(zk),re =1k P Vi@k), =1k, (11
7T (k) = [ F(k) & (k- d) (k- d(k)) ], @07 = 40 = 2 V@R me = 1) ()
ﬁZT(k) = ET(]C - d2) FT(j(k)) GT(j(k - d(k)) ]a where
a" (k)= [ i (k) 3 (k) ]; ) .
In addition,&(k) = z(k+1) —x(k), ® = [ I, Onxn | and “fggg’:k N é’zg i < "(fiﬂx(];?(m)cg E(m)
€, = O2n><2(1/71)n I2n 02n><2(671/)n ] (V = ]-7 23 Tty 6) 2 Tk ’ - ]?i:lk_dl 7 1_
Then, the fuzzy DMJINNSs (4) can be rewritten as +Zv]g:1k—d2 T (;”'”L)sz(m),
_ _ Va(z(k =1Lk)= -~ T T
B(k+1) = Tk + Bow(k), oa) =LY +§lezd<f§ (T) 3”“5:;@3 )
> 5 = = 2+ m + ’
zZ(k) = Eenk), (9b) Va(z(k),r = 1 kj) dlj j_7d1 Zm k:j fT(m)Z ¢(m),
Wherefl = Alél + Ad’lég + Blég, + Clée. V5(i‘(k), rr =1,k) =dz ZJ__did; an 1k+g fT(m)ZQ (m)

Theorem 1. Under Assumption 1, the augmented fuzzy
DMJINNs (4) are strictly stochastically(X;,S;, R;)-a-

positive-definite matrice®), Q2, @3, Z1, Z>, a set of sym-

metric positive-definite matrice§P;, 1 € L}, a set of matrices along the solution of (4), we have

{H;;,i € A,l € L}, foralll € £ andi,j € A, such that

Siji+Z0 < 0, i<y, (10a)
Sig < 0, (10Db)
where
;1111 * * * *
- PiLyiji —Z221 % * *
Eijl = Lo, 0 —Z1 % x|
L 0 0 —Zy
L4’L,l 0 0 0 Xl
- =11 N
E1ig = el
’ S El 1€1 —(Rl — OéIm)

=" (k)(e] (Q1 + Q2)é1 — &3 Q1é2 — €5 Q2e4)7(k),

E{AV3(k)}
< T (k)((di2 + 1)ef Qser — &5 Qses)ij(k),

Define E{AV (k)} = E{V(Z(k + 1),m%41 = j, k + 1|rp, =
dissipative if there exist a scalar > 0, sets of scalars [)} —
{1, > 0,0l € L} and {6, > 0,1 € L}, symmetric and ¢(k) = (@) 77 (k) WT(k) }T
[ fl — e B

V(z(k),rr = l,k), and note thatz(k) = ®z(k)
with f‘wl =
B.,1 |. Then, calculating the valuE{AV (k)}
E{Avl( )} _ _
S mat (k+ 1) Pz(k 4+ 1) — 2 (k) Pz (k)
=100 B R B 1
=" (k)el Pevi(k),
12)
E{AVy(k)}

(13)

(14)
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E{AV,(k)}
= dig" (k) Z:€(k) —

k—1

> &H(m)Zig(m),
m=k—d;

k—1 k—1

> &(m)TZu(

m= —d1

< di€" (k) Z:&(k) — (

= die" (k) Z:&(k)
w(j’f d)" Zy(x(k) — z(k — dy))
(k) }
w(k)
(15)
E{AV5(k)}

= dio€" (k) Z26 (k)

k—di—1

¢ (m) Z2€(m),
m=k—ds
—di1—1 k—di—1

< dp¢" (k) 228 (k) — ( Em)"Z2( 3

SR WLER) "
—(.’L‘(k‘ — dl) ; l‘(k — dg))TZQ({L‘(k — dl) — l‘(k — dg))
Z((’Z)) [T, 07 2,07, {

= d%zi
—i" (k) (eg — €1)" ®T Zo® (&2 — €a)i(k),

- d12

§(m))

da

(16)

Then, it follows from (11)-(16) that (21) is equivalent to
(k) }

w(k)
El_l,l + l_/{lpfjl}l — Egl(—Zl)j1E27l
L5~ 22) Ly = Lig " Lay
E11y — (BLyy)" (- P~ P) " (PLy )
_€/g:l(_Zl)71L2,l - Lg}l(—Z2)71L3,l
—LT X7 Ly,
Taking into account thatP,,, — P;)T P,
is equivalent to

P, — 2P, > —~BP;'P,
DenoteZy,; = diag{2P,— Py, 2P — P, - - -,
0; < 0 if the foIIowing condition holds:

Z11 — (BL1y)T(—E2 z) (Ple 1)
_L2l( Zl) "Loy — L5 (= Za) ' L,
—L4 l‘X L4l < 0.

