

FOLDING AND CONFORMATIONAL STABILITY OF PORCINE GROWTH HORMONE

A thesis submitted by

Stan Bastiras, B.Sc.(Hons)

to the University of Adelaide, South Australia for the degree of Doctor of Philosophy.

Department of Biochemistry, University of Adelaide, South Australia 5001.

August, 1992.

TABLE OF CONTENTS

SUMMARY

STATEMENT

ACKNOWLEDGEMENTS

PUBLICATIONS AND CONFERENCE PRESENTATIONS

ABBREVIATIONS

CHAPTER 1:	INTRODUCTION	1
1.1	Introduction	1
1.2	Stabilization Energies of Protein Conformation	2
1.2.1	Electrostatic Interactions	3
1.2.2	Hydrogen Bonding	6
1.2.3	Dispersion Forces	8
1.2.4	Disulphide Bonds	10
1.2.5	The Hydrophobic Effect	11
1.2.6	Conformational Entropy	15
1.2.7	How Do These Forces Dictate The Fold?	17
1.3	The Mechanism of Protein Folding	18
1.3.1	The Denatured State	18
1.3.2	Initiation of Folding	20
1.3.3	Hydrophobic Collapse	21
1.3.4	The Final Stages of Folding	27
1.3.5	Summary of Protein Folding	29
1.4	Porcine Growth Hormone: A Suitable Model Protein for	
	Studying Protein Folding and Stability	29
1.4.1	Growth Hormone Structure	29
1.4.2	Folding and Stability of Bovine and Human Growth Hormones	33
1.5	Objectives of This Study	35
CHAPTER 2:	MATERIALS AND METHODS	36
2.1	Materials	36
2.2	Methods	36
2.2.1	Large Scale Bacterial Fermentations	36

2.2.2	Harvesting of Inclusion Bodies	37
2.2.2	Dissolution, Refolding and Oxidation of Inclusion Body GH	37
2.2.3.1	Dissolution and Refolding/Reoxidation Using 6M GuHCl	38
2.2.3.2	Dissolution, Refolding and Oxidation in 3.75M urea, pH 11.5	38
2.2.4	Large Scale Chromatography	39
2.2.5	Monitoring Refolding and Oxidation by Size Exclusion	
	Chromatography	39
2.2.6	Analysis of Purified Recombinant Growth Hormones	40
2.2.6.1	Detection of Deamidated Forms of GH	40
2.2.6.2	Zero and Second-Order Derivative Spectroscopy	40
2.2.6.3	N-terminal Sequence Analysis	41
2.2.6.4	Electrospray Mass Spectrometry	41
2.2.7	Circular Dichroism	41
2.2.8	Fluorescence Spectroscopy	43
2.2.9	Size Exclusion Chromatography for Equilibrium Denaturation	43
2.2.10	Radioreceptor Assays	44
2.2.11	Determination of Conformational Stability	45
2.2.11.1	Sample Preparation and UV Absorbance Measurements	45
2.2.11.2	$\Delta G(H_2O)$ Calculations	46
2.2.12	Detection of Intermediates Assay	47
2.2.13	SDS Polyacrylamide Gel Electrophoresis	47
2.2.14	Construction of the pGH Model	47
CHAPTER 3:	PURIFICATION AND CHARACTERIZATION OF	
	THE RECOMBINANT GROWTH HORMONES	49
3.1	Introduction	49
3.2	Production of Recombinant Porcine Growth Hormone,	
	Porcine Growth Hormone Mutants, Bream Growth Hormone	
	and Human Growth Hormone	51
3.2.1	Fermentation and Inclusion Body Harvesting	51
3.2.2	Dissolution, Refolding and Oxidation of Inclusion Body GH	52
3.3	Characterization of The Purified Growth Hormones	55
3.3.1	SDS Polyacrylamide Gel Electrophoresis	56
3.3.2	UV Absorbance Spectroscopy	57
3.3.3	Fluorescence Spectroscopy	60
3.3.4	Circular Dichroism of pGH	60
3.3.5	High Performance Ion Exchange Chromatography	62
3.3.6	N-terminal Sequence Analysis	62

1

.

