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Abstract 

An automatic pruning machine is desirable due to the limitations and drawbacks of 

current labor intensive grapevine pruning methods. Automation mitigates the issue of 

skilled worker shortages and reduces overall labor cost. To achieve autonomous 

grapevine pruning accurately and effectively, it is crucial to identify and locate some 

key features including post, trunk, cordon and cane in order to open/close the cutter 

and adjust the height of the cutter appropriately. In this thesis, a new method is 

proposed to automatically identify these features and derive their locations using point 

clouds. This method combines the advantages of cylinder extraction, density 

clustering and skeleton extraction for identification purposes. More importantly, it 

fills the gap of non-uniformed feature extraction in vineyards using point clouds. The 

results of applying this method to different data sets obtained from vineyards are 

presented and its effectiveness is demonstrated. 
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Chapter 1 Introduction 

1.1 The Grapevine 

The grapevine is a genus of long-lived deciduous vining plants in the flowering plant 

family vitaceae. It is economically important as the source of fruit and wine 

production. There are mainly two parts of the grapevine, nonvisible roots and visible 

tendrils (Figure 1.1). The roots anchor the grapevine to the soil and serve as the 

conduit where by nutrients and water from the soil are absorbed. Tendrils are used to 

support the grapevine by clinging to surrounding structures such as a grapevine 

training system. Tendrils consist of a trunk, shoots and buds. Shoots which sprout 

from the trunk contain nodes where new leaves, flowers and tendrils can form. At the 

joint where leaves connect to the shoot are buds that contain the structures that will 

grow into shoots, tendrils, flowers and leaves of the following years. 

 

Figure 1.1 Structure of Grapevine  

(Tyrin & Barkai 2009) 

1.1.1 Annual Growth Cycle of The Grapevine 

There are four seasons of a year. The growth season is in spring, when buds swell, 

leaves grow and shoots arise. During the production season in summer, shoots 
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produce flowers that develop into grapes. In autumn, grapes are ready for harvest. 

Then, the leaves turn red or yellow and fall from the grapevine in late autumn. Finally, 

the bare grapevine is pruned in the dormant season of winter. 

1.1.2 Grapevine Training System 

Since the grapevine is a kind of vining plant, it requires support to keep it off the 

ground. Such support is called a grapevine training system or trellis system. The 

grapevine training system is also aimed to assist canopy management with two 

aspects. It optimizes sunlight interception to facilitate photosynthesis that affects 

grape ripening. It also provides the grapevine with better air movement to prevent 

disease. Another benefit of utilizing different training systems is to facilitate vineyard 

tasks including applying pesticide, fertilizing sprays, harvesting the grapes, irrigation 

and the focus of this research, grapevine pruning. 

The structure of a training system is shown in Figure 1.2 which is the scene of 

vineyards in winter before pruning. The post is the stake that wires are attached to. 

The trunk is the main branch of grapevines. Cordons, which are the two main 

branches expending from the top of the grapevine trunk, are trained horizontally along 

wires. Canes are the scattered branches. 

 

Figure 1.2 Structure of Grapevine Training System 
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1.2 Grapevine Pruning 

1.2.1 Reasons for Grapevine Pruning 

Grapevine pruning is the most significant operation in maintaining and determining 

the vine structure (Bartsch 2010) and it directly influences grapes yield and quality in 

the following season and beyond (Hoare 2009). Functional and main reasons to prune 

include: 

 It improves the overall health of the grapevine by removing older canes which 

encourages the grapevine to put energy into new growth and stay young. 

 It controls growth and maintains the form of the grapevine which benefits other 

vineyard operations like harvesting. 

 It increases the number and quality of grapes and prevents the spread of diseases 

in the next year. 

1.2.2 Methods of Grapevine Pruning 

There are two methods that have been used in grapevine pruning including manual 

pruning and semi-automatic pruning. 

1.2.2.1 Manual Pruning 

Manual pruning or hand pruning began with the Romans (Hoare 2009) and has been 

using trimming tools such as saws, shears and secateurs as shown in Figure 1.3-a. 

These tools are still widely used in many situations especially in developing countries 

with a lower labour price. Electrical trimming tools invented such as the rotary saw 

and electric secateurs (Figure 1.3-b) improve the efficiency of hand pruning.   
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(a) Mechanical Secateurs         (b) Electric Secateurs 

Figure 1.3 Mechanical and Electrical Secateurs 

The pruners perform the pruning operation using these trimming tools to cut down the 

scattered canes and leave one bud or two bud spurs based on different needs. The 

grapevine in vineyards before and after pruning through manual pruning is shown in 

Figure 1.4. 

      

(a) Before Pruning  

   

(b) Pruning Complete 

Figure 1.4 Before and After Manual Pruning 
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The traditional mechanical tools and the new electrical tools cannot fulfil the needs of 

grapevine pruning due to the fact that vineyards nowadays are normally very large 

and there are a large number of grapevines in them. The high cost of labour in 

developed countries, the skills shortage and need for experienced pruners, and the low 

efficiency and time consumption of hand pruning are issues still to be properly 

addressed. 

1.2.2.2 Semi-Automatic Pruning 

To improve the efficiency of manual pruning and reduce labour cost, a semi-automatic 

pruning method is applied by dividing pruning into two stages. Stage one is to cut the 

canes to a certain level by a manually operated pre-pruning machine. Then, stage two 

goes back to hand pruning. The two stages of the semi-automatic pruning method are 

illustrated in Figure 1.5. 

    

(a) Before pruning 

 

(b) Stage One 
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(c) Stage two 

Figure 1.5 Two Stages of Semi-Automatic Pruning Method 

There are several types of pre-pruning machines which have the similar structure 

including one tractor and one or two mechanical arms with two cutters. The driver of 

the machine can adjust and control the position of the mechanical arm and open or 

close the two cutters to avoid cutting obstacles like posts. Shown in Figure 1.6, it is a 

commercial product of Pellenc Company for the pre-pruning operation in vineyard 

called DISCO.  

                   

     (a) Pre-pruning machine         (b) Two cutters  
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               (c) Cutters closed               (d) Cutters open 

Figure 1.6 Pre-pruning Machine with One Arm and Two Cutters 

Such machines can perform the pre-pruning operation quite fast which indeed 

improves the overall pruning speed and partly liberates pruners and workers from the 

hard physical work. However, the accuracy of the operation depends on the 

experience and capability of the driver who commands and controls the machine. The 

driver needs to firstly move the tractor in front of one row of grapevines. Then, the 

mechanical arm is adjusted to a suitable height for the two cutters to prune. After that, 

the tractor is driven along the row and two cutters cut down the canes. The driver 

opens the cutters when it is near a post and restores it to closed immediately after 

passing a post in addition to moving the cutter higher or lower to follow the heights of 

cordons. During such high concentration operations, the driver feels fatigue which 

affects the pruning performance and accuracy. 

1.3 Motivation 

From the discussions above, current grapevine pruning methods still have issues and 

drawbacks. In terms of manual pruning, the high cost of labour in developed countries, 

the low efficiency and time consumption of physical work, and the need of 

experienced pruners are still unsolved even with the invention of electric trimming 



8 
 

tools. On the other hand, the semi-automatic pruning method indeed improves the 

overall pruning speed and is more automatic than hand pruning. But the pre-pruning 

machines are driven and manipulated by workers. The accuracy of the pre-pruning 

highly depends on the experience and capability of the driver who commands and 

controls the machine. As the driver can easily feel fatigue and tired during the high 

concentrating driving, the rough pruning of these machines will have negative 

influences on the grapevine. 

Therefore, an automatic pruning machine is desirable in grapevine pruning. This 

machine will perform the pruning operation autonomously with a minimal or no 

human intervention. Hence, the accuracy and efficiency of pruning can be improved, 

the cost of labour can be reduced, and the issue of skills shortage and need of 

experienced pruners can be resolved. 

1.4 Research Purpose  

To achieve fully autonomous grapevine pruning, the machine needs to perceive the 

environment in the vineyard. It needs to identify, recognize and locate key features in 

the vineyard related to pruning operation which are the post, cordon and cane. There 

are several challenges to attain the goal. Firstly, the vineyard environment is complex 

due to the fact that illumination changes at different times of the day and different 

days as well as in different weather conditions. There are occlusions such as random 

canes and different backgrounds like other rows of grapevines. Moreover, feature 

extraction of objects is another challenge. In vineyards, each post is different. The 

cordons though looking similar are all different as well. As a result, feature 

recognition required for this research is more difficult than when identifying targets 

with fixed shapes. 

In brief, the research purpose is to investigate and develop methodologies and 

algorithms to identify and derive the locations of post, trunk, cordon and cane 

automatically in vineyards. 
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1.5 Thesis Synopsis 

The content of this dissertation is divided into four sections. The first section reviews 

the applications of machine vision and feature extraction methods of point clouds for 

vineyard feature extraction purpose (Chapter 2). The second section introduces the 

two main parts of the new proposed method including segmentation and object 

identification (Chapter 3 and Chapter 4). The third section provides experiment results 

by applying the proposed method in order to demonstrate its effectiveness (Chapter 5). 

The last section of this thesis summarizes the contributions and suggests avenues for 

future research (Chapter 6). A brief description of each chapter is provided below: 

Chapter 2: Literature Review. This chapter firstly reviews applications of machine 

vision techniques, paying special attention to their applications in vineyard 

autonomous pruning. It also reviews feature extraction methods of point clouds 

including basic features, cylinder features and skeleton features. 

Chapter 3: Segmentation. This chapter mainly describes the first part of the proposed 

method with three steps, pre-processing, cylinder feature extraction and density 

clustering. The crucial concept of the proposed method is introduced as well as the 

fundamental theories of cylinder feature extraction and density clustering. 

Chapter 4: Object Identification and Location Derivation. This chapter mainly 

describes the second part of the proposed method with four parts, post, trunk, cordon 

and cane identification. The key concept of skeleton extraction and how to obtain 

main component from the skeleton extracted are introduced. 

Chapter 5: Experimental Work. This chapter focuses on how to analyse and test the 

effectiveness and performance of the new proposed method for different vineyard 

scenarios. The experimental setup introduces the range sensors applied, software 

designed and field configurations. The experiment results show the effectiveness and 

performance of the new proposed method applied to several data sets in different 
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situations of vineyards. 

Chapter 6: Conclusion. This chapter summarizes what has been discussed in the 

thesis. 
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Chapter 2 Literature Review 

2.1 Applications of Machine Vision 

In order to extract features and derive locations of post, trunk cordon and cane in 

vineyards, one approach is to use machine vision. It is a digital computer technique 

which extracts, characterizes and interprets information from visual images of a three 

dimensional world. As the existing literature on machine vision techniques is vast, 

works mostly related to this application are reviewed. 

In terms of machine vision application in vineyards, it includes weeding robots, 

autonomous pesticide spray systems, and autonomous pruning machines.  

Zhang et al. (2007) developed a new dynamic image measure technique for weeding 

robots. The technique discriminates the weed and the trunk and measures the root of 

the trunk. A stereo vision system (Figure 2.1) was applied to capture images of 

vineyards as input data. The concept of their method is the trunk is in a static status 

and the weed is in a dynamic status when they are in the wind. The trunk is generally 

hard while the weed is soft. Hard objects like trunks will almost be static while soft 

object like weed will be waving all the time. The weed is identified by comparing 

several images of one scene to find the dynamic field (Figure 2.2). There are two 

limitations when considering a vineyard scene. Firstly, the post, trunk and cordon are 

in a static status according to their theory and it is hard to distinguish them using this 

method. A cane is soft but not as soft as a weed, whether the method can separate 

canes from other objects still needs further investigation and test. Besides, the 

illumination condition is not considered and the performance of the method under 

different lighting is unknown. Igawa et al. (2009) proposed a method of trunk 

recognition using visual and tact sensing technique. They applied the method of 

Zhang et al. (2007) to locate the grapevine root. Then, the tact sensing techniques is 

applied, which is using the multi-link manipulator and can recognize the trunk of  
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the grapevine by touching it. This method also has the issue that the reliability is 

uncertain under different illumination condition. 