Using the Schur complement, condition (25) holds if and only

(22)

where

(23)

(P,,—P,) > 0, which

Viom=1,2,---,s (24)
2P,—P,}. Hence,

(25)

where Lemma 1 is applied in (15) and (16). From Assumptidhthe following inequality holds:

1, we can obtain that

i ] L )Ly =0 an
L clas-aih R sy
which are, respectively, equivalent to -

ﬁuﬂggf[g m | @ ]iw < o a9

m[ggﬂgg I;ng]n(m < 0. (0)

Given thatf, ; > 0 andfs; > 0, it follows from (19) and (20)
that

Ji(k)
= B{AV(E) - 1 (B=() - 257 ()Sw(h
ST (R: — oL, (k)
< E{Avum» B (R 02(0) + 257 (B)S ()
T (R)(R: — o))
a8 [ |

Fy
F
G1 *
Gs

T
_ €
—92’17771(]{})[ éz ] Iy,

[ o

Let

[1]1

=11 *
111 = ‘_‘11l
7 ’ -ST Ee; (leaI )
Ly, =m Pl D0 Buy |, Ly =diZ1®L,,
L3l =d13Z,9T 1, Ly = [ XiEer Oxgxm |,

dlag{P17P27" P}‘Pl_dlag{‘Ph‘Phwpl}

_11 N * * * *
PlLll = * *
{}2,1 0 -7 * x | <O. (26)
L3, 0 0 —Zy =«
Ly 0 0 0 X
Condition (26) can be rewritten as
ZZh k)Z;(1) < 0. (27)

=1 j5=1

Thus, we can deduce that condition (27) is equivalent to the
following inequality:

Sl s bRy (R)[E (D) + Eja(0)]
+ 2L B (REa) <.
Note that (10a) and (10b) can guarantee that (28) holds. Thus,
we have

Ji(k)

E{AV (k) — 2T (k) Xz(k) — 22T (k)Siw(k)
—wT (k) (R — aly,)w(k)} < 0.
Summating both sides of the above inequality frono N*
leads to

(28)

(29)

V(zH(N* +1)) = V(2(0))
< EB{Jf(w, 2N} —a X Wl (k)w(k).

Thus, E{J}(w,2, N*)} > o>~ T (k)w(k) because of
V(0) = 0 under zero initial condition an¥f (z*(N*+1)) > 0.
Therefore, the augmented fuzzy DMJNNs (4) are strictly
stochastically(X;, S;, R;)-«a-dissipative. This completes this
proof.

Next, LMI criterion of dissipativity-based stochastic state
estimation can be obtained for the augmented fuzzy DMJNNs
(4) as follows.

(30)
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Theorem 2. Under Assumption 1, the augmented fuzzgets of scalarg6;; > 0,i € £} and {6;; > 0,1 € L},
DMJINNs (4) are strictly stochastically(X;,S;, R;)-a- symmetric positive-definite matrice;, Q2, Qs, Z1, Zs, sets
dissipative if there exist a scalar > 0, sets of scalars of symmetric positive-definite matrice§P;;,! € L} and
{61, > 0,1 € L} and {62, > 0,l € L}, symmetric {P»,;,l € L}, a set of matricedW,;,i € A,l € L}, for
positive-definite matrice®1, Q2, @3, Z1, Z2, sets of symmet- all [ € £ andi,j € A, such that
ric positive-definite matrice§P; ;,! € L} and{P,;,l € L}, a

set of matrice{W;;,i € A,l € L}, foralll € £ andi,j € A, Sigut g <0, i<y, (34a)
such that Eig < 0, (34b)
Eii+Eu0 < 0, i<y, (31a) where
g < 0, (31b) St « X N
Liji —Zaa0 % * *
where - ~1ij, ,
_ Ziji = | Laig 0 —Z1 % * )
Sl X ¥ * ¥ L3i 0 0 —2Z *
Lije =Sz x v Luy 0 0 0 —dI,
Zijl Lo, 0 —Zy % x|, ~ i *
Ls; 0 0 —Zy =« =0 = | (1S5 Bae — (v —a)l |
- L4i7l 9 0 0 X L4i,l = [ —6E,L'Jél Oposcrn ]7

