Probabilistic Association and Fusion for Multi-sensor Tracking Applications

MARK L KRIEG

Thesis submitted for the degree of

Doctor of Philosophy

Department of Electrical and Electronic Engineering
Faculty of Engineering
The University of Adelaide
Adelaide, South Australia

January 98

Contents

1	Intr	oducti	on					6.5													1
	1.1	Motiva	tion				• •	· ·	0 38			e ::				5 3.	•00	· 0		3.00	2
	1.2	Overvi	ew of Sensor	Fusion .				ē.		2							*:				3
	1.3	Thesis	Outline and	Contribut	ions .	• •	• •			•	• •		•		• •	ŀ	•)	• 3		•	6
2	Bac	kgroun	d																		11
	2.1	Fusion	of Multi-sen	sor Track	Informa	tio	n "	945					¥0					· ·			11
		2.1.1	Track Level	Fusion .				3900 -	< ×		* 3 * 3		. •					× 2		1500	12
		2.1.2	Measuremen	ıt Level Fı	ision .										98. 9			• 10		900	12
		2.1.3	Dissimilar S																		
		2.1.4	Asynchrono																		
	2.2	Data A	Association																		
		2.2.1	Nearest Nei	ghbour Da	ta Asso	cia	tior	ı,		•6			E •8) .					200	14
		2.2.2	Optimal Ba																		15
		2.2.3	Probabilisti	c Data Ass	sociatio	n.												· .			15
		2.2.4	Joint Proba																		16
		2.2.5	The Track S																		17
		2.2.6	Multiple Hy	pothesis T	Tracking					•6		œ 1.	e •	2.0	•8 9		. *:	e•		0.00	18
		2.2.7	Maximum I	ikelihood								. 5									18
		2.2.8	Probabilisti	c Multi-Hy	pothesi	s T	rac	kin	g (PI	ИH	T			8 8			9			19
		2.2.9	Assignment																		
		2.2.10	Other Appr																		
3	Asv	nchron	ous Fused	Kalman I	Filter																25
	3.1		n Filter																		25
	3.2		ronous Fuse																		
	3.3		thm Evaluati																		
		3.3.1	Performanc																		
		3.3.2	Simulated I																		
		3.3.3	Real Data																		
4	Sen	sitivity	to Model	Errors in	Fused	Тъ	e e e	-	c												43
	4.1		s of Model N																		
	4.2		mance measu																		
	4.3		Models																		
	4.4		etical Track l																		
	4.5		dology																		
	4.6		Gology				* >)(#C 3		*		• 6	. ¥	•	* 0				er s	•	40
	T.U	LLCOULD																			4 /