 

Figure 2.1 Stereo Vision System  

(Zhang et al. 2007) 

   

a. Original Image                b. Weed Detection 

Figure 2.2 Weed and Trunk Separation Method  

(Zhang et al. 2007)  

In the field of pesticide sprays in vineyards, Braun et al.(2010) proposed a novel 

visual evaluation technique which can record foliage distribution based on wide range 

cameras to accomplish the spraying process with high precision. The background was 

simplified by putting a distinctively coloured canvas behind the vine and changing 

illumination was mitigated by building a black sunshield around the camera. Whether 

their method can be applied to identify other objects in vineyards still need further 
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investigation. Besides, vineyard related operations also need to be performed during 

night time. The performance of their method operated with fixed lighting conditions 

at night time is unknown. 

Two research efforts are identified in the literature which applied machine vision 

techniques to extract features in vineyards for autonomous pruning. McFarlane et 

al.(1997), who focused on the stage of winter pruning, developed image analysis 

algorithms for locating wires and trunks in long wood grapevines (Figure 2.3). They 

applied a monocular vision system with a CCD camera to capture original images of 

vineyards. A powerful flash was used for the camera to eliminate daylight effects. 

After noise removal including thresholding, size-filtering and segmentation of images, 

the wires and the trunk are located with their algorithm. Gao & Lu(2006) calculated 

cutting positions for an autonomous pruning machine using a digital camera 

(Olympus IR-300) which was also a monocular vision system. They simplified the 

background by putting a white curtain behind the cordon and canes and using fixed 

illumination. The colour space of input images is converted from RGB to Black and 

White. Then, the cutting positions (Figure 2.4) were located based on their new 

algorithm. Both of the studies found ways of dealing with illumination changes, but 

the real situation in vineyards is complex and different. From daytime to night time, 

how to maintain fixed lighting conditions under different weather still needs further 

investigation. 
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Figure 2.3 Wires and Trunk of Long Wood Grapevine  

(McFarlane et. al 1997) 

 

Figure 2.4 Cutting Positions of Canes  

(Gao & Lu 2007) 

Although the contribution made by these research efforts is significant, there are some 

common issues. One disadvantage of machine vision is its need for defined and 

consistent lighting condition (Gümüş, Balaban & Ünlüsayın 2011). These studies are 

constrained by this limitation and also the need for simplified background which 

make them impractical to be implemented in real-life vineyard scenarios complicated 

by rows of vines and operated under very different lighting conditions from time to 

time. So far, to overcome the changes of data caused by illumination changes 

perceived by machine vision remains a popular research problem to be properly 
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addressed. Besides, monocular vision systems cannot provide depth information 

without knowing the height of the cameras and the distance to the objects. The 

pruning operation is performed by tractors driven at a quick speed on uneven ground, 

the accuracy of input data is a big issue.  

2.2 Feature Extraction from Point Clouds 

Another approach which can avoid such limitations of current machine vision 

techniques is using point clouds. It is a set of vertices in a three-dimensional 

coordinate system, which is normally generated by range sensors including laser and 

stereo vision systems. Point clouds generated by some of the range sensors are not 

affected by illumination changes, and may be suitable for pruning operations in 

vineyards around the clock, when needed. Moreover, complex backgrounds like other 

rows of grapevines, green grasses on the ground and the blue sky can be easily 

removed using distance threshold filtering. As no literature has been identified in 

terms of point cloud feature extraction in vineyards, related and relevant literatures 

are reviewed and detailed in the following. 

2.2.1 Basic Features 

Basic features of point clouds like lines or sharp edges are widely applied. Weber et. 

al (2010) proposed a new technique for automatic sharp edge extraction based on 

Gaussian map clustering (Figure 2.5). Park et. al (2012) presented a new method to 

extract lines from unstructured point cloud data through multi-scale tensor voting 

(Figure 2.6). The scene in vineyards however is more complex, because of a 

combination of natural and artificial products such as trunks, cordons, canes and 

man-made posts. They often overlap and are always very close to each other. 

Therefore, there are no specific patterns that can be used to identify these objects 

using features of lines or sharp edges only. 
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Figure 2.5 Result of Gauss Map Clustering Method Applied to Cub-with-hole Sample 

(Weber et. al 2010) 

 

Figure 2.6 Sharp Edge Detection Result for Fandisk Model 

(Park et. al 2012) 

2.2.2 Cylinder Features 

Since the posts, cordons and canes can be basically described as cylinders, either one 

cylinder or a series of connected short cylinders, cylinder extraction algorithms and 

methods are reviewed. There are two common ways to identify and locate cylinders 

from point clouds. One is to use all the cylinder parameters synchronously (Beder & 

Förstner 2006; Lukács, Martin & Marshall 1998; Schnabel et al. 2006). However, 

methods like these are currently impractical because the dimension of the parameter 

space are too high. The parameter space is at least five dimensions to describe a 

cylinder, therefore processing time spent on estimating each cylinder is too long to be 
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practical. To solve this problem, methods of dividing cylinder extraction into two 

steps are proposed. Holies & Fischler (1981) proposed a RANSAC-Based approach 

(RANdom SAmple Consensus) to extract cylinders in range data. The two key steps 

in this process are fitting ellipses to partial data and fitting lines to sets of 

three-dimensional points. The limitation is it can only identify and locate cylinders 

with a known diameter. Lozano-Perez, Grimson & White (1987) developed a method 

to extract the axis of cylinders based on ellipse fitting. The issue is other parameters 

of the cylinder such as radius are not extracted and locations are unknown. To not 

only extract axis but also other parameters of cylinders, Chaperon & Goulette (2001) 

presented a cylinder extraction method consisting of two steps. Step one estimates 

orientations of all the cylinders by finding constrained planes in the Gaussian image. 

The Gaussian image of a cylinder is a great circle, and then the direction of a cylinder 

can be identified by locating the plane which contains this great circle. Step two is for 

the cylinder position and radius estimation. Their method solved the issue of high 

parameter space, although noisy data may cause poor results. Besides, this method 

may fail to extract cylinders when there are several cylinders of different radii along 

one orientation (Rabbani & Heuvel 2005). Rabbani & Heuvel (2005) improved the 

algorithm and solved the problem mentioned using the Hough transform. After using 

the 2D Hough transform in the first step to find points vote for the possible 

orientations of cylinders, the radii and positions of the cylinder are calculated and 

located by circle fitting using the 3D Hough transform with a user-specified radius 

range (Figure 2.7). However, step two of their method has limitations when 

considered for the vineyard scenario presented in this research. Firstly, a 

user-specified radius range cannot be obtained in some situations. Moreover, the 

results of circle fitting are highly relying on the accuracy of input data. As shown in 

Figure 2.8-c, there is one post in the middle and several scattered canes around it. 

Based on the assumption that the post area has been identified, a circle is fit to the 

post area in order to locate post and calculate its radius. The radius (r1) of the 

assumed circle fitted is much bigger than the radius (r2) of the actual post. Su & 

Bethel (2010) improved the first step, orientation estimation, of Rabbani & Heuvel’s 
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(2005) method. They claimed that the run time is decreased and robustness is 

improved, although the method was applied to two separate cylinders only rather than 

a scene with several cylinders overlapped and connected.  Besides, the radius issue 

of Rabbani & Heuvel’s (2005) method is still unsolved. 

   

(a) Input data         (b) Result of algorithm 

Figure 2.7 Result of Cylinder Extraction based on Hough Transform  

(Rabbani & Heuvel 2005) 

   

a. Front View 
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b. Top View 

 

c. Assumption of Circle Fitting 

Figure 2.8 Point Clouds of Post in Vineyard 

In brief, even if all the cylinders from input points can be extracted and located, the 

relations among these cylinders remain unknown using the current approaches. For 

instance, the cordons of grapevines can be described as several cylinders connected 

with each other. However, there is no way to define a cordon if the relations of these 

cylinders are unknown. For this reason, methods and approaches that can provide 
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relations among points and features need to be reviewed, which skeleton extraction is 

identified to be promising and therefore is a focus. 

2.2.3 Skeleton Extraction of Point Clouds 

2.2.3.1 Simple Structure Skeleton 

Simple structure skeleton extraction like artificial products or structures with specific 

patterns like the human body is not suitable for this research. Because the scene in the 

vineyard is more complex and no specific pattern can be followed. The skeleton of a 

grapevine is very similar to that of trees, which is a trunk and several branches. The 

post can be described as a tree with no branches. Therefore, tree-structure skeleton 

extraction methods are reviewed. 

2.2.3.2 Tree-like Structure Skeleton 

Sato et. al (2000) proposed a method called TEASAR (tree-structure extraction 

algorithm delivering skeletons that are accurate and robust) to find skeletons 

accurately and rapidly. A multi-stage Skeletonization method for tree-like volumes 

has also been developed (Chen et. al 2000). Both of the methods were tested for 

tree-like targets including lobster (Figure 2.9), ribs and colon. 

     

 (a) Lobster      (b) Lobster Skeleton 

Figure 2.9 Tree-like skeleton extraction - Lobster 
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2.2.3.3 Tree Structure Skeleton 

There are also methods directly applied to trees. Gorte & Pfeifer (2004) developed a 

method to extract a skeleton of laser-scanned points using 3D mathematical 

morphology. The key concept of this method is a 3-dimensional raster domain which 

is a discrete space with elements called voxels. They applied voxels to analyze and 

extract skeletons of trees instead of points. The drawback of Gorte & Pfeifer’s (2004) 

method is that a large number of algorithm parameters need to be controlled (Bucksch 

& Lindenbergh 2008). For example, the spatial resolution of the 3D raster domain 

which denotes the size of voxels is selected based on the density of laser points and 

processing time. It may become impracticable when the resolution is chosen too fine 

(Gorte & Pfeifer 2004). Besides, there is a tendency of producing cycles in the 

extracted skeleton. Gorte (2006) developed a Dijkstra skeletonization method based in 

3D raster domain. It automatically identifies the numbers, lengths and thickness of 

tree branches. The main advantage of this method is it follows the original data 

closely and does not need pre-processing. The methods of Gorte & Pfeifer (2004) and 

Gorte (2006) share one common drawback that both of them are restricted to 

terrestrial laser scanners. The input points of trees are scanned from all sides by 

locating the scanner at several viewpoints (normally 4) around the target. The 

effectiveness of their methods on points captured by other range sensors with only 

one side scan needs further investigation.  

Bucksch & Lindenbergh (2008) presented a Skeletonization algorithm called 

CAMPINO (collapsing and merging procedures in octree-graphs).  CAMPINO is 

able to extract skeletons through point clouds captured from one or multiple 

viewpoints as shown in Figure 2.10. Bucksch, Lindenbergh & Menenti(2009) 

reported a new algorithm aiming at the skeletonization of a laser scanning point 

clouds. Both of these two methods are based on the Octree concept, which generate an 

Octree and extract a graph from points in the Octree cells. The drawback is the use of 

a preset partitioning resolution, which makes the result unreliable when the branches 
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have different densities in different parts of the tree (Livny et al. 2010).  

 

Figure 2.10 Collapsing and Merging Procedures in Octree-graphs (CAMPINO) 

(Bucksch et. al 2008) 

There is a common issue of previous methods that are only suitable for one tree in the 

scene. To solve these issues, Linvy et al. (2010) proposed an automatic tree 

reconstruction algorithm using a global optimization method which is more robust to 

noise, ununiformed point density, missing data and multi-trees situation. The result 

shows not only the skeleton is extracted but also the geometry aspects of the tree. 