Lyji =7/ [ Tiju_ Buwis |, P =diag{ Py, Poy}, _ _
o= Avi 18y & Agii18a + Bires + O 18 and other matrix parameters are showed in Theorem 2. More-
37,1 i7,1€1 + dij,1€3 + i,1€5 + i,1€6, . .
. [Py A 0 over, the desired state estimator can be chosen by (32).
Aijy = 0 Py Ay Crt |2 In the following, to reduce the dimensions of LMlIs in
! Theorem 2, we consider the dissipativity analysis of the error

7 To 0
Adiji = 0 —W;,Coi dynamics of (2) and (3). Let(k) = z(k) — Z(k). Then, the
. Py B, R resulting error fuzzy DMJNNs can be described as
B = - : X .
i . % P2,loBi,l - e(k + 1) = Al?(lf) + Ad,le({{? - d(k))
G | TGt O B [ PuiBos } +BF(e(k)) + CiGle(k = (k) (55
PIRASEIN] 2,1 Pwi,l +Bw,lw(k),
and other matrix parameters are defined in Theorem 1. More- (k) = Ee(k),
over, the desired state estimator is given by
where
. — -1 .
Hir =B Wi (32) = Ly S b9 Ay ~ HiC),
Proof. Note that® = [ I, Onxyn |, it follows that Ly; Adl = ZZ 12 hi(k)hj(k)(—H;1Coj),
and L3, ; are relevant taZ, and Z,, respectively. Therefore, Z hi(k)B M,Bw,l = Z{:l hi(k)Boi,
to solve Theorem 1, taking accquntiinto t_he special forms C’z Zz 1h (k)Cig, By = Z{:l hi(k)Eq,
of Aij1, Aaiji, Biy, Ciji, Buiy, letting P, = diag{ Py ;, P>} Fle(k)) = f(z(k)) — f(F(k)),

andW,; = P,;H,,. Then, (10a) and (10b) are equivalent to Clelk — d(k)) = b — dEN) — a(3(k — d(k
standard LMIs (31a) and (31b), respectively. This completes (e (k))) = g(a( (k) = g(2( (k))).
the proof. We choose the following stochastic Lyapunov functional:
Remark 4. Theorem 2 gives the less conservative LMI B 37 B
conditions on strictly stochasticy;, S;, R, )-a-dissipativity of Viw(k),e(k),re =1, k) =35, Vi(e(k),ri = L, k),

the augmented fuzzy DMJNNs (4). It can be seen from thehere (36)
proof of Theorem 1 that, when(k) = 0, we can deduce from
(29) that thatE{AV (k)} < 0 holds, which imply that there Vi(e(k),r =1,k) = eT(k)Ple(k)
exists a scala¢ > 0 such that Va(e(k),re =1, k) = an— . d1 eI (m)Qre(m)
E{AV(k)} < —el|z(k)|* (33) + i €7 (M)Qae(m),
Taking into account that the specific forms of (11) and Valetk) e =1 F) = Em " d(k)e H(m)Gae(m)
0 P + ]_—d2+1 Zm k:+] ( )Q3€( )

E{AV (k)}, we can be easily verify that the augmented fuzzy

DMJINNSs (4) are exponentially stable in mean square sens&hen, by using the similar approach in Theorems 1 and 2, we
Assumingm = 2¢, and choosing?; = §v?I,v > 0, S; = can obtain the dissipative result of the error fuzzy DMJINNs

(1 —-6)I1,6 € [0,1] and X; = —461, we give the mixedH,, (35) as follows.