ii CONTENTS

		4.6.1	Process Noise Mismatch										47
		4.6.2	Measurement Noise Mismatch										49
	4.7	Summa	ary of Sensitivity Analysis	• •	0.00	• •			•	9*	٠	٠	56
5	Mul	lti-Sens	sor Multi-target Problem Formulation										57
	5.1	Proble	m Definition					•			*0		57
	5.2	Observ	er Structure						õ	7		÷	58
	5.3		onised Sensors										60
		5.3.1	Models										62
	5.4	Asynch	nronous Sensors										64
	5.5	_	l Problem Definition										65
	0.0	5.5.1	General Observer Structure										66
		5.5.2	General Models										67
_		~											•
6			sor PMHT										69
	6.1		rer Likelihood										69
	6.2		pment of the msPMHT Algorithm										73
		6.2.1	E-Step		×.		g 1 <u>e</u>		•		•	*	73
		6.2.2	M-Step										76
	6.3	Linear	Gaussian msPMHT in Iterative Form					٠	•	•	•	ĺ÷	80
	6.4	Asyncl	ronous Sensors							•		4	83
	6.5	Genera	al msPMHT				6 3			0.00			84
		6.5.1	General Observer Likelihood Structure				e >*			/(u)			85
		6.5.2	General msPMHT Algorithm Development										86
		6.5.3	Linear Gaussian General msPMHT in Iterative	Forr	n				•	•	•		90
7	Mu	lti-Son	sor PLST										93
•	7.1		Squares Estimation for Mixed Models										
	$7.1 \\ 7.2$		lation of the Cost Function										
	1.4		iation of the Cost Punction				0.00						
													99
	7.3	Develo	pment of the msPLST Algorithm		•			•					
		Develo	pment of the msPLST Algorithm					•	٠	٠	•	•	99
	7.3	Develor 7.3.1 7.3.2	pment of the msPLST Algorithm	• •	•	 		**************************************	•	٠	•	•	99
	7.3 7.4	Develor 7.3.1 7.3.2 msPLS	opment of the msPLST Algorithm Target Assignment Weights Target State Sequences Tin Iterative Form		•	• •		5 (4) 4 (4)	•			•	99 100 101
	7.3 7.4 7.5	7.3.1 7.3.2 msPLS Asynch	pment of the msPLST Algorithm Target Assignment Weights Target State Sequences Tin Iterative Form Target Sequences					*	•	*			99 100 101 101
	7.3 7.4	7.3.1 7.3.2 msPLS Asynch	opment of the msPLST Algorithm Target Assignment Weights Target State Sequences Tin Iterative Form					*	•	*			99 100 101 101
8	7.3 7.4 7.5 7.6	Develor 7.3.1 7.3.2 msPLS Asynch Multip	pment of the msPLST Algorithm Target Assignment Weights Target State Sequences Tin Iterative Form Target Sequences					*	•	*			99 100 101 101
8	7.3 7.4 7.5 7.6	Develor 7.3.1 7.3.2 msPLS Asynch Multip	Target Assignment Weights Target State Sequences Tin Iterative Form Taronous Sensors Ole Sensor Models Tand Comparison of Algorithms					5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	* *	**			99 100 101 101 103 105
8	7.3 7.4 7.5 7.6 Eva	Develor 7.3.1 7.3.2 msPLS Asynch Multip	Target Assignment Weights Target State Sequences Tin Iterative Form Thronous Sensors Dele Sensor Models Tand Comparison of Algorithms Target State Sequences Target Assignment Weights Tar						* * * * * * * * * * * * * * * * * * * *		* * * *		99 100 101 101 103 105
8	7.3 7.4 7.5 7.6 Eva	Develor 7.3.1 7.3.2 msPLS Asynch Multip Multip Compa	pment of the msPLST Algorithm Target Assignment Weights Target State Sequences Tin Iterative Form Paronous Sensors Die Sensor Models Tand Comparison of Algorithms Parison of Algorithm Structures Log Likelihood and Cost Functions				医多种 医多种 医多种		* * * * * * * * * * * * * * * * * * * *			**	99 100 101 103 105 105
8	7.3 7.4 7.5 7.6 Eva	Develor 7.3.1 7.3.2 msPLS Asynch Multipuluation Compa 8.1.1 8.1.2	Target Assignment Weights Target State Sequences Tin Iterative Form Tronous Sensors De Sensor Models Tand Comparison of Algorithms Tarison of Algorithm Structures Log Likelihood and Cost Functions Target Assignments										99 100 101 101 103 105 106 108
8	7.3 7.4 7.5 7.6 Eva 8.1	Develor 7.3.1 7.3.2 msPLS Asynch Multipulation Compa 8.1.1 8.1.2 8.1.3	Target Assignment Weights Target State Sequences Tin Iterative Form Thronous Sensors Die Sensor Models Tand Comparison of Algorithms Tarison of Algorithm Structures Log Likelihood and Cost Functions Target Assignments Track Error Covariance										99 100 101 103 105 106 106 110
8	7.3 7.4 7.5 7.6 Eva 8.1	Develor 7.3.1 7.3.2 msPLS Asynch Multip Compa 8.1.1 8.1.2 8.1.3 Algori	Target Assignment Weights Target State Sequences Tin Iterative Form Tronous Sensors De Sensor Models Tand Comparison of Algorithms Tarison of Algorithm Structures Log Likelihood and Cost Functions Target Assignments Track Error Covariance The Initialisation				医多种 医多种 医多种 医多种 医多种						99 100 101 101 103 105 106 108 110