Although the method of Linvy et al. (2010) is able to extract skeletons in the 

multi-trees situation, there is a certain distance among trees which makes it easy to 

pre-processing the points to separate trees. The scene in vineyards is more complex 

and different. One post and one grapevine can be very close or even overlapped with 

each other. How to extract the skeletons of post and grapevine in such an environment 

is still open to be investigated. Besides, the input points of their method are sparse. 

When it comes to situation like vineyards, the high density area such as post can lead 

to poor skeleton results based on the understanding of the paper and test results. It is 

shown in Figure 2.11, the algorithm can generate a good skeleton result when applied 

to the canes combined with sparse points. However, the skeleton of the post area is 

still unclear. 
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a. Post with several canes 

     

b. Iteration one 

 

c. Iteration Four 



24 
 

 

d. Iteration Eight 

Figure 2.11 Test Result of Skeleton Extraction Method (Linvy et al. 2010) Applied to 

Data of This Thesis 

2.2.3.4Curve Skeleton 

As current tree skeleton methods have limitations in either the number of algorithm 

parameters, the restriction to certain laser scanners or the poor result in vineyards, 

curve skeleton methods are reviewed. Curve skeleton methods do not need a large 

number of parameters, do not restrict certain laser scanners and can be applied to 

different densities of point clouds, which is suitable for the vineyard scenarios. Most 

of the existing works on curve skeleton extraction operate on complete surface models 

(Cao et al. 2010). Point cloud data captured in vineyards is different. The input is 

three dimensional points with missing data. Cao et al. (2010) solved this issue and 

extracted the skeleton from point cloud data via Laplacian-Based Contraction. Their 

approach is robust to noise and can handle moderate amounts of missing data which 

reach the requirement of vineyards. However, there is no literature identified to 

extract features of post, trunk, cordon and cane even if their skeletons can be 

extracted.  
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2.3 Summary 

Based on the reviewed literature, the followings are concluded:  

Machine vision using cameras is currently not suitable for automatic pruning as 

performance suffers due to serious illumination changes and the need for simplified 

backgrounds. Point cloud data generated by some of the range sensors are not affected 

by lighting changes. Moreover, complex backgrounds like other rows of grapevines, 

green grasses on the ground and the blue sky can be easily removed using distance 

threshold filtering. As a result, this research adopted point clouds as input data. 

No literature has been identified in the area of extracting natural and artificial features 

in vineyards through the use of point clouds. Therefore, related areas have been 

reviewed including cylinder extraction and skeleton extraction. Current cylinder 

extraction methods have limitations when applied to vineyards. The noisy input points 

of the vineyard may cause poor results. It also may fail to extract cylinders when there 

are several cylinders of different radii along one orientation like scattered canes. 

Besides, parameters like radii of cylinders cannot be obtained, which is essential for 

some methods. A new or improved method is needed to extract cylinders in vineyards. 

On the other hand, current tree skeleton methods still have limitations in terms of 

feature extraction in vineyards. More importantly, even if a way of extracting the 

skeletons of these four objects can be found or proposed, there is no literature 

identified to extract the features of posts, trunks, cordons and canes based on only 

skeletons. 

2.4 Gap 

No research has been identified in the current literature directly related to post, trunk, 

cordon and cane identification and location derivation through point clouds. This 

research is therefore proposed to advance knowledge in this corresponding area. 

According to the review of related research and analysis of limitations, the gap is 
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about algorithm(s)/method(s) that can be used to identify post, cordon and canes 

automatically in the vineyard. 

2.5 Aims and Objectives 

The aim of this research is to research and develop required algorithm(s)/method(s) to 

automatically extract features of post, trunk, cordon and cane from noisy 3D point 

clouds data. 

To achieve the aim, the following objectives need to be accomplished: 

 Pre-processing input raw point cloud data to remove noise and simplify the scene 

 Extracting features of post that is made by artificial wood products 

 Extracting the features of trunks, cordons and canes that are in the shape of 

natural plants 

 Identifying post, trunk, cordon and cane 

 Deriving locations of post, trunk, cordon and cane 
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Chapter 3 Segmentation 

There are at least four features in vineyards directly related to pruning operations, 

which are the posts, trunks, cordons and canes. There are also unrelated features, such 

as the solid ground surface and other rows of grapevines. The post and grapevine in 

vineyards are normally intersected and occluded with each other. The intersection and 

occlusion between them normally makes the vineyard scene very complex, therefore 

segmentation is necessary for identification purpose.  

3.1 Introduction 

Segmentation is a process of dividing input data into several disjoint areas that 

maintain the unique and homogeneous features from surrounding. It is understood as 

a labelling process to classify input data according to the region it belongs to (Josep & 

José 2008). This process is believed to be able to divide the captured vineyard points 

into several clusters, which isolates the objects relating to the pruning operation and 

reduces the complexity of the vineyard scene.  

The crucial concept of the segmentation method for this study is to divide the input 

points into several clusters using two features synchronously, the features of cylinder 

and density. The post in this study is made by artificial wood products, which can be 

described as one regular cylinder. Each grapevine consists of one trunk, two cordons 

and several canes, which can be described as the connected combination of several 

cylinders. However, applying current cylinder extraction methods has one issue that 

requires the radii of trunk, cordon and cane which are unknown as they vary 

depending on the ages of vines and the settings of different vineyards. To tackle this 

limitation, the feature of point cloud density is applied. It is observed that the point 

density of post, cordon, trunk and cane are different from each other. Therefore, a 

density clustering method is likely able to extract the areas of these four features even 

in the presence of noise. It divides the input point clouds data into several clusters; the 
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cluster that has a certain number of points which meets the point threshold of a post is 

labelled as post region ; the clusters has a certain number of points which meets the 

point threshold of a trunk is labelled as a trunk region; remaining thus contain cordons 

and canes.  

There are three steps to the proposed segmentation method including pre-processing, 

cylinder feature extraction and density clustering as shown in the flow chart (Figure 

3.1).  

 

Figure 3.1 Flow Chart of Segmentation 

Step one: Pre-processing (section 3.2) is performed in order to remove unwanted and 

noisy points by threshold filtering.  
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Step Two: Cylinder feature extraction (section 3.3) is performed in order to make the 

density features of post and trunk more notable than cordon and cane.  

Step Three: Density Clustering (section 3.4) is performed in order to divide all points 

into clusters. 

Output: Clusters obtained from step 3 is the outcome of Segmentation (Chapter 3) as 

well as the input of Object identification and location derivation (Chapter 4). 

3.2 Pre-processing 

The height of the range sensor and its distance to targeted objects can be easily 

obtained. The distance between two rows of grapevines can also be measured in 

advance. Therefore, a distance threshold can be directly applied to remove unrelated 

points, such as ground surface and other rows of grapevines. The ability of the range 

sensor employed in this study can capture only one row of grapevines, therefore the 

unrelated points belong to solid ground. 

This is one benefit of using point clouds as input rather than images captured through 

machine vision techniques, the pre-processing is performed easily and precisely. 

3.3 Cylinder Feature Extraction 

In vineyards, the four features relating to pruning operations are post, trunk, cordon 

and cane. They can be described as cylinders, either one cylinder like post or several 

cylinders connected and intersected with each other. Therefore, cylinder feature 

extraction is performed here.  

3.3.1 Cylinder Definition and Parameterization 

The definition of a cylinder is described as following: 
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 The surface generated by a straight line intersecting and moving along a closed 

plane curve, while remaining parallel to a fixed straight line that is not on or 

parallel to the plane of the directrix (directrix is a fixed line used in the 

description of a curve or surface.)  

 The portion of such a surface bounded by two parallel planes and the regions of 

the planes bounded by the surface. 

 A solid bounded by two parallel planes and such a surface, especially such a 

surface having a circle as its directrix. 

It needs a minimum of five parameters to describe a cylinder, which means a cylinder 

has five degrees of freedom in parameter space. There are different parameterizations 

to represent a cylinder, such as seven parameters with two constraints as used by 

Lukacs et. al (1998). In this thesis, a five parameters model proposed by Rabbani & 

Heuvel (2005) is applied as shown in Figure 3.2. This model uses a minimum of five 

parameters with no constraints that is best suited for cylinder feature extraction. 

(θ, ∅)  gives the axis direction n = (cos 𝜃 sin ∅ , sin 𝜃 cos ∅ , cos ∅)  in spherical 

coordinates. θ is the angle between direction n and axis x and ∅ is the angle between 

direction n and axis y. r is the cylinder radius. P(u, v) represents the position in 

terms of u and v which is along with axial direction.  
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Figure 3.2 The Five Parameters Cylinder Model  

(Rabbani & Heuvel 2005) 

3.3.2 Hough Transform 

Hough transform theory is used in this study in order to extract cylinder features, 

therefore an introduction of the Hough transform is described as follows. The Hough 

transform is a feature extraction technique used in image analysis, computer vision, 

and digital image processing (Shapiro et.al 2001). The purpose is to identify imperfect 

instances of objects within a certain class of shapes by a voting procedure. This voting 

procedure is carried out in a parameter space, from which object candidates are 

obtained as local maxima in an accumulator space that is explicitly constructed by the 

algorithm for computing the Hough transform.  

The Hough transform was first introduced as a method of detecting point’s patterns 

from image data. It examines each point and finds all possible parameters of a specific 

pattern model. The parameters are collected in a properly defined parameter space, 

also called Hough space. In the Hough space, the data patterns complied with the 

specific model can be determined via cluster identification. In practice, a complex 

pattern detection task is transformed to a more manageable peak detection task in the 

Hough space. 2D and 3D Hough transform are widely applied to extract features from 

complex data set. 
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3.3.2.1 2D Hough Transform 

An example of application of 2D Hough transform is introduced here to demonstrate 

the effectiveness and performance of this technique. The goal is to identify a set of 

collinear points using a 2D Hough transform in a binary image. In this image, the 

pixels are wanted when the value is 1. A set of wanted image points (𝑥, y) are 

collinear when they meet equation: 

y − 𝑚′𝑥 − 𝑐′ = 0                                          (3.1) 

, where 𝑚′  and 𝑐′  are the parameters that define slope and intersect of the 

considered line (Figure 3.3-a). The equation represents a mapping from the image 

space to the parameter space, a one to many mapping. All the parameters (𝑚, 𝑐), that 

represents the lines passing through a given point (𝑥′, 𝑦′), can be identified. Such 

lines satisfy the equation. 

𝑦′ − 𝑥′𝑚 − 𝑐 = 0                                           (3.2). 

Therefore, each point (𝑥, y) in the image represents a line in the parameter space 

defined by (𝑚, 𝑐) as shown in Figure 3.3-b. It also means a set of collinear image 

points has their corresponding lines in the parameter space or Hough space. These 

lines intersect with each other in one point. The coordinate of this point is the 

parameter of the line in image plane wanted to be identified. In order to extract this 

point, an accumulation array or Hough matrix is applied, in where the votes are 

counted. The sum of votes accumulated in one cell indicates the relative likelihood of 

lines described by parameters within the corresponding parameter cell (Figure 3.3-c). 
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(a) Data Space                (b) Hough Space 

 

 (c) Accumulation Array 

Figure 3.3 Hough Transform of Line Detection  

(Sarti & Tubaro 2002) 

3.3.2.2 3D Hough Transform 

The definition of the 3D Hough transform can be described as the natural extension of 

the 2D Hough transform. In the data space, there is a plane defined in equation (3.3): 

𝑎′𝑥 + 𝑏′𝑦 +  𝑐′𝑧 + 1 = 0                                   (3.3) 

In the parameter space, the plane defined represents a point of coordinates (𝑎′, 𝑏′, 𝑐′). 