3.3.7	Electrospray Mass Spectrometry	62
3.3.8	Radioreceptor Assays	63
3.4	Discussion	65
CHAPTER 4:	EQUILIBRIUM DENATURATION OF RECOMBINANT	(-
21	PORCINE GROWTH HORMONE	67
4.1	Introduction	67
4.2	Results and Discussion	70
4.2.1	UV Absorbance Spectroscopy	70
4.2.2	Fluorescence Spectroscopy	71
4.2.3	Size Exclusion Chromatography	75
4.2.4	Circular Dichroism	78
4.2.5	Second Derivative Spectroscopy	81
4.2.6	Precipitation of The Associated State of pGH	83
4.2.7	Analysis of The Denaturation Curves	84
4.3	Conclusions	86
CHAPTER 5:	THE CONFORMATIONAL STABILITY OF THE GROWTH	0.0
	HORMONES	92
5.1	Introduction	92
5.1.1	The Concept of Conformational Stability	92
5.1.2	Selecting a Technique to Monitor The Unfolding of a Protein	94
5.1.3	Denaturation Curve Analysis	94
5.2	Results and Discussion	97
5.2.1	Assumptions and Standard Conditions	97
5.2.2	Conformational Stability of Wild-Type Porcine Growth Hormone	99
5.2.2.1	Denaturation with Guanidine Hydrochloride	99
5.2.2.2	Denaturation with Urea	100
5.2.2.3	Comparison of the GuHCl and Urea Denaturation of pGH	101
5.2.3	Conformational Stability of Mutant pGHs	103
5.2.3.1	Description of the pGH Mutants	104
5.2.3.2	Analysis of the GuHCl-Induced Denaturation of the Mutant pGHs	108
5.2.3.3	Effects of Mutations on Stability of Mutant pGHs	109
5.2.4	Conformational Stability of Human and Bream Growth Hormones	117
5.3	Conclusions	119

CHAPTER 6:	EFFECT OF A MET124→TRP MUTATION ON THE FOLDING	i
	AND STABILITY OF PORCINE GROWTH HORMONE	121
6.1	Introduction	121
6.2	Results and Discussion	123
6.2.1	UV Absorbance Spectroscopy	123
6.2.2	Fluorescence Spectroscopy	124
6.2.3	Size Exclusion Chromatography of pGH(M8)	127
6.2.4	Near-UV Circular Dichroism	129
6.2.5	Second Derivative Spectroscopy	131
6.2.6	Detection of Intermediate States of pGH(M8)	132
6.3	Discussion and Conclusions	133
CHAPTER 7:	CONCLUDING REMARKS	139

REFERENCES

142

SUMMARY

The large scale production and purification of recombinant-derived porcine growth hormone (pGH) and mutants thereof, bream growth hormone (brGH) and human growth hormone (hGH) was carried out. Each of the protein products were analysed by various physicochemical means, in order to verify their identity and homogeneity.

The equilibrium denaturation of pGH using the chemical denaturant guanidine hydrochloride (GuHCl), was monitored by a variety of spectroscopic and hydrodynamic probes. The denaturation of pGH resulted in absorbance- and fluorescence-detected transitions which were coincident, whereas far-UV circular dichroism- and hydrodynamic radius-detected transitions occured at higher concentrations of GuHCl, indicative of a greater stability to denaturation. Conformations intermediate to the folded and fully unfolded states were found to be stable at equilibrium under partially denaturing conditions. These intermediate forms have the characteristics of *molten-globule* or *compact denatured states;* a compact structure with considerable helix content, yet possessing a tertiary structure similar to that of the fully unfolded state. At concentrations above 10μ M, the intermediate was shown to aggregate, forming a stable associated intermediate. These results suggest that pGH does not follow a simple two-state folding mechanism, but is consistent with the framework model of protein folding.