8	7.3 7.4 7.5 7.6 Eva 8.1 8.2 8.3	Develor 7.3.1 7.3.2 msPLS Asynch Multipulation Compa 8.1.1 8.1.2 8.1.3 Algori Compa	Target Assignment Weights Target State Sequences Tin Iterative Form Thronous Sensors The American Models Tand Comparison of Algorithms Thriston of Algorithms Target Assignments Target Assignments Track Error Covariance The Initialisation Target Complexity				医多种 医多种 医多种 医多种 医多种						99 100 101 101 103 105 106 108 110 112
8	7.3 7.4 7.5 7.6 Eva 8.1	Develor 7.3.1 7.3.2 msPLS Asynch Multipuluation Compa 8.1.1 8.1.2 8.1.3 Algori Compa Evaluation Evaluation Compa	Target Assignment Weights Target State Sequences Tin Iterative Form Toronous Sensors De Sensor Models Tand Comparison of Algorithms Target Assignments Target Assignments Target Assignments Track Error Covariance The Initialisation The Initialisation Toronous Sensors Target Assignments Track Error Covariance The Initialisation The Init				经货币 医甲状腺 医甲状腺 医甲状腺						99 100 101 103 105 105 106 110 112 114 115
8	7.3 7.4 7.5 7.6 Eva 8.1 8.2 8.3	Develor 7.3.1 7.3.2 msPLS Asynch Multipulation Compa 8.1.1 8.1.2 8.1.3 Algori Compa Evalua 8.4.1	Target Assignment Weights Target State Sequences Tin Iterative Form Thronous Sensors The And Comparison of Algorithms Target Assignments Target Assignments Target Assignments Track Error Covariance The Initialisation Thronous Simulated Data Crossing Targets with Similar Sensors										99 100 101 101 103 105 106 108 110 112 114 115
8	7.3 7.4 7.5 7.6 Eva 8.1 8.2 8.3	Develor 7.3.1 7.3.2 msPLS Asynch Multipulation Compa 8.1.1 8.1.2 8.1.3 Algori Compa Evalua 8.4.1 8.4.2	Target Assignment Weights Target State Sequences Target State Form Toronous Sensors De Sensor Models Target State Sequences Toronous Sensors De Sensor Models Target Sensor Models Target Assignments Target Assignments Track Error Covariance The Initialisation Toronous Sensors Target Sensor Models Track Error Covariance The Initialisation Toronous Sensors Toronous Sensors Target Assignments Track Error Covariance The Initialisation Toronous Sensors Toronous Sensors Target Sensors Toronous Sensors Target Sensors Target Sensors Toronous Sensors Targets With Dissimilar Sensors				医多种性 医多种性 医甲状腺 医牙髓性						99 100 101 101 103 105 106 110 112 114 115 115
8	7.3 7.4 7.5 7.6 Eva 8.1 8.2 8.3 8.4	Develor 7.3.1 7.3.2 msPLS Asynch Multipuluation Compa 8.1.1 8.1.2 8.1.3 Algori Compa Evalua 8.4.1 8.4.2 8.4.3	Target Assignment Weights Target State Sequences Tin Iterative Form Thronous Sensors The American of Algorithms Target Assignment Structures Tog Likelihood and Cost Functions Target Assignments Track Error Covariance The Initialisation Thronous Simulated Data Crossing Targets with Similar Sensors Torsers Targets With Dissimilar Sensors Torsers Targets with Dissimilar Sensors				经货币 医甲状腺 医甲状腺 医甲状腺 医甲状腺 医甲状腺 医甲状腺 医甲状腺 医甲状腺						993 100 101 103 105 106 108 110 112 114 115 115 112 123
8	7.3 7.4 7.5 7.6 Eva 8.1 8.2 8.3 8.4	Develor 7.3.1 7.3.2 msPLS Asynch Multipulation Compa 8.1.1 8.1.2 8.1.3 Algori Compa Evalua 8.4.1 8.4.2 8.4.3 Evalua Evalu	Target Assignment Weights Target State Sequences Tin Iterative Form Thronous Sensors The American of Algorithms Target Assignment Structures To Likelihood and Cost Functions Target Assignments Track Error Covariance The Initialisation Thronous Simulated Data Crossing Targets with Similar Sensors Toverging Targets with Dissimilar Sensors				医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性						99 100 101 103 105 106 108 110 114 115 115 123 123
8	7.3 7.4 7.5 7.6 Eva 8.1 8.2 8.3 8.4	Develor 7.3.1 7.3.2 msPLS Asynch Multipulation Compa 8.1.1 8.1.2 8.1.3 Algori Compa Evalua 8.4.1 8.4.2 8.4.3 Evalua Model	Target Assignment Weights Target State Sequences Tin Iterative Form Thronous Sensors The American of Algorithms Target Assignment Structures Tog Likelihood and Cost Functions Target Assignments Track Error Covariance The Initialisation Thronous Simulated Data Crossing Targets with Similar Sensors Torsers Targets With Dissimilar Sensors Torsers Targets with Dissimilar Sensors				医多种性 医多种性 医多种性 医牙髓 医牙髓 医牙髓 医牙髓 医甲状腺 医甲状腺 医甲状腺 医甲状腺 医甲状腺			医多分子的 医多子氏 医多子氏虫虫			993 1000 1011 1033 1053 1064 1106 1112 1144 1155 1153 1263 1323