and passive performance of the augmented DMJNNs (4) asTheorem 3.Under Assumption 1, the error fuzzy DMJINNs

follows. (35) are strictly stochasticallyX;, S;, R;)-a-dissipative if
Corollary 1. Given scalar € [0, 1], under Assumption 1, there exist a scalar > 0, sets of scalar§f;; > 0,1 € L}

the augmented DMJINNs (4) are with a strictly mixéfl,, and {6, > 0, € L}, symmetric positive-definite matri-

and passive performance, if there exist scatars 0,7 > 0, cesQ1,Qs,Qs, a set of symmetric positive-definite matrices
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{P,,l € L}, a set of matrice{W, ;,i € A,l € L}, for all where
l € £ andi,j € A, such that

B Alli,l * *
Aiji+ A < 0, i<y, (37a) Niju=| Aorgjp —Aaay * ;
Ay < 0, (37b) Asi4y 0 —01p,
A Afl, *
where Arir = —(1=0)Eiger —(07* =), |’
A11ig * * Asiig=[ =0Eiier Omxm |,
Niji= | Aorgjy —Asay x|, _ . .
Asz1iy 0 X, and other matrix parameters are defined in Theorem 3. More-
A B Al * over, the desired state estimator is in the form of (38).
Wil = _S8TE. ey —(Ri— al, Remark 6. In our main results, the criteria of dissipativi
1 zl 1 l
Ah =l (Q1 +Qs+ (d12 + 1)Q3 _ p[)el gnd mixedH ., and passivity are derived for fu;zy DMJNNs
_ _ _ in terms of LMIs. The conditions can be readily checked by
€2 Qlez 63 Q3€3 €4 Q2€4 . )
B . the solvability of feasible problems based on LMIs. Note that,
—61. l{ . } [ Fl } [ ! ] given specific parameters ot;,S; and R; in (7), related
5 2

S results on stability analysisi{,, performance and positive

_921[ €3 } [ Gy } [ ] real performance can be also derived for the class of fuzzy
e Ga DMJNNSs by applying the similar techniques.

(Ul U2+U1U2 )/2 F2 (U1—|-U2>/

G1 (VIVa + ViVE) /2, Ga = — (Vi + Va) /2,

Ag1ij) = 7rZT[ Yiji PBuiy ]7 IV. NUMERICAL EXAMPLES

Asiig=[ XEiier Ogxm |,

Ago =diag{2P, — P,,2P, — P,,---,2P, — Py},

Yiji = (PA; — W 1Crji)er — Wi 1Caje3

In this section, we give two simulation examples to illustrate
the effectiveness of the developed methods.
Example 1. Consider the fuzzy DMJNNs involving two

+P,B; s + PiC e, modes in mod?I (1) desF:ribed as follows:
e =[ Onxr—tyn In Onx(own | (v =1,2,---,6). Plant Rule 1: IFx (k) is p11, THEN
In addition, the desired state estimator is constructed by v(k+1) = Ayx(k)+ Byf(z(k))
+Cg(x(k — d(k))) + Borw(k),
H“ = Pl_1W,»7l. (38) y(k) = Oll’lﬁC(k) + OQLZCCUG — d(k)),

. . Z(k) = El,lm(k)v
Remark 5. To reduce the computational complexity, the

provided sufficient criteria in Theorem 3 can guarantee that thep|gnt Rule 2: IFz1 (k) iS pi21, THEN
error fuzzy DMJNNSs (35) are stochastically dissipative, which

can not verify that the fuzzy neural networks (1) are stochas- w(k+1) = Agx(k)+ Boyf(x(k))
tically dissipative. However, the obtained feasible criteria in +Cy.19(x(k —d(k))) + Buow(k),
Theorem 2 can ensure stochastic dissipativity of the fuzzy y(k) = Ciogx(k) + Cogyz(k — d(k)),

DMJNNSs (1), and we can see from the following numerical 2(k) = FBEgux(k),
examples that the estimated states can better approximate the
real states. Moreover, delay-divisioning technique and slagkere the membership functiohs(k) andhs (k) are defined,
matrix approach have been also adapted to get the dissipat&spectively, as (k) = h(x1(k)) andhe(k) = 1 — h(z1(k))
conditions with less conservatism at the expense of heawsth
computing burden in [34].

Assumingm = ¢, and choosingR; = 7?1,y > 0, S; = h(z1 (k) = { 5( (K), [a1(k) |<
(1—106)I,6 € [0,1] and X; = —461, we give the mixedH | z1(k) |
and passive performance of the error fuzzy DMJNNs (35) s

follows.