This means a plane in the data space is represented by a point in the parameter space. 

On the other hand, if there is a given point p of coordinate (𝑥′, 𝑦′, 𝑧′) in the data 

space, a plane in the parameter space passing through it is defined by the coordinate 
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of this point. The plane in the parameter space is defined in equation (3.4) with 

parameters of  (𝑥′, 𝑦′, 𝑧′) and variables of (𝑎, 𝑏, 𝑐): 

𝑎𝑥′ + 𝑏𝑦′ + 𝑐𝑧′ + 1 = 0                       (3.4) 

The relationship between data space and parameter space can be demonstrated more 

obviously by defining a plane in the vector form (equation (3.5)): 

[𝑎 𝑏 𝑐 1] [

𝑥
𝑦
𝑧
1

] = 0                                        (3.5) 

There is a severe drawback of the above plane parameterisation (Sarti & Tubaro 2002). 

The parameter space turns out to be unbounded even if the data space is limited 

(equation (3.6)). The parameter (𝑎, 𝑏, 𝑐) can range anywhere from −∞ to +∞ . 

𝑥𝑚𝑖𝑛  ≤ 𝑥 ≤  𝑥𝑚𝑎𝑥  , 𝑦𝑚𝑖𝑛  ≤ 𝑦 ≤  𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛  ≤ 𝑧 ≤  𝑧𝑚𝑎𝑥      (3.6) 

Alternative parameterisations are considered in order to solve this issue. One of them 

is directly derived from the 2D Hough transform. A plane is defined in equation (3.7). 

𝑥 cos 𝛼 + 𝑦 cos 𝛽 + 𝑧 cos 𝛾 = 𝑑                          (3.7) 

𝛼, 𝛽 and 𝛾 are the angles between the plane and the data axis (𝑥 , 𝑦, 𝑧). Besides, 

the angles are bounded to satisfy the constraint: 

(cos 𝛼)2 +  (cos 𝛽)2 + (cos 𝛾)2 = 1                      (3.8) 

Therefore, the plane parameterisation becomes (𝛼, 𝛽, 𝑑) which is more suitable for 

real case application (Sarti & Tubaro 2002).  

3.3.3 Orientation Estimation of Cylinders 

Hough transform based methods have been applied to solve the problems of outliers 
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and multiple instances (Hough, 1962). In terms of range data, they are applied to 

tackle building reconstruction problems by locating planar surfaces in 2.5D data 

captured from an air-borne laser scanner (Vosselman & Dijkman 2001). Besides, they 

have been used for characterization of planar fractures from 3D data (Sarti & Tubaro 

2002). In this paper, the Hough transform is applied to extract one feature of the 

cylinder, orientation. 

The orientation estimation method (Rabbani & Heuvel 2005) which extracts cylinder 

orientations using the Hough transform is adopted. The concept of their algorithm is 

based on the fact that the normal of a cylinder generates a great circle on a Gaussian 

Sphere (Carmo 1976). This great circle is the result of the intersection of the unit 

sphere with a plane passing through the origin. The orientation of the cylinder equals 

to the normal vector of the plane. Once the plane is located, the orientation of the 

corresponding cylinder can be determined. Points vote for this plane in a Gaussian 

Sphere are the possible points of the cylinder.  

The method of orientation estimation is described as follows: 

3.3.3.1 Normal Estimation and Gaussian Sphere 

Normal vectors of all points are calculated using KNN (k-nearest neighbours) (Hoppe 

et al. 1992). Firstly, k nearest neighbours of each point is searched. Then, the normal 

vectors are estimated by eigen-analysis of their covariance matrix. This normal 

estimation method is more suited to unstructured point clouds (Rabbani & Heuvel 

2005), such as points captured from vineyards. As the normal of all points is obtained, 

the Gaussian sphere is generated by the normal vectors. As illustrated in Figure 3.4, 

each point of the Gaussian sphere represents an input point. 
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Figure 3.4 Gaussian Sphere 

3.3.3.2 Hough Gaussian Sphere 

As mentioned, the normal vectors of a cylinder form a great circle on the Gaussian 

sphere. This great circle is the outcome of the intersection of the unit sphere with a 

plane passing through the origin. Therefore, the goal is to locate this plane. In order to 

find planes, the Hough transform requires a three dimensional Hough space (Sarti & 

Tubaro 2002). There are two parameters including the direction of the plane normal 

expressed in spherical coordinates and the distance of the plane from the origin. The 

second parameter which is the distance can be removed because the plane must pass 

through the origin. Therefore, 2D Hough space is enough for the purpose. Besides, the 

plane intersects with the unit sphere, which means each point on the Gaussian sphere 

generates a circle in the Hough space.  

In order to generate all the great circles, spherical coordinates is selected which has 

two variables θ and φ , and one constant r equals to 1 as shown in Figure 3.5.  
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Figure 3.5 Spherical Coordinates 

A standard circle is defined in equation (3.9) and has its normal 𝑛𝑠 = (0 0 1)𝑇. The 

normal of all points is defined in equation (3.10). Then, the great circle of each point 

is obtained by transferring a standard circle to the direction of all the normal using 

reflection matrix of Householder. The reflection matrix M is defined in equation 

(3.11), where I is an identity matrix and b is defined in equation (3.12).   

xc = cos 𝑡 , 𝑦𝑐 = sin 𝑡 , 𝑧 = 0, 0 ≤ 𝑡 ≤ 2𝜋         (3.9) 

n = (cos 𝜑 sin 𝜃   sin 𝜑 sin 𝜃   cos 𝜃)𝑇                 (3.10) 

M = I − 2𝑏𝑏𝑇                                                            (3.11) 

b =
𝑛𝑠 − 𝑛

∥ 𝑛𝑠 − 𝑛 ∥ 
                                                          (3.12)   

The radius of the great circles is 1 and their centre is the coordinate origin, which 

generates another Gaussian sphere called the Hough Gaussian sphere (Figure 3.6). 
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Figure 3.6 Hough Gaussian Sphere 

3.3.3.3 Sampled Hough Space 

The intersection of these great circles gives a set of values which can be used to 

estimate the orientation of the cylinders. It needs to calculate the number of the great 

circles intersected with each other to obtain the values. However, the circle is not 

continuous round line but discrete points. In order to calculate the values, a sampled 

Hough space is necessary where the surface of the Hough Gaussian sphere needs to be 

divided into a set number of cells.  

All sampled cells do not have the same size when using a regular quantization in θ 

and φ (Lutton, Maitre & Lopez-Krahe 1994). Therefore, the approximate uniform 

sampling method for quantization of Hough space proposed by Lutton, Maitre & 

Lopez-Krahe (1994) is applied here for better accumulation result. One cell defined 

by ∆θ and ∆φ has a surface area ∆S equal to ∆θ [cos 𝜑 − cos(𝜑 + ∆𝜑)]. N is 

the number of layers for φ between 0 and 
𝜋

2
. ∆φ and ∆θ(n) referring to nth layer 

are defined in equation (3.13) and equation (3.14). 

∆φ =  𝜋 2𝑁                                                        (3.13)⁄  

∆θ(n) =
∆𝑆

∆𝜃
∙  

1

cos(𝑛 − 1) − cos 𝑛
                  (3.14) 
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3.3.3.4 Cell Value Accumulation 

As the points on Hough Gaussian sphere is known and the sampled Hough space is 

obtained, the accumulation procedure can be performed. For each cell of sampled 

Hough space, there is a certain value of number to indicate how many points or great 

circles pass through it.  

Posts are the biggest and tallest objects in vineyards, which mean the cylinder that 

represents a post has the highest number of points. Therefore, the cell with the highest 

accumulator value contains most of the post points.  

The points vote for the cell has the highest accumulator value can be easily found. 

Those are the parts of the points of the post and possible points of the most notable 

cylinders in the input data. 

This step makes the density of post and trunk more notable than other parts in 

vineyards. As shown in Figure 3.7, more of points belonging to the post and trunk are 

remained after the extraction than the points of cordons and canes. As the density 

feature is notably enough, the next step is to segment input data into several clusters 

using density clustering.  

 

a. Input 
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b. Cylinder Feature Extraction 

Figure 3.7 The Results of Cylinder Feature Extraction 

(The colour of post is illustrated in black, trunk is in blue, cordon is in red and cane is 

in green.) 

3.4 Density Clustering 

3.4.1 Clustering Methods 

Clustering assigns a set of objects into groups so that the objects in the same cluster 

are more similar to each other than to those in the other clusters. 

There are at least five categories of clustering algorithms including Hierarchical 

clustering, Partitioning clustering, Grid-based clustering, Model-based clustering and 

Density-based clustering. Hierarchical and Partitioning clustering are not designed for 

any shapes of cluster but only for globular clusters (Bramer 2007) and therefore not 

suitable for the project. In the case of Grid-based clustering, boundaries of clusters are 

either horizontal or vertical (Han & Kamber 2006), but the boundaries of clusters in a 

vineyard are random because most of the points are from natural grown grapevine. 

Model-based clustering needs to assign models for each cluster (Han & Kamber 2006).  
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Objects in vineyards on the other hand are normally natural grown grapevines which 

is hard to find a specific model for extraction purpose. Besides, the methods 

aforementioned require an a priori knowledge about the number of clusters contained 

in a given data set. For natural clusters like vineyards, this number is very hard to 

obtain and to be certain. Therefore, these methods are not suitable for the needs of the 

project. Only Density-based clustering methods are suitable for the complex scene in 

vineyard because it is designed for any shapes of clusters with noise (Ester et al. 

1996). Density clustering utilizes a local cluster criterion. Clusters are defined as 

regions in the data space, where the objects are dense and remain separated from one 

another by low density areas. It can deal with arbitrary shaped clusters and 

significantly more efficient for large data sets (Daszykowski, Walczak & Massart 

2001).  

3.4.2 Density Clustering 

NP (natural pattern) clustering method (Daszykowski, Walczak & Massart 2001) is 

applied here, which is a density-based unsupervised clustering approach developed 

based on DBSCAN (density-based spatial clustering of applications with noise) (Ester 

et al. 1996). It adopts the advantage of DBSCAN that is designed for any shapes of 

clusters with noise. Besides, it works with only one input parameter that is the 

minimal number of objects considered to be a cluster, which avoids the poor result of 

DBSCAN when the neighbourhood radius is selected improperly. There are two steps 

of NP, one is based on the DBSCAN and the other is to optimize the parameter of 

neighbourhood radius. 

3.4.2.1 DBSCAN 

DBSCAN is a single scan clustering method relying on a density based clusters 

notation. The single scan methods structure is described as following: 

for (each object i) 
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if (i is not a member of a given cluster ) 

create a new cluster C 

while (the neighbouring objects satisfy the cluster condition) 

add them to C 

end 

end 

end 

The main concept of density based clustering is built on the assumption that within a 

given radius ε, the neighbourhood of each object belonging to a cluster contains at 

least a minimum number ( minpts ) of objects. Besides, the density of the 

neighbourhood exceeds a certain threshold. 

The core objects, border objects and outliers are defined as following: 

 The ith object is a core object, if in its neighbourhood of radius ε there are 

minpts objects; 

 The ith object is a border object, if it belongs to the neighbourhood of any core 

object, itself not being a core object; 

 The outlier is defined as an object, with the neighbourhood of the radius ε 

containing less than minpts objects and which at the same time does not belong 

to the neighbourhood of any core object. 

3.4.2.2 Optimization of the neighbourhood radius 

The neighbourhood radius ε is estimated for a data set with the same dimensionality 
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as the data studied, but uniformly distributed within the range of the experimental data 

(Daszykowski, Walczak & Massart 2001).  