ii

9	9.1	Summary of the AFKF	$142 \\ 143$
A	Sens	sor Fusion Testbed	145
В	B.1 B.2	man Smoother Derivation State Estimates	152
Bi	bliog	graphy	155

- Water 10

Abstract

The use of state space techniques to track targets using measurements from multiple sensors is considered. In particular, the operation of the asynchronous fused Kalman filter is investigated and evaluated, using real data collected from a collocated tracking radar and optical tracking system. An analysis of the effect of additional sensors on the filter's sensitivity to model mismatch is carried out.

The performance of the tracking filter is unacceptable in multi-target and/or cluttered environments. This poor performance is attributed to the filter treating all measurements as if they originated from the target of interest. This is often not the case in real environments; therefore some form of data association is required. Two algorithms are developed to overcome this inadequacy, the multi-sensor Probabilistic Multi-Hypothesis Tracking (msPMHT) algorithm and the multi-sensor Probabilistic Least Squares Tracking (msPLST) algorithm. Both these algorithms estimate the measurement to target assignments and the target states simultaneously, the msPMHT using maximum likelihood techniques and the msPLST utilising least squares.

Similarities and differences between the linear Gaussian msPMHT and the msPLST algorithms are discussed. The characteristics and performance of both algorithms are compared using simulated and real data.

A general msPMHT algorithm is introduced with multiple measurement models for each physical sensor. Measurement to sensor assignments, associating individual measurements with selected sensor models, are estimated along with the measurement to target assignments and target states. This allows the algorithm to adapt to varying sensor parameters by changing sensor models.

Declaration

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other teritary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Date 23 January 98

Acknowledgements

I wish to thank the following people for their assistance and support during my candidature.

My academic supervisor, Professor Doug Gray of the Electrical and Electronic Engineering Department, University of Adelaide, provided technical guidance and encouraged me to develop sound research skills.

The executive of the Tactical Surveillance Systems Division (formerly Microwave Radar Division) of the Defence Science and Technology Organisation, Australia for the opportunity to pursue this work as part of its research programme. The data collected using the division's hardware and staff provided a significant contribution to this work.