Corollary 2. Given scalaw € [0,1], under Assumption 1, A [ 005 0 ] B = { 0.03 0.02 ]
the error fuzzy DMJNNSs (35) are with a strictly mixed.. L1= 0 004 L= 1 —0.02 0.01 |’
and passive performance, if there exist scatars 0,~ > 0, Cn [ 0.05 0.03 A — [0.06 0 ]
sets of scalarg6,; > 0,1 € L} and {65, > 0,1 € L}, L= 1 _p.01 003 72~ | 0 003
symmetric positive-definite matriceg;, Q», @3, sets of sym- B — [ 0.05 0.02° o [ 0.02 0 ]
metric positive-definite matrice§P;, I € £}, a set of matrices 217 —0.04 002 27T | —0.02 001 |
{Wi,ieAleL}, forallle L andi,j€ A, such that 006 0 1 0.04  0.02

. . Mz=1 "9 oo | Dr2= [ —0.04 0.01 |’
Aija+Ajig <0, i<y, (39a) " 0.05 0.03 ] 0.06 0
Ny <0, (39b) C2=| _go 003 227 0 o005 |
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0.04 0.02 [0.06 0
B22 = [ —0.01 0.02 ]’02»2 005 001 )
01 O
Bwl,l - Bw2,1 - Bw1,2 - Bw2,2 — |: 0 01 |’
Cii1=Ci21=Crp2=Cpo=[1 1 ],
Ca1,1 = Capp = Co10=Ca22=| —0.01 0.02 |,

Ein=FEy1=F12=Fyp = 10 ]

The nonlinear activation functiong(z(k)) and g(z(k)) are

taken as

£ (k) = gla(k)) = [

Then, it follows that the conditions (5a) and (5b) can be f

satisfied with

In addition, assume that the transition rate matrix is given by

0.01

i=h= { 0.01
0.7 0.3

T=104 06 |

0
—0.01

Furthermore, we choos®&;

performance are given by

[ 14.8489
2.4280
[ 17.5554
2.0248
[ 13.1281
3.2245
14.3863
Poa = | 3.0052
[ 1.2387
0.2445
—0.0279
0.0085
2.9509
0.5073
—0.0327
0.0094
3.1566
0.6289
—0.0276
| 0.0057
3.0822
—0.2040
[ 3.0817
| —0.2616
—1.8019
Wir=1 _11148
Was = 0.8‘393

Py =
Py =

Po=

Q1=

Q3 =

Zy =

Zy =

B4 = 0.8611, 65,1 = 0.8361,0; 5 = 1.1060, 65 2 = 0.7866.

2.4280 |
13.9756 |’
2.0248 ]
16.2925 |’
3.2245 ]
12.2657 |’
3.0052 ]
12.9964 |’
0.2445
2.1862
0.0775
—0.0117
0.5073
2.9336
0.0771
—0.0117
0.6289
3.1847
0.0824
—0.0083
—0.2040
3.0928
—0.2616
2.4913

7W2,1 =

aW2,2 =

-]

=Ry =& = S = I,
X1 = X, = —I, anda = 0.01. The time-varying delay is
chosen byd(k) = 0.5(3 —cos(k)), which satisfied < d(k) <
2. Applying Theorem 2, the feasible solutions of dissipative fmek

© —0.0279

0.0775
3.4007
0.3812
—0.0327
0.0771
3.4006
0.3810
—0.0276
0.0824
2.4433
0.3893

—0.8192
—0.2271
0

O )

0.01z1 + tanh(0.0125)
0.01z1 — 0.01xs + tanh(0.02x4)

0.01
0.03

0.0085
—0.0117
0.3812 |’
3.5489
0.0094
—0.0117
0.3810 |’
3.5451
0.0057
—0.0083
0.3893 |’
2.8312

|

0.01
-0.01

state estimator is derived by

—0.0961 —0.0457
Hia=1" _g0565 |*721= | _0.0083 ]
—0.0467 0
Hi2=1 gows |22 ¢ }

Jump modes
&

Fig. 1. The simulation of the system (4) in Example 1.

