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Abstract

A primary goal in microelectronic systems progress is the achievement of yet higher
levels of functional integration. Today this is being addressed from two different per-
spectives: Firstly, introducing more circuitry onto the chips themselves and; secondly,
packaging the chips in higher performance media.

Wafer-Scale Integration (WSI), whereby the chip assumes the size of a wafer, is
one goal that combines elements from both of these perspectives. A purely advanced
packaging approach is Hybrid Wafer-Scale Integration (HWSI), or silicon on silicon
thin film hybrids. Both of these approaches offer many potential advantages, in terms
of speed, reliability, power consumption, packaging density and cost. The potential
advantages, as well as the disadvantages, are discussed in detail before a review of
current WSI and HWSI projects is presented.

Currently one factor that limits chip size growth are the defects incurred in the
production of any integrated circuit. Defect tolerance provides the means to overcome
this imitation and is particularly important for the achievement of WSI.

A critical point in evaluating approaches to defect tolerance for VLSI, WSI and
Ultra Large Scale Intcgration (ULSI) is the yield model used. A correct yield model
allows the type and amount of the optimal level of defect tolerance to be determined.
A yield model is presented here that takes account of both clustering and the influence
of the reconfigurable interconnect. Two different approaches are presented which
would be used for different modeling applications: yield, and expected number of
connected processors. The latter form has a number of advantages. The model is
applied to a VLSI signal processing chip, and to a generalized chip, to determine the
kind of chip structures that can best benefit from defect tolerance. It is found that
in order to benefit from defect tolerance regular structures covering more than 20%
to 30% of the chip are required. The yield model is also applied in a consideration of
granularity effects on wafcr-scale arrays. As a result of this discussion on granularity
a new metric is suggested for evaluating array element architectures.

Using this model as a basis, a number of alternative approaches to WSI are pre-
sented and evaluated. After a review of existing approaches, during which a suitable
classification system is introduced, a new approach, called the “frame” approach is
introduced. The frame scheme is aimed at the WSI implementation of 2D arrays,
containing reasonably large elements. The design and implementation of WSI and
HWSI examples of the “frame” scheme are presented. Practical lessons learnt about

implementing WSI and HWSI designs are also discussed.



Finally a detailed comparison of different approaches to implementing 2D arrays
in WSI is undertaken. The relative merits of the frame scheme are affirmed in this
section. Examples are presented that demonstrate the relative advantages and disad-
vantages of the various approaches, indicating the important points to be considered

when designing wafer scale arrays.
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