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Abstract

The use of state space techniques to track targets using measurements from multiple
sensors is considered. In particular, the operation of the asynchronous fused Kalman
filter is investigated and evaluated, using real data collected from a collocated tracking
radar and optical tracking system. An analysis of the effect of additional sensors on the
frlter's sensitivity to model mismatch is carried out.

The performance of the tracking filter is unacceptable in multi-target and/or cluttered
environments. This poor performance is attributed to the filter treating all measurements

as if they originated from the target of interest. This is often not the case in real en-

vironments; therefore some form of data association is required. Two algorithms are

developed to overcome this inadequacy, the multi-sensor Probabilistic Multi-Hypothesis
Tracking (msPMHT) algorithm and the multi-sensor Probabilistic Least Squares tacking
(msPLST) algorithm. Both these algorithms estimate the measurement to target assign-
ments and the target states simultaneously, the msPMHT using maximum likelihood
techniques and the msPLST utilising least squares.

Similarities and differences between the linear Gaussian msPMHT and the msPLST
algorithms are discussed. The characteristics and performance of both algorithms are

compared using simulated and real data.
A general msPMHT algorithm is introduced with multiple measurement models for

each physical sensor. Measurement to sensor assignments, associating individual measure-
ments with selected sensor models, are estimated along with the measurement to target
assignments and target states. This allows the algorithm to adapt to varying sensor
parameters by changing sensor models.
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