The Cooperative Research Centre for Sensor Signal and Information Processing (CSSIP) for the use of their facilities and the opportunity to meet and converse with various local and international researchers.

Dr Roy Streit, Evangelos Giannopoulos and Tod Luginbuhl of the Naval Undersea Warfare Center, Newport, Rhode Island in the United States of America for the interesting and productive discussions we had through our common interest in PMHT.

My wife, Karen, for her continued encouragement and support.

List of Figures

$1.1 \\ 1.2$	US-JDL data fusion levels	3 5
1.3	Measurement level fusion	5
1.4	Fusing data from two sensors	6
3.1	Kalman filter functional diagram	26
3.2	Examples of simulated target trajectories	29
3.3	AFKF performance over a range of process noise covariances	30
3.4	AFKF performance over a range of additional sensor measurement noise	
	covariances	31
3.5	AFKF performance over a range of update intervals	32
3.6	Track error covariance over a range of measurement time offsets	33
3.7	Timing of offset measurements from sensor 1 and sensor 2	33
3.8	Kalman gains for single and fused sensor trackers	37
3.9	Azimuth tracking error increase due to loss of optical measurements	38
3.10	Azimuth tracking errors in clutter	39
	Tracking in clutter	39
	Azimuth-elevation track from the AFKF with interfering targets	40
3.13	Azimuth tracking error with sensor misalignment	41
4.1	Track error covariance with process noise mismatch	48
4.1 4.2	Track error covariance with process noise mismatch	48 48
	-	_
4.2	FG and MF for mismatch in process noise covariance	48
$4.2 \\ 4.3$	FG and MF for mismatch in process noise covariance	48 50
4.2 4.3 4.4	FG and MF for mismatch in process noise covariance	48 50 50
4.2 4.3 4.4 4.5	FG and MF for mismatch in process noise covariance	48 50 50
4.2 4.3 4.4 4.5	FG and MF for mismatch in process noise covariance	48 50 50 51 53
4.2 4.3 4.4 4.5 4.6	FG and MF for mismatch in process noise covariance	48 50 50 51
4.2 4.3 4.4 4.5 4.6	FG and MF for mismatch in process noise covariance	48 50 50 51 53
4.2 4.3 4.4 4.5 4.6	FG and MF for mismatch in process noise covariance	48 50 50 51 53
4.2 4.3 4.4 4.5 4.6	FG and MF for mismatch in process noise covariance	48 50 50 51 53
4.2 4.3 4.4 4.5 4.6 4.7 4.8	FG and MF for mismatch in process noise covariance	48 50 50 51 53
4.2 4.3 4.4 4.5 4.6 4.7 4.8	FG and MF for mismatch in process noise covariance	48 50 50 51 53 54 55
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	FG and MF for mismatch in process noise covariance	48 50 50 51 53 54
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	FG and MF for mismatch in process noise covariance	48 50 50 51 53 54 55 55
4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	FG and MF for mismatch in process noise covariance	48 50 50 51 53 54 55