The conformational stabilities of pGH, ten site-directed mutants of pGH, and wild-type bream and human GH, were determined using GuHCl-induced equilibrium denaturation under a standard set of conditions. Single amino acid changes in the sequence of pGH were shown to have different effects on (*i*) the conformational stability, (*ii*) the cooperativity of the denaturation transition, i.e., m_{GuHCl} and (*iii*) the midpoint of the denaturation transition, i.e., $[GuHCl]_{1/2}$. Bream GH was shown to have a stability similar to that of wild-type pGH whereas human GH, in accordance with previously published values [Brems, D. N., Brown, P. L., and Becker, G. W.

(1990) J. Biol. Chem. 265, 5504-5511], was found to be significantly more stable than pGH and brGH.

One mutant in which a methionine residue was replaced by a tryptophan [pGH(M8)], was found to be significantly more stable than wild-type pGH, due to an increase in both m_{GuHCl} and $[GuHCl]_{1/2}$. The coincidence of the UV-, fluorescenceand hydrodynamic radius-detected equilibrium denaturation curves and the absence of significant amounts of associated forms suggests that pGH(M8) folding/unfolding is more closely approximated by a two-state mechanism than wild-type pGH.

STATEMENT

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of my knowledge, it contains no material that has been previously published or written by another person except where due reference is made in the text.

Cr.

Stan Bastiras

çou

Stan Bastiras NAME:

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

2-1 SIGNATURE:

DATE:

ACKNOWLEDGEMENTS

I wish to thank Professor George E. Rogers for permission to undertake this project in the Department of Biochemistry, University of Adelaide and Dr. John R. Smeaton for allowing me to work on the premises of Bresatec Ltd.

I would like to thank my supervisors, Dr. John C. Wallace and Dr. Julian R. E. Wells for their advice and encouragement during the course of this study. I would also like to thank Dr. Tom Kuruscev for many valuable discussions during the writing of this thesis.

I would like to acknowledge the assistance of Carol Senn who conducted the fermentations and Dr. Allan Robins who provided the clones. I am also grateful to Ela Knapik for her assistance in the production and purification of the various growth hormones. I would like to thank Professor W. H. Sawyer for allowing me to perform the CD measurements in his laboratory. I am also indebted to Dr. Michael Waters and Scott Rowlinson for carrying out the radioreceptor assays, Dr. Margaret Sheil for performing the mass spectrometry, Denise Turner for performing protein sequence analysis and Mark Snoswell for assistance in various computing tasks.

I would also like to thank all of my colleagues at Bresatec Ltd. for Wednesday morning cake sessions; in particular those who went further than the German cake shop down the road. Finally, I would like to thank Rosie, Jamaica and Nicolas for their support and inspiration.

Publications and Conference Presentations Arising from Thesis Research.

Bastiras, S., & Wallace, J. C. (1992). Equilibrium Denaturation of Recombinant Porcine Growth Hormone *Biochemistry 31*, (in press).

Bastiras, S., Sawyer, W. H., Wallace, J. C., & Wells, J. R. E. (1992) Equilibrium Denaturation of Recombinant Porcine Growth Hormone Seventeenth Annual Lorne Conference on Protein Structure and Function, Feb. 1992.

Bastiras, S. (1992)

Mutational Effects on the Conformational Stability and Folding of Porcine Growth Hormone.

Workshop on "Understanding Protein Folding", NOVUM Research Park, Stockholm, August 1992.

ABBREVIATIONS

A _{xxx}	absorbance at xxx nm
AUFS	absorbance units of full scale
bGH	bovine growth hormone
brGH	bream growth hormone
CD	circular dichroism
DTT	dithiothreitol
F _{app}	the apparent fraction of unfolded protein
GH	growth hormone
GuHCl	guanidine hydrochloride
hGH	human growth hormone
HPLC	high performance liquid chromatography
K _a	association constant
λ_{max}	fluorescence emission maximum
pGH	porcine growth hormone
pGH _{wt}	wild type porcine growth hormone
PL	placental lactogen
pRL	prolactin
$\Delta \alpha_{app}$	apparent average difference in degree of exposure to solvent
ΔG_{app}	apparent free energy of unfolding
$\Delta G(\mathrm{H_2O})$	ΔG in the absence of denaturant (conformational stability)
m	measure of the dependence of ΔG on denaturant concentration

- nt
- tion