Now, we assume that the external disturbance ingét) =
[ wi(k) wa(k) ]T is a two-dimensional vector, which both
w1 (k) andwq (k) are Gaussian white noises with mean 0 and
variance 1. With the initial mode, = 1 and the initial states
¢T(j)=[015 0.25 ] andé”(j) = [ 0.25 0.2 ] for all
j € {—2,-1,0}, the jump modes and state response of the
system (4) are given in Figure 1.

60

Fig. 2. The optimal value ofy.

Therefore, the augmented fuzzy DMJINNs (4) are strictly Rémark 7. Assume that = 0 and the other parameters

stochastically (I, I, I)-

0.01-dissipative, and the designedare defined in Example 1, LMIs (34a) and (34b) are feasible
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and the optimal value with different values 6fe [0,1] is
shown in Figure 2. We can obtain from Corollary 1 that the 25
H., norm condition satisfies < 2.4479 whenj = 1.

Example 2.Consider the fuzzy DMJNNSs (1) involving two
modes with the following parameters

o

Jump modes
By

0.1 1
Byi1,1 = By2,1 = Byi,2 = Bu22 = [ 0 } Y
05 -0.2
. . . . 0 2 4 6 8 10 12 0 2 4 6 8 10 12
Moreover, the other matrix parameters, the nonlinear activation timek fimek

functions, the time-varying delay and the transition rate matrix
are defined in Example 1.

Let R1 = Ro =81 =8 =1, 4 = X, = —1 and 02
a = 0.01. Then, LMIs (37a) and (37b) are feasible, and the
optimal solutions of dissipative performance can be obtained
from Theorem 3 as follows 0

[ 25.8457  0.0098 y
Pl - 0.0098 25.6312 |’ o 2 4 8 8 w0 12 0 2 4 & 8 10 1
P [ 26.2510  0.0074

7| 0.0074 26.0203 |’

A [ 6.1179 0.0045 Fig. 3. The simulation of the system (35) in Example 2.
©1=| 00045 6.3091 |

A 6.1179 0.0045

Q=1 00045 63091 |’

03

0.1

Oy = [ 3.6147 0.0042 80
371 0.0042 3.7877 |’
[ 0.2169 0.3486 7or
Wir=1 05031 ['"21=| 03717 | o
0.3241 0.4242
Wiz =1 04619 ['"22=| 06865 |

611 = 14.0885, 6, = 14.0827,
61,2 = 14.0861, 0, 5 = 14.1041.

Therefore, the designed state estimator is derived by

0.0084 0.0135
Hia =1 go196 |21 | 0.0145 |
0.0123 0.0162
Hiz=1 90179 |»722= | 00264
Given that the same initial conditions as Example 1, and ‘ ‘ ‘ ‘
supposed that the external disturbangg) is a zero mean 0 02 04 06 08 !

Gaussian white noise with variance 1, then the simulation of
the model (35) is depicted in Figure 3, which reveals that the
model in (35) is exponentially stable in mean square sensd.9

Remark 8. Assume thaty = 0 and the other parameters are
defined in Example 2. We can choogg as the optimal value
and optimize over valug? in LMIs (39a) and (39b). Figure
4 shows the optimal value with different values ®E [0, 1].
Whené = 1, we can obtain from Corollary 2 that thH .,
norm condition satisfies < 8.0573.

From the above simulation results, we can see that

. 4. The optimal value ofy.

fuzzy model. Applying piecewise Lyapunov-Krasovskii func-

tional approach and stochastic analysis technique, sufficient

criteria were presented to guarantee that the augmented or
ror fuzzy jump neural networks are stochastically dissipative.

the state variables including real states and estimated sta &N, feasible problems of dissipativity were established to

converge to their equilibrium points. Moreover, the estimatetséjlvg the d'SS'.?.at'Ve state istlmzftrt;]on problems gy using ma-
states of Example 1 can better approximate real states. fix decomposition approaches. the mixét, and passive
analysis and design are also derived for fuzzy DMJNNSs.

These criteria can be developed in terms of LMIs. Numerical
examples are also given to illustrate the effectiveness of the
This paper studied the dissipativity analysis and desigoposed approaches. An important future research direction
of DMJNNs with time-varying delays and involving sectoris to extend our dissipative conditions to the case when there
bounded activation functions represented by Takagi-Sugesi@st multiple discrete delays and distributed delays.

V. CONCLUSIONS
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