In order to choose the optimized ε for a data set X (m × m), a set of m objects is 

simulated in the n dimensional space in the range of X  variables. Then the 

calculation of the distances between each object of its kth nearest neighbour is 

performed, where k is equal to minpts. The m calculated distances are sorted and 

then ε is selected as the distance equal to the 95% quantile (Quantiles are points 

taken at regular intervals from the cumulative distribution function (CDF) of a 

random variable) (Daszykowski, Walczak & Massart 2001). 

3.4.2.3 Clusters Extracted 

Clusters are extracted from the data obtained from cylinder feature extraction using 

the density clustering method of NP. The parameter minpts, the minimum number of 

points required to form a cluster, is set as 2 in order to minimize the noise points. 

Areas of each cluster can be calculated by the boundary points (Figure 3.8-a&b). Then, 

the original input points can be divided into several clusters through the areas (Figure 

3.8-c). 

 

(a) Clusters Obtained using NP 
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(b) Areas of Clusters 

 

 (c) Clusters of Original Input Points 

Figure 3.8 Clusters Obtained via Density Clustering 
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Chapter 4 Object Identification and Location 

Derivation 

After segmentation, the input data points are divided into clusters. Then the next goal 

is to identify the four key features of vineyards and derive their locations respectively. 

There are five steps of the proposed method including four features identification and 

location derivation as shown in the flow chart (Figure 4.1).  

 

Figure 4.1 Flow Chart of Objects Identification and Location Derivation 

The input, Clusters obtained, is the outcome of Segmentation (Chapter 3). 

Clusters Obtained 

Post Cluster 
Extraction 

Post Skeleton 
Extraction 

Main Component of 
Post Identification 

Trunk Cluster 
Extraction 

Trunk Skeleton 
Extraction 

Mai Component of 
Trunk Identification 

Cordon Clusters 
Extraction 

Cane Clusters Ext 

Locations 
Calculation 

Input 

Post Identification 

Trunk Identification 

Cordon Identification 

Cane Identification 

Location Derivation 
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Step one is post identification (section 4.1). The post cluster is extracted by a point 

number threshold filtering. The cluster obtained contains not only the post points but 

also some other points. Therefore, a refinement process is performed including 

skeleton extraction and main component identification. 

Step two is trunk identification (section 4.2) sharing the same sequences as step one.  

Step three is cordon identification (section 4.3). The extraction of cordon clusters is 

based on the trunk points identified in step two. 

Step four is cane identification (section 4.4). 

Step Five is location derivation (section 4.5) of all four features. 

4.1 Post Identification 

Each cluster obtained through segmentation contains a certain number of points. It is 

observed that posts are normally the highest and widest objects in the scene of 

vineyards, which means posts contain the highest number of points. By comparing 

with several input set points, a threshold of point number can be obtained. The 

clusters that represent the post area can be directly obtained via threshold filtering 

(Figure 4.2). However, the cluster representing a post not only contains points of the 

post but also other points including some parts of the cordon and cane which may 

affect the performance of the pruning operation. Therefore, a refinement process is 

necessary. To improve the accuracy of post identification, a two step method is 

proposed with skeleton extraction and main component identification. 
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(a) All Clusters Obtained                (b) Post Cluster 

Figure 4.2 Post Cluster Extraction 

4.1.1 Skeleton Extraction 

Point cloud skeleton extraction via Laplacian-based contraction (Cao et al. 2010) is 

applied here to extract the skeleton of the post, which has two steps including 

geometric contraction and topological thinning.  

4.1.1.1 Geometric Contraction 

The goal of the geometric contraction is to maintain the global shape of the input 

points through anchoring points chosen by an implicit Laplacian smoothing process 

(Cao et al. 2010). As a result, the geometric characteristics of the input points can be 

captured which helps estimate the position of the final curve skeleton. The key 

concept of geometric contraction is to solve the linear system described in equation 

(4.1): 

[
𝑊𝐿𝐿

𝑊𝐻
] 𝑃′ =  [

0

𝑊𝐻𝑃
]                                                                 (4.1) 

, where 𝐿 is a n × n  Laplacian matrix with cotangent weights; 𝑃 is the cluster 

represent the post area; 𝑃′ is a contracted point cloud; and 𝑊𝐿 and 𝑊𝐻 are the 
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diagonal weight matrices balancing the contraction and attraction constraints, the 𝑖th 

diagonal element of 𝑊𝐿 (resp. 𝑊𝐻) is denoted 𝑊𝐿,𝑖 (resp. 𝑊𝐻,𝑖).  

The solution to this system minimizes the quadratic energy (equation (4.2)): 

‖𝑊𝐿𝐿𝑃′‖2 + ∑ 𝑊𝐻,𝑖
2 ‖𝑃𝑖

′ − 𝑃𝑖‖

𝑖

                                         (4.2) 

, where the first term removes geometry details along the normal directions using 

implicit Laplacian smoothing and the second preserves shape geometry during 

contractions. 

In order to construct the Laplacian operator, an approximate neighbourhood of 𝑃𝑖 is 

firstly extracted by computing k nearest neighbors 𝑁𝑘(𝑃𝑖) of 𝑃𝑖 and projecting them 

on the tangent plane defined by their principal components. Then, a planar Delaunay 

triangulation is constructed and one-ring neighbours of 𝑃𝑖  is defined. The 

neighborhood information is computed only in the beginning because it is difficult to 

compute a correct tangent plane as the contraction procedure goes. Therefore, 

subsequent iterations only need to update the Laplacian weights rather than the whole 

operator. 

In order to collapse the post cluster P into a curve skeleton, the equation (4.2) is run 

iteratively while the two parameters 𝑊𝐻  and 𝑊𝐿  is updated each time. The 

contracted result 𝑃′ is contracted notably after the first iteration and the contraction 

weights 𝑊𝐿 is increased after each iteration. The attraction weights 𝑊𝐻,𝑖 is also 

needed to be updated according to the collapsed degree of 𝑝𝑖 in order to avoid over 

contraction. The purpose is accomplished by the extent of its neighbors that is 

approximated by 𝑚𝑖𝑛𝑞∈𝑁𝑘(𝑝𝑖)‖𝑝𝑖 − 𝑞‖. 

In order to make points with smaller neighbourhoods be attracted more strongly to 

their current positions, the iteration t is evaluated. Firstly, the equation (4.3) is solved. 
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Then, 𝑊𝐿
𝑡+1 =  𝑠𝐿𝑊𝐿

𝑡 and 𝑊𝐻,𝑖
𝑡+1 =  𝑊𝐻,𝑖

0 𝑆𝑖
0/𝑆𝑖

𝑡 , where 𝑆𝑖
𝑡  and 𝑆𝑖

0 are the current 

and original neighbourhood extent of point i. Finally, the new Laplacian operator 

𝐿𝑡+1 with the current point cloud 𝑃𝑡+1 is computed (Cao et al. 2010).  

[
𝑊𝐿

𝑡𝐿𝑡

𝑊𝐻
𝑡 ] 𝑃𝑡+1 =  [

0

𝑊𝐻
𝑡𝑃𝑡

]                                           (4.3) 

The outcome of this algorithm is a thin contracted point cloud C (𝑃𝑡+1) that captures 

the geometric characteristics of the post cluster. 

4.1.1.2 Topological Thinning 

After the contracted point cloud C is obtained through the geometric contraction, the 

next step is to convert C to a curve skeleton using connectivity building and edge 

contraction. 

In terms of connectivity building, C is sampled by using farthest point sampling and 

a ball of radius r. Each sample 𝑔𝑖 ∈  G represents the set of associated points 𝐶𝑖 in 

C  which are closest to it, such that C =  ⋃ 𝐶𝑖𝑖 and 𝐶𝑖 ⋂ 𝐶𝑗 =  ∅, ∀𝑖 ≠ 𝑗 . By 

connecting 𝑔𝑖  and 𝑔𝑗  if their associated points share common local 1 ring 

neighbours, a graph G is obtained with uniformly distributed nodes (Cao et al. 2010).  

After the connectivity is built, unnecessary edges are collapsed until no triangles exist 

to build a curve skeleton. In order to distribute the final skeleton vertices uniformly 

and capture the shape of G, the edge with minimum Euclidean length to its midpoint 

is collapsed and triangles incident to the edge are removed. The points associated with 

the two endpoints are assigned to the newly created vertex. The procedure is iterated 

until all triangles are removed and the curve skeleton is built. 

4.1.2 Main Component Identification 

From the skeleton extracted, it is observed that the connection edges from root node 
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to node A which is the first node connects three nodes represent the key component of 

the post as shown in Figure 4.3-b. The main component represents the main part of 

the post and it contains most of the points belonging to the post. By analysing the 

main component, the whole post can be identified. 

Firstly, the orientation and width of the post can be extracted by connecting the root 

and the node A (Figure 4.3-b). An axis can be built based on the orientation extracted. 

Then, all the points of the post cluster are rotated to the new axis, the vertical 

direction of which is the same as the orientation of the post. After that, the two values 

x1 and x2 as shown in Figure 4.3-d can be calculated by locating the boundary points 

of the main component. From this point, the threshold is built for identifying the 

whole post and a refinement operation can be performed. The points belonging to the 

post can be extracted and noisy points including some parts of the cordon and cane 

can be removed. 

The orientation and the width of the post can be estimated through this key 

component. The points belonging to the post and noisy points can be identified by 

rotating the axis to the direction of the post. Then, points within the boundary from x1 

to x2 belong to the post and those left are noise (Figure 4.3-d). 

              

(a) Post Area with Noisy Points      (b) Skeleton Extracted 
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(c) Orientation and Width        (d) Refinement of Post Identification 

Figure 4.3 Post Identification and Refinement 

4.2 Trunk Identification 

Each cluster obtained through segmentation contains a certain number of points. It is 

observed that trunks are the second highest and widest objects in the scene, which 

means trunks contain the second highest number of points. By comparing with several 

input set points, a threshold of point number can be obtained. The clusters that 

represent the trunk area can be directly obtained via threshold filtering (Figure 4.4). 

However, the trunk cluster sometimes contains some parts of the cordon and cane and 

a refinement operation is required. 
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(a) Clusters Obtained                 (b) Trunk Cluster 

Figure 4.4 Trunk Cluster Extraction 

To refine the trunk area and improve the accuracy of the trunk identification, the 

skeleton extraction method of the post is applied again. After applying geometric 

contraction and topological thinning, the skeleton of the trunk cluster is extracted as 

shown in Figure 4.5. It is observed that the nodes connection from root node to node 

B, which is the first node connecting with 3 nodes, represents the trunk. As a result, 

the trunk is identified and refined and the noisy points are removed. 

                 

a. Trunk Cluster      b. Skeleton of Trunk          c. Trunk Refinement 

Figure 4.5 Trunk Identification and Refinement 
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4.3 Cordon Identification 

Based on the natural feature of grapevines, cordon area threshold is obtained by 

measuring and analysing the input data sets. It is observed that the cordon area is 

between 1/2 and 9/8 of the total height of the trunk. Therefore, all the clusters within 

this area are identified as points of cordons (Figure 4.6). To improve the accuracy of 

this progress, the cluster which has 50 per cent of points within this area is also 

identified as cordon.  

 

(a) Height of Trunk 

 

 (b) Cordon Area 

Figure 4.6 Cordon Area Estimation 
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4.4 Cane Identification 

As features of post, trunk and cordon are extracted and points belonging to them are 

identified, the points left contain all canes. Therefore, cane identification is 

automatically achieved. 