6.1	Block diagram of the fixed interval Kalman smoother	
6.2	Block diagram of the iterative linear Gaussian msPMHT algorithm	
6.3	Block diagram of the iterative linear Gaussian general msPMHT algorithm	91
7.1	Fitting points to straight lines	94
7.2	Block diagram of the iterative msPLST algorithm	102
8.1	Target assignment probabilities and weights	
8.2	Example target tracks obtained from simulated measurements $\dots \dots$	
8.3	Example soft target assignments from simulated measurements	
8.4	Track error covariance	111
8.5	Example log likelihood and cost functions	
8.6	Target track statistics for crossing targets using similar sensors	116
8.7	Measurement to target assignments of target 1 and sensor 1 for crossing targets using similar sensors	116
8.8	Measurement to target assignments of target 1 and sensor 2 for crossing	
	targets using similar sensors	116
8.9	Measurement probabilities for crossing targets using similar sensors	
8.10	Target track statistics for close crossing targets using similar sensors	118
8.11	Measurement to target assignments of target 1 and sensor 1 for close cross-	
	ing targets using similar sensors	118
8.12	Measurement to target assignments of target 1 and sensor 2 for close cross-	
	ing targets using similar sensors	
	Measurement probabilities for close crossing targets using similar sensors $$.	
	Target track statistics for crossing targets using dissimilar sensors	120
8.15	Measurement to target assignments of target 1 and sensor 1 for crossing targets using dissimilar sensors	120
8.16	Measurement to target assignments of target 1 and sensor 2 for crossing	120
0.20	targets using dissimilar sensors	120
8.17	Measurement probabilities for crossing targets using dissimilar sensors	
	Target track statistics for close crossing targets using dissimilar sensors	
	Measurement to target assignments of target 1 and sensor 1 for close cross-	
	ing targets using dissimilar sensors	122
8.20	Measurement to target assignments of target 1 and sensor 2 for close cross-	
	ing targets using dissimilar sensors	122
8.21	Target 1 measurement probabilities for close crossing targets using dissim-	
	ilar sensors	
	Target track statistics for diverging targets using dissimilar sensors	124
8.23	Measurement to target assignments of target 1 and sensor 1 for diverging	
	targets using dissimilar sensors	124
8.24	Measurement to target assignments of target 1 and sensor 2 for diverging	
	targets using dissimilar sensors	
	Measurement probabilities for diverging targets using dissimilar sensors	
	Tracks from real crossing targets showing radar measurements	
	Tracks from real crossing targets showing optical measurements	126
8.28	Measurement to target assignments of target 1 and the radar measurements	
0.00	for real crossing targets	127
8.29	Measurement to target assignments of target 1 and the optical measure-	
	ments for real crossing targets	127

8.30	Fixed interval Kalman smoother track from radar and optical measure-
	ments from real crossing targets
8.31	Target tracks from a real target in clutter showing radar measurements 129
8.32	Target tracks from a real target in clutter showing optical measurements . 129
8.33	Measurement to target assignments of target 1 and radar measurements
	for a real target in clutter
8.34	Measurement to target assignments of target 1 and optical measurements
	for a real target in clutter
8.35	Fixed interval Kalman smoother track from radar and optical measure-
	ments from a real target in clutter
8.36	Target tracks with misaligned sensors
	Target tracks under matched conditions
8.38	Target 1 assignments under matched conditions
8.39	Target tracks with $R_{t_i}^{(1)}$ overestimated
8.40	Target 1 assignments with $\mathbf{R}_{t_i}^{(1)}$ overestimated
8.41	Target tracks with both $R_{t_i}^{(1)}$ and $R_{t_i}^{(2)}$ overestimated
8.42	Target 1 assignments with both $R_{t_i}^{(1)}$ and $R_{t_i}^{(2)}$ overestimated
8.43	Target tracks with $R_{t_i}^{(1)}$ underestimated
8.44	Target 1 assignments with $\mathbf{R}_{t_i}^{(1)}$ underestimated
	Target tracks with both $R_{t_i}^{(1)}$ and $R_{t_i}^{(2)}$ underestimated
8.46	Target 1 assignments with both $\mathbf{R}_{t_i}^{(1)}$ and $\mathbf{R}_{t_i}^{(2)}$ underestimated
A.1	Sensor fusion testbed operating at a remote site
A.2	Sensor fusion testbed block diagram

List of Tables

3.1	Track error covariance of a light aircraft
3.2	Track error covariance of a commercial aircraft
3.3	Track error covariance of light aircraft at close range
8.1	Log likelihood and cost function statistics for same data with different
	initialisations
8.2	Log likelihood and cost function statistics for different data ensembles 113
8.3	Average number of iterations at each level of covariance deflation for a
	crossing target example
8.4	Average number of iterations at each level of covariance deflation for a
	diverging target example
8.5	Comparison of total iterations for msPMHT and msPLST