# Evaluating populations derived from complex crosses involving both bread wheat and durum wheat parentage for partial resistance to crown rot

By

Domenico Deserio

A thesis submitted for the degree of

Master of Agricultural Science

at

The University of Adelaide

Faculty of Sciences

School of Agriculture, Food and Wine

Waite Campus

April 2014



## **Table of Contents**

| Table of Contents                                             | 1  |
|---------------------------------------------------------------|----|
| List of Figures                                               | 3  |
| List of Tables                                                | 4  |
| Abstract                                                      | 5  |
| Declaration                                                   | 6  |
| Acknowledgements                                              | 7  |
| Glossary of Abbreviations                                     | 9  |
| 1 Literature Review                                           | 11 |
| 1.1 Durum wheat                                               | 12 |
| 1.1.1 Origin and domestication of durum wheat                 | 12 |
| 1.1.2 The genetics of durum wheat                             | 13 |
| 1.1.3 Physiology and agronomy of durum wheat                  | 15 |
| 1.1.4 Production                                              | 18 |
| 1.2 Fusarium and wheat diseases                               | 18 |
| 1.2.1 Fusarium: an overview                                   | 19 |
| 1.2.2 Life cycle                                              | 21 |
| 1.2.3 Crown rot                                               | 23 |
| 1.2.4 Environmental factors                                   | 25 |
| 1.2.5 Economic aspects                                        | 28 |
| 1.3 Control of crown rot                                      | 29 |
| 1.3.1 Agronomic approaches                                    | 29 |
| 1.3.2 The use of breeding and biotechnology                   | 31 |
| 1.4 Molecular approaches to understand crown rot              | 34 |
| 1.4.1 Molecular markers and applications                      | 35 |
| 1.4.2 QTL and crown rot: what is known?                       | 38 |
| 1.4.3 Towards improving crown rot partial resistance in durum | 40 |

| 1.5 Rationale and significance                                                         | 41 |
|----------------------------------------------------------------------------------------|----|
| 2 Materials and Methods                                                                | 43 |
| 2.1 Germplasm                                                                          | 44 |
| 2.2 Seed multiplication, glasshouse conditions                                         | 45 |
| 2.3 DNA extraction and SNP assay                                                       | 46 |
| 2.4 Bird-proof enclosure layout and environmental conditions                           | 47 |
| 2.5 Inoculum viability and soil infestation                                            | 49 |
| 2.6 Phenotypic assessment                                                              | 49 |
| 2.7 Infection and viability of <i>Fusarium</i> in the main stem of the plants          | 50 |
| 2.8 Grain yield                                                                        | 51 |
| 2.9 Statistical analysis of phenotypic data                                            | 51 |
| 2.10 Association analysis                                                              | 51 |
| 2.11 SSR marker analysis                                                               | 52 |
| 3 Results                                                                              | 54 |
| 3.1 Soil infestation and inoculum viability                                            | 55 |
| 3.2 Phenotypic assessment of crown rot severity                                        | 56 |
| 3.3 Yield of the lines under investigation                                             | 62 |
| 3.4 Infestation and viability of <i>Fusarium</i> infecting the main stem of the plants | 64 |
| 3.5 Association analysis                                                               | 67 |
| 3.6 SSR marker analysis                                                                | 70 |
| 4. Discussion and conclusion                                                           | 71 |
| 5 References                                                                           | 79 |

## List of Figures

| Figure 1 Production areas that are typically sown to durum                       | 16 |
|----------------------------------------------------------------------------------|----|
| Figure 2 Symptoms of crown rot on durum                                          | 24 |