4.5 LOCATION DERIVATION 

The input data used in this thesis is point clouds which is a set of vertices in a three 

dimensional coordinate system. These vertices contain the location information of the 

four features in vineyards. As the points (vertices) belonging to post, trunk, cordon 

and cane are identified, the locations of them can be derived directly. The location of 

post can be derived by calculating a cuboid defined by the boundary points of left, 

right, top, bottom and back as well as the locations of trunk, cordon and cane. This is 

one benefit of using point clouds as input rather than images obtained by machine 

vision, the only focus is how to extract features and the calculation of location is not 

needed.  
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Chapter 5 Experimental Work 

In order to test and analyse the effectiveness and performance of the proposed method, 

experiments are conducted. The experimental setup is introduced in section 5.1 

including the range sensor applied and the program used to capture point clouds. In 

section 5.2, the experiment results are illustrated and analysed using several groups of 

data sets captured in different vineyard scenes. 

5.1. Experimental Setup 

5.1.1 Kinect 

Kinect (Figure 5.1) is a motion sensing input device developed by Microsoft for Xbox 

360, video game consoles and Windows PCs. It enables users and researchers to 

control and interact with consoles and computers as a game controller. The 

application of the Kinect is based on a webcam style add-on peripheral and a natural 

user interface using gestures and spoken commands. One feature of the Kinect is the 

ability to capture point cloud data with a fast and accurate performance. In this thesis, 

the Kinect is used as the input data capturing range sensor to perceive the 

environment of vineyards. 

 

Figure 5.1 The Kinect 

The practical ranging limit of the Kinect sensor is from 1.2 to 3.5 meters with the 

Xbox software and Mircosoft SDK for Windows. It has the angular field of view of 57 
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degrees horizontally and 43 degrees vertically. The motorized pivot is capable of 

tilting the sensor up or down 27 degrees. 

5.1.2 Data Capturing Program 

Microsoft released a non-commercial Kinect software development kit (SDK) for 

Windows 7 in 2011, which includes compatible PC drivers for Kinect devices in 

Windows 7 environment. The SDK provides Kinect capabilities to developers to write 

and build applications and programs using C++, C# and Visual Basic programing 

languages through Microsoft Visual Studio 2010. The SDK includes the features: 

 Raw sensor streams: Access to low-level streams from the depth sensor, color 

camera sensor, and four-element microphone array. 

 Skeletal tracking: The capability of tracking the skeleton image of one or two 

people moving within Kinect's field of view for gesture-driven applications. 

 Advanced audio capabilities: Audio processing capabilities include sophisticated 

acoustic noise suppression and echo cancellation, beam formation to identify the 

current sound source, and integration with Windows speech recognition API. 

Under the consideration of compatibility and engineering implementation, the data 

capturing program is written in C # programing language using the Kinect SDK of 1.0 

version. The interface of the program is illustrated in Figure 5.2 (initializing mode) 

and Figure 5.3 (capturing mode). The program is capable of capturing 2D colour 

images, 2D images with depth information and point clouds. 
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Figure 5.2 Data Capturing Program User Interface – Initializing Mode 

 

Figure 5.3 Data Capturing Program User Interface – Capturing Mode 

The program is used on a Windows 7 laptop of Thinkpad X201. The laptop has an 

Intel(R) Core(TM) i5 CPU M520 with 2.40GHz, a 4G RAM and Intel(R) HD 

Graphics 4000. 

5.1.3 Field Configurations 

The point clouds used in this paper are captured in the vineyard at the Waite Campus, 
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the University of Adelaide. The field of view is illustrated in Figure 5.3. In the 

experiment, the Kinect sensor is located at the height of 1.5 meters above the ground 

and the distance of 1 meter to the grapevine. The Kinect sensor is placed horizontally 

with an angular field of view of 57° horizontally and 43° vertically. 

 

Figure 5.4 Field View 

5.1.4 Method Testing Program 

The proposed method is written in Matlab code in order to test and analyse its 

effectiveness and performance with the captured input point clouds. The 6.5 version 

of the Matlab software is selected and running in the Windows XP environment. The 

Dell OptiPlex 780 runs the Matlab code has the Intel(R) Core(TM)2 Quad CPU 

Q9400 with 2.66GHz, a 4G RAM and the Graphic card of ATI Radeon HD 3450. 

5.2 Experimental Results 

The method proposed was applied to 20 data sets captured in the vineyard 

aforementioned. Six data sets, which represent six situations of input points in 

vineyards, are selected to illustrate the effectiveness of the proposed method step by 

step. The accuracy and performance of the method are illustrated as well. All the data 

sets are tested and analysed following the sequences of the proposed method. 
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5.2.1 Data Set One 

5.2.1.1 Data Set One Input 

Data set one represents one of the most common scenes obtained from input data sets. 

As illustrated in Figure 5.5, there are one post, one trunk, several cordons 

unconnected and scattered canes captured. Besides, the post and trunk are very close 

to and overlapped with each other which make the scene very complex. 

 

Figure 5.5 Original Input of Data Set One 

5.2.1.2 Data Set One Segmentation 

The segmentation is performed when the input is obtained. Firstly, pre-processing is 

applied in order to remove unwanted points including the solid ground and other rows 

of grapevines. In the case of data set one, only solid ground is the noisy data. The 

pre-processing result is shown in Figure 5.6. 
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a. Pre-processing of Data Set One 

 

b. Pre-processing of Data Set One in the Original Input 

Figure 5.6 Data Set One Pre-processing 

Then, the normal vectors of the pre-processed input are estimated using KNN and by 

using of which the Gaussian sphere is generated as shown in Figure 5.7. In order to 

generate the Hough Gaussian sphere, the Gaussian sphere is transformed via the 

Hough transform. As shown in Figure 5.8, there are many great circles on the unit 

sphere and they are intersected with each other. One of the intersections represents the 

orientation of the post. 
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Figure 5.7 Gaussian Sphere of Data Set One 

 

Figure 5.8 Hough Gaussian Sphere of Data Set One 

In order to estimate the orientation of the post, accumulation is performed to locate 

the intersection that represents the post. Great circles vote for the cell that has the 

number of accumulator values that represent the post can be found. By using the great 

circles located, the cylinder feature is extracted. The points representing the possible 

points of the post can be extracted. Because some of the points belonging to the trunk, 

cordon and cane also vote for the accumulator value of the post, they are also 

extracted. As shown in Figure 5.9, more points belonging to the post and trunk are 

extracted than the points of cordons and canes, which make the density feature of post 
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and trunk notable. 

 

Figure 5.9 Cylinder Feature Extraction of Data Set One 

As the density feature is notable enough after cylinder feature extraction, the density 

clustering operation is performed in order to divide the points into several clusters. As 

shown in Figure 5.10, the clusters obtained are demonstrated in the cubic form for 

better understanding and view. All the cubes (Figure 5.11) extracted are applied to the 

pre-processed input in order to obtain the clusters of the input as shown in Figure 

5.12. 

 

Figure 5.10 Density Clustering of Data Set One 
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Figure 5.11 Cubic Extraction of Data Set One 

 

Figure 5.12 Clusters of the Pre-processed Input Points of Data Set One 

5.2.1.3 Data Set One Object Identification 

For each cluster obtained through segmentation contains a certain number of points. 

By comparing with several input set points, a threshold of point number can be 

obtained which is the point number larger than 18000. The cluster that contains this 

certain number of points can be directly obtained through threshold filtering (Figure 

5.13).  
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Figure 5.13 The Post Cluster (red colour) of Data Set One 

In Figure 5.14, the close view of the post cluster is shown. As there is only a small 

number of noisy points in the post cluster, in order to determine whether a refinement 

operation is needed, the skeleton of the post cluster is extracted as shown in Figure 

5.15. According to the proposed method, there is no joint that connects to more than 

two joints, which means the refinement operation is not necessary. 

 

Figure 5.14 Close View of the Post Cluster of Data Set One 
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Figure 5.15 Skeleton Extraction of the Post Cluster of Data Set One 

After the post is extracted, the next step is to extract the trunk. By using the same 

threshold filtering method, the clusters contain the number of points from 6000 to 

13000 represent the trunk clusters. As there is only one trunk in the scene of data set 

one, the only trunk cluster is extracted as shown in Figure 5.16. 

 

Figure 5.16 The Trunk Cluster of Data Set One (blue colour) 

In Figure 5.17, the close view of the trunk cluster is shown. Except for the points 

belonging to the post, there are also some noisy points. For refinement purposes, the 

skeleton of the trunk is extracted as shown in Figure 5.18. The same as the post 

refinement, there is also no joint that connects to more than two joints, which means 
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no refinement operation can be performed. Therefore, the trunk is directly extracted. 

 

Figure 5.17 Close View of the Trunk Cluster of Data Set One 

 

Figure 5.18 Skeleton of the Trunk of Data Set One 

After trunk extraction, the cordon identification is performed. Based on the 

observation of all the data sets obtained and the natural feature of grapevines, the 

cordon area is within the vertical area between 1/2 and 9/8 of the total height of the 

trunk. As a result, all the clusters within this area are extracted. Besides, the clusters 

having 50 per cent of points within this area is also identified as the cordon to 

improve the accuracy of this process. Therefore, the cordon is extracted by combining 

all the clusters as shown in Figure 5.19. The accuracy of the trunk identification can 
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be improved by removing the points of the trunk within the area of the cordon. 

 

Figure 5.19 Cordon Extraction of Data Set One (yellow colour) 

As there are only four objects in the pre-processed input, which are post, trunk, 

cordon and cane. Therefore, the left clusters are the points belonging to the cane 

(Figure 5.20). 

 

Figure 5.20 Cane Extraction of Data Set One (green colour) 

5.2.1.4 Data Set One Final Result 

The final result of the proposed method applied on data set one is illustrated in Figure 

5.21. The post, trunk, cordon and cane are identified as well as points belonging to 
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them. The positions of post and trunk are estimated by calculating their centres using 

the coordinates of the points extracted. The cordon is pruned part by part during 

vineyard pruning, position of one part of the cordon is estimated by calculating the 

centre of the selected part as shown in Figure 5.21-a. The unit of all the positions is 

meters. The position of post is (-0.3536, 1.6957, 0.0725). The position of trunk is 

(-0.1341, 1.7831,-0.4139). The selected part of cordon is from 0 of x axis to 1 of x 

axis and the position is (0.4089, 1.8343, 0.0146). 

 

a. Object Identification of Data Set One in the Pre-processed Input 

 

b. Object Identification of Data Set One in the Original Input 

Figure 5.21 Final Result of Data Set One 

Trunk Post 

Cordon 
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5.2.1.5 Sensitivity Analysis of Thresholding in Pre-processing 

In order to analyse the sensitivity of thresholding method used in pre-processing, 

three different pre-processing results using the same original input are extracted via 

different threshold values. The main noisy points need to be removed are belonging to 

the ground; therefore, three values of Z axis are selected to perform the thresholding 

filtering where all the points below the threshold values along the Z axis are removed. 

The results are shown in Figure 5.22, where threshold value one equals 0.4, threshold 

value two equals 0.5 and threshold value three equals 0.6.  

 

a. Threshold Value One (0.4) 
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b. Threshold Value Two (0.5) 

 

c. Threshold Value Three (0.6) 

Figure 5.22 Results with Different Threshold Values 

After processing, as shown in Figure 5.23, post, trunk, cordon and cane can all be 

correctly identified and extracted for all three sets of data, which demonstrates the 

robustness of the method. As the distance between two rows of grapevines is about 

1.5m, the distance threshold value is not expected to be sensitive as long as it is set to 

be the distance between two rows of grapevines as demonstrated above.

 

a. Result of Threshold Value One (0.4) 
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b. Result of Threshold Value Two (0.5) 

 

c. Result of Threshold Value Three (0.6) 

Figure 5.23 Final Results Extracted for Different Thresholidng Outcomes 

5.2.2 Data Set Two 

5.2.2.1 Data Set Two Input 

Data set two is another one of the most common scenes obtained from input data sets. 

The difference between it and data set one is the post and trunk are not close to and 

intersect with each other. It is also consist of one post, one trunk, several cordons 
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unconnected and scattered canes captured as shown in Figure 5.24. 

 

 

Figure 5.24 Original Input of Data Set Two 

5.2.2.2 Data Set Two Segmentation 

Firstly, pre-processing is performed and the result is shown in Figure 5.25. 

 

a. Pre-processing of Data Set Two 
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b. Pre-processed Outcome in the Original Input of Data Set Two 

Figure 5.25 Data Set One Pre-processing 

Then, the normal vectors are estimated and the Gaussian sphere is generated as shown 

in Figure 5.26. The Hough Gaussian sphere (Figure 5.27) is also calculated based the 

result of Gaussian sphere. 

 

Figure 5.26 Gaussian Sphere of Data Set Two 
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Figure 5.27 Hough Gaussian Sphere 

After that, the cylinder extraction is performed and the result is shown in Figure 5.28. 

 

Figure 5.28 Cylinder Feature Extraction of Data Set Two 

As the density feature is notable enough after cylinder feature extraction, the density 

clustering operation is performed in order to divide the points into several clusters. As 

shown in Figure 5.29, the clusters obtained are demonstrated in the cubic form for 

better understanding and view. All the cubes (Figure 5.30) extracted are applied to the 

pre-processed input in order to obtain the clusters of the input as shown in Figure 

5.31. 
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Figure 5.29 Density Clustering 

 

Figure 5.30 Cubic Extraction 
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Figure 5.31 Clusters of the Pre-processed Input Points 

5.2.2.3 Data Set Two Objects Identification 

Firstly, the post cluster is extracted from the clusters obtained before as shown in 

Figure 5.32. As illustrated in Figure 5.33 of the close view of the post cluster, there 

are some noisy points need to be removed. In order to improve the accuracy of the 

post identification, skeleton of the post is extracted as shown in Figure 5.34 which 

shows the difference between the situation of Data Set Two and Data set one. There 

are several joints which connect with more than two joints. According to the proposed 

method, the main component extraction is performed. It is the part from the root joint 

to the first joint that connects with more than two joints. The key joint is extracted and 

shown in Figure 5.35. By locating the connecting relationship between the root joint 

and the key joint, the main component of the post cluster is extracted and shown in 

Figure 5.36. Then, a new axis is built by rotating the original axis to the direction 

defined by the line between the root joint and the key joint as shown in Figure 5.37. A 

threshold can be calculated by computing the width of the main component under the 

new axis. By threshold filtering (Figure 5.38), the noisy points can be removed and 

the accuracy of post identification is improved. The post identification result is shown 

in Figure 5.39. 
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Figure 5.32 The Post Cluster of Data Set Two (red colour) 

 

Figure 5.33 Close View of the Post Cluster of Data Set Two 
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Figure 5.34 Skeleton Extraction of the Post Cluster of Data Set Two 

 

Figure 5.35 The Key Joint of the Post Cluster of Data Set Two 
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Figure 5.36 The Main Component of the Post Cluster of Data Set Two 

 

Figure 5.37 The Rotating Operation of the Post Cluster of Data Set Two 
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Figure 5.38 Threshold Filtering of the Post Cluster of Data Set Two 

 

Figure 5.39 Post Identification Result of Data Set Two 

After the post is extracted, the next step is to extract trunk. By using the same 

threshold filtering method, the trunk cluster can be directly located as shown in Figure 

5.40. 
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Figure 5.40 The Trunk Cluster of Data Set One (blue colour) 

In order to improve the accuracy of the trunk identification, its skeleton is extracted as 

shown in Figure 5.41 and the key joint of the trunk is located as shown in Figure 5.42. 

By locating the part from the root joint to the key joint, the trunk is identified and the 

identification result is shown in Figure 5.43. 

 

Figure 5.41 Skeleton of the Trunk of Data Set Two 
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Figure 5.42 The Key Joint of the Trunk Cluster of Data Set Two 

 

Figure 5.43 Trunk Identification of Data Set Two 

After trunk extraction, the cordon identification is performed. By using the same 

method, the cordon clusters are extracted as shown in Figure 5.44. Unlike Data Set 

One, the trunk identification result of Data Set Two is refined. Therefore, it is 

unnecessary to keep improving the accuracy by using the threshold of cordon area.  
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Figure 5.44 Cordon Extraction of Data Set One (yellow colour) 

As there are only four objects in the pre-processed input, which are post, trunk, 

cordon and cane. Therefore, the left clusters are the points belonging to the cane 

(Figure 5.45). 

 

Figure 5.45 Cane Extraction of Data Set One (green colour) 

5.2.2.4 Data Set Two Final Result 

The final result of the proposed method applied on data set two is illustrated in Figure 

5.46. The position of post is (-0.3528, 1.2186, 0.1179). The position of trunk is 

(0.6629, 1.6008, -0.2788). The selected part of cordon is from 0 of x axis to 1 of x 
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axis and the position is (0.5020, 1.4972, 0.0167). 

 

a. Object Identification of Data Set Two in the Pre-processed Input 

 

b. Object Identification of Data Set Two in the Original Input 

Figure 5.46 Final Result of Data Set Two 

5.2.3 Data Set Three 

5.2.3.1 Data Set Three Input 

Data set three is the last one of the most common scenes obtained from input data sets. 

The difference is that only part of the post is captured in vineyards. In this case, more 

Post 

Cordon 

Trunk 
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than 1/2 of the post points are captured. The original input is also consisting of one 

post, one trunk, several cordons unconnected and scattered canes captured as shown 

in Figure 5.47. 

 

Figure 5.47 Original Input of Data Set Three 

5.2.3.2 Data Set Three Segmentation 

Firstly, pre-processing is performed and the result is shown in Figure 5.48-a. Not only 

the ground is removed but also points belonging to other rows of the grapevines as 

shown in Figure 5.48-b of the side view of the original input. 

 

a. Pre-processing of Data Set Three 
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b. Side View of the Original Input of Data Set Three 

Figure 5.48 Data Set One Pre-processing 

After normal estimation, Gaussian sphere and Hough Gaussian sphere generation, the 

cylinder extraction is performed and the result is shown in Figure 5.49. The result of 

the segmentation is illustrated in Figure 5.50. 

 

Figure 5.49 Cylinder Feature Extraction of Data Set Three 
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Figure 5.50 Clusters of the Pre-processed Input Points of Data Set Three 

5.2.3.3 Data Set Three Objects Identification 

Although only parts of the post are captured, the post cluster still contains enough 

number of points that fits the threshold of post cluster. The result of post cluster 

extraction is shown in Figure 5.51. 

 

Figure 5.51 The Post Cluster of Data Set Three (red colour) 

5.2.3.4 Data Set Three Final Result 

The final result of the proposed method applied on data set three is illustrated in 

Figure 5.52. The position of post is (-0.5558, 1.1567, 0.0649). The position of trunk is 
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(-0.3802, 1.6400,-0.2023). The selected part of cordon is from 0.5 of x axis to 1 of x 

axis and the position is (0.4487, 1.6145, 0.0146). 

 

 

a. Object Identification of Data Set Three in the Pre-processed Input 

 

b. Object Identification of Data Set Three in the Original Input 

Figure 5.52 Final Result of Data Set Three 

Post 

Trunk 

Cordon 
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5.2.4 Data Set Four 

Data set four is in the same situation of data set three which is only parts of the post is 

captured. The only difference is that less than 1/2 of the post is captured as shown in 

Figure 5.53.  

 

Figure 5.53 Pre-processed input of Data Set Four 

Even though, the post cluster can still be extracted this demonstrates the suitability of 

the proposed method. The post cluster extracted is shown in Figure5.54 and the final 

result is shown in Figure 5.55. The position of post is (0.6472, 1.3168, -0.0442). The 

position of trunk is (-0.3620, 1.8246,-0.3020). The selected part of cordon is from -0.6 

of x axis to -0.4 of x axis and the position is (-0.5140, 1.7745, 0.0568). 
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Figure 5.54 The Post Cluster of Data Set Four 

 

 

a. Object Identification of Data Set Four in the Pre-processed Input 

Cordon 

Trunk 

Post 
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b. Object Identification of Data Set Three in the Original Input 

Figure 5.55 Final Result of Data Set Four 

5.2.5 Data Set Five 

Data set five represents a very rare situation of the data captured in vineyards. 

Because of the configuration and specification of Kinect sensor and the grapevine 

training system, it is very unlikely to capture one post and two trunks in one scene. 

Under the consideration of using other range sensors and different distribution of the 

grapevines in different vineyards, this situation is considered and tested. As shown in 

Figure 5.56, the pre-processed input is consisting of the solid ground, one post and 

two grapevines. The proposed method is still able to extract the clusters of the two 

trunks captured as shown in Figure 5.57. The position of the trunk on the left is 

(-0.6839, 1.5403, -0.2369). The position of the trunk on the right is (0.8392, 

1.7944,-0.1871).  
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Figure 5.56 Pre-processed Input of Data Set Five 

 

Figure 5.57 Clusters of Two Trunks of Data Set Five 

5.2.6 Data Set Six 

Data set six represents the other rare situation of the data captured in vineyards. The 

data captured contains only one grapevine which is very unlikely to happen due to the 

distribution of posts in vineyards. The proposed method is able to identify the objects 

wanted. The processed input is shown in Figure 5.58 and the final result is shown in 

Figure 5.59. The position of trunk is (-0.6502, 1.6699,-0.4283). The selected part of 

cordon is from -0.5 of x axis to 0 of x axis and the position is (-0.2662, 1.7040, 

Trunk 

(left) 

Trunk 

(right) 
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0.0919). 

 

Figure 5.58 Pre-process Input of Data Set Six 

 

Figure 5.59 Final Result of Data Set Six 

5.3 Discussion 

5.3.1 Limitations 

One limitation is the effectiveness of the post refinement method. In terms of data set 

Trunk 

Cordon 
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five which has one post and two grapevines, the post is not standing nearly vertical 

but with a sharp angle around 25 degrees which is a rare case as shown in Figure 5.60. 

From the skeleton extracted, the key joint can be obtained as shown in Figure 5.61. 

After the main component is extracted, the refinement result is obtained as shown in 

Figure 5.62. It is illustrated that the post refinement operation may produce poor 

results when the post is not put nearly vertical. Cases in such situation still need 

further investigation. 

 

Figure 5.60 Post Cluster of Data Set Five 

 

a. Close View of Post Cluster of Data Set Five 
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b. Post Cluster Skeleton of Data Set Five 

 

c. Key Joint of Post Cluster of Data Set Five 

Figure 5.61 Skeleton Extraction of Post Cluster of Data Set Five 
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a. Main Component of Post Cluster of Data Set Five 

 

b. Refinement Result of Post Identification of Data Set Five 

Figure 5.62 Post Refinement of Data Set Five 

The other limitation is the method is not fully autonomous. Before applying the 

proposed method, two input parameters are required including the cluster thresholds 

of post and trunk. For different vineyards and different range sensors, the threshold 

value, which is a number, is changed and needs to be measured via several data sets. 
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5.3.2 Performance  

5.3.2.1 Time Consumption 

The time required for each step is illustrated in Table 1. The processing speed is not 

fast enough for real time vineyard application.  

Table 1: Time Consumption of Proposed Method 

Unit - Seconds 

Data Set Pre-processing 

 

Normal 

Estimation 

Hough 

Transform 

Density 

Clustering 

Post 

Skeleton 

Trunk 

Skeleton 

One 15.152353 15.152353 175.619200 18.377175 132.828236 57.868905 

Two 2.388825 19.217422 161.625662 19.828163 864.642862 87.690441 

Three 2.328391 16.994442 154.699218 9.757367 632.923932 73.762142 

Four 2.073927 15.503144 111.393806 12.334007 177.969335 231.490486 

Five 2.121518 12.078528 99.577610 12.497426 400.176914 99.986385 

Six 2. 2159742 13.217676 102.440032 10.415174 N/A 167.470457 
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It is shown that the time spending on post and trunk skeleton extraction plays a big 

part of the overall time. Therefore, there is one way of improving the processing 

speed of the proposed method by removing the post refinement and trunk refinement 

steps. All the data sets are tested in such a way and data set two is taken as an example 

to show its result. As shown in Figure 5.63 and Figure 5.64, the result without post 

and trunk refinement can still work for pruning operations. 

 

Figure 5.63 Final Result of Data Set Two with Post and Trunk Refinement 

 

Figure 5.64 Final Result of Data Set Two without Post and Trunk Refinement 

 



99 
 

5.3.2.2 Sensitivity of the Proposed Method 

There are 20 data sets tested and 6 data sets are selected to show the effectiveness and 

robustness of the proposed method. Among the 20 data sets, all situations in vineyards 

are considered and six of them are selected to analyse the performance. In terms of 

post and grapevine dimensions and orientations, posts of data set one and two are 

thicker and the whole bodies are captured; posts of data set three and four are thinner 

and only parts of the bodies are captured; posts of data set three and five are not set up 

straight; there is no post in data set six. In terms of the distance between post and 

grapevine, it is very short and nearly overlapped in data set one; the distance are 

further in data set two and three. According to the experiment results of the selected 6 

data sets, the proposed method is capable of extracting post, trunk, cordon and cane 

under different situation which demonstrates the effectiveness of the method. 

Moreover, the key concept of the method is to divide the input points into several 

clusters using two features synchronously, the features of cylinder and density. The 

only feature related to the state of the Kinect sensor is the feature of density. The 

density of the points extracted is not sensitive to the position change of the Kinect 

regarding to its distance from the grapevine, angle against the grapevine and height 

due to the stable performance of the Kinect sensor. Therefore, the proposed method is 

rubout and effective to commonly expected vineyard variations. 
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Chapter 6 Conclusion and Future Work 

6.1 Conclusion  

To achieve autonomous pruning, it is essential to identify and locate objects related to 

the pruning operation. As no literature has been identified in this specific area in terms 

of feature extraction and location derivation in vineyards, this thesis investigated and 

developed a method to fill this gap. A new method has been presented to 

automatically identify and locate four features using point cloud data from vineyards. 

This method applied point clouds as input to avoid the limitations of current machine 

vision techniques. Besides, it adopted the advantages of cylinder extraction and used 

density as a feature for identification. It also applied a skeleton extraction method to 

improve the accuracy of identification. The new idea of using cylinder extraction and 

density clustering synchronously for cylindrical shape objects identification was 

presented. As shown in the experiment results, this method is able to extract features 

and derive locations of the four objects from the complex scene in vineyards and is 

suitable for all kinds of grapevine shapes in the vineyard at the Waite Campus of the 

University of Adelaide. 

6.2 Future Work 

The Kinect sensor of Microsoft is applied to render the required point cloud data 

which has a fast rendering speed with enough and accurate 3 dimensional point 

extractions. Although the features of the Kinect are highly distinct, it is not suitable 

for most day time operations due to its poor performance under sunlight. As a result, a 

new device is desirable to be researched and developed to capture point clouds as fast 

and accurate as the Kinect and be functional under different illumination conditions.  

Besides, the proposed method is capable of identifying post, trunk, cordon and cane 

and deriving their positions, but the processing speed is not fast enough for real-time 
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application. Algorithms and methods accordingly need to be further researched and 

developed in order to reduce the processing time. One of the possible ways to break 

through might be employing the surface feature detection on the grapevine structure 

so that the data points are recognized directly without many pre-processing steps.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 
 

References 

1. Bartsch, T 2010, 'The cost of cane pruning in a VSP canopy', Australian & New 

Zealand Grapegrower & Winemaker, no. 558, pp. 34-36. 

2. Beder, C & Förstner, W 2006, 'Direct solutions for computing cylinders from 

minimal sets of 3d points', Proceedings of the 9th European conference on 

Computer Vision - Volume Part I, Graz, Austria, pp. 135-146. 

3. Chaperon, T & Goulette, F 2001, 'Extracting Cylinders in Full 3D Data Using a 

Random Sampling Method and the Gaussian Image', Proceedings of the Vision 

Modeling and Visualization Conference 2001, pp. 35-42. 

4. Cao, J, Tagliasacchi, A, Olson, M, Zhang, H & Su, Z 2010, ‘Point Cloud 

Skeletons via Laplacian Based Contraction’, Proceedings of the 2010 Shape 

Modeling International Conference, pp. 187 - 197. 

5. Daszykowski, M, Walczak, B & Massart, DL 2001, 'Looking for natural patterns 

in data: Part 1. Density-based approach', Chemometrics and Intelligent Laboratory 

Systems, vol. 56, no. 2, pp. 83-92. 

6. Ester, M, Kriegel, H-P, Sander, J & Xu, X 1996, 'A density-based algorithm for 

discovering clusters in large spatial databases with noise', Proceedings of the 

Second International Conference on Knowledge Discovery and Data Mining, pp. 

226–231. 

7. Gao, M & Lu, T-F 2006, 'Image Processing and Analysis for Autonomous 

Grapevine Pruning', Proceedings of the 2006 IEEE International Conference on 

Mechatronics and Automation, pp. 922-927. 

8. Golub, GH & Loan, CFv 1996, Matrix Computation, 3rd edn, John Hopkins 

University Press. 



103 
 

9. Gümüş, B, Balaban, MÖ & Ünlüsayın, M 2011, 'Machine Vision Applications to 

Aquatic Foods: A Review', Turkish Journal of Fisheries and Aquatic Sciences, vol. 

11, pp. 171-181. 

10. Hoare, T 2009, 'Pruning -- cutting the cost without compromising the vineyard', 

Australian Viticulture, vol. 13, no. 3, pp. 16-18. 

11. Hoppe, H, DeRose, T, Duchamp, T, McDonald, J & Stuetzle, W 1992, 'Surface 

reconstruction from unorganized points', Proceedings of the 19th annual 

conference on Computer graphics and interactive techniques, pp. 71-78. 

12. Lukács, G, Martin, R & Marshall, D 1998, 'Faithful Least-Squares Fitting of 

Spheres, Cylinders, Cones and Tori for Reliable Segmentation', Proceedings of the 

5th European Conference on Computer Vision, vol. 1, pp. 671-686. 

13. Lutton, E, Maitre, H & Lopez-Krahe, J 1994, 'Contribution to the determination of 

vanishing points using Hough transform', Pattern Analysis and Machine 

Intelligence, IEEE Transactions on, vol. 16, no. 4, pp. 430-438. 

14. McFarlane, NJB, Tisseyre, B, Sinfort, C, Tillett, RD & Sevila, F 1997, 'Image 

Analysis for Pruning of Long Wood Grape Vines', Journal of Agricultural 

Engineering Research, vol. 66, no. 2, pp. 111-119. 

15. Rabbani, T & Heuvel, FVD 2005, 'Efficient Hough transform for automatic 

detection of cylinders in point clouds', Proceedings of the ISPRS Workshop Laser 

scanning, pp. 60-65. 

16. Schnabel, R, Wessel, R, Wahl, R & Klein, R 2006, 'Shape Recognition in 3D 

Point-Clouds', In proceedings of The 16-th International Conference in Central 

Europe on Computer Graphics, Visualization and Computer Vision. 

17. Su, Y-T & Bethel, J 2010, 'Detection and Robust Estimation of Cylidner Features 



104 
 

in Point Clouds', ASPRS Conference. 

18. Josep Miquel Biosca & José Luis Lerma 2008, ' Unsupervised robust planar 

segmentation of terrestrial laser scanner point clouds based on fuzzy clustering 

methods ', 'ISPRS Journal of Photogrammetry and Remote Sensing', vol.63, no.1, 

pp.84–98. 

19. Sergey Tyrin & Itamar Barkai 2009, ' Automatic Grape Clusters Detection in 

Vineyard Images'，Final Project of Computer Science, Ben Gurion University of 

the Negev. 

20. Tim Braun, Heribert Koch, Oliver Strub, Gregor Zolynski & Karsten Berns 2010, ' 

Improving Pesticide Spray Application in Vineyards by Automated Analysis of the 

Foliage Distribution Pattern in the Leaf Wall ', CVT 2010 - March 16-18, 

Kaiserslautern, Germany. 

21. Christopher Weber, Stefanie Hahmann & Hans Hagen 2010, 'Sharp Feature 

Detection in Point Clouds', In Proceedings of the 2010 Shape Modeling 

International Conference (SMI '10), IEEE Computer Society, Washington, DC, 

USA, pp.175-186. 

22. Park, MK, Lee, SJ & Lee, KH 2012, 'Multi-scale Tensor Voting for Feature 

Extraction from Unstructured Point Clouds', Graphical Models, vol. 74, no. 4, pp. 

197-208. 

23. Holies, RC & Fischler, MA 1981, 'A RANSAC-based Approach to Model Fitting 

and its Application to Finding Cylinders in Range Data', Proceedings of the 7th 

international joint conference on Artificial intelligence, Vancouver, BC, Canada, 

vol. 2, pp. 637-643. 

24. Lozano-Perez, T, Grimson, W & White, S 1987, 'Finding cylinders in range data', 

Robotics and Automation. Proceedings. 1987 IEEE International Conference on, 



105 
 

vol. 4, pp. 202-207. 

25. Gorte, B 2006, 'Skeletonization of Laser-Scanned Trees in the 3D Raster Domain 

Innovations in 3D Geo Information Systems', in A Abdul-Rahman, S Zlatanova & 

V Coors (eds), Springer Berlin Heidelberg, pp. 371-380. 

26. Gorte, B & Pfeifer, N 2004, 'Structuring Laser-scanned Trees using 3d 

Mathematical Morphology', International Archives of Photogrammetry and 

Remote Sensing, vol. 35, pp. 929–933. 

27. Pfeifer, N, Gorte, B & Winterhalder, D 2004, 'Automatic Reconstruction of Single 

Trees from Terrestrial Laser Scanner Data', Proceedings of 20th ISPRS Congress, 

pp. 114-119. 

28. Bucksch, A & Lindenbergh, R 2008, 'CAMPINO — A skeletonization method for 

point cloud processing', SPRS Journal of Photogrammetry and Remote Sensing, 

vol. 63, no. 1, pp. 115-127. 

29. Bucksch, A, Lindenbergh, RC & Menenti, M 2009, 'SkelTre - Fast Skeletonisation 

for Imperfect Point Cloud Data of Botanic Trees', Eurographics Workshop on 3D 

Object Retrieval (3DOR’09). 

30. Livny, Y, Yan, F, Olson, M, Chen, B, Zhang, H & El-Sana, J 2010, 'Automatic 

reconstruction of tree skeletal structures from point clouds', ACM Trans Graph, 

vol. 29, no. 6, pp. 1-8. 

31. Linda Shapiro &George Stockman 2001, 'Computer Vision', Prentice-Hall Inc.  

32. Augusto Sarti & Stefano Tubaro 2002, 'Detection and Characterisation of Planar 

Fractures using a 3D Hough Transform', Signal Processing, vol.82, no.9, pp. 

1269–1282. 

 


	TITLE: Identification and Location Derivation of Grapevine Features through Point Clouds
	Contents
	Declarations
	Acknowledgement
	Publications
	Abstract
	List of Figures
	List of Tables

	Chapter 1 Introduction
	Chapter 2 Literature Review
	Chapter 3 Segmentation
	Chapter 4 Object Identification and Location Derivation
	Chapter 5 Experimental Work
	Chapter 6 Conclusion and Future Work
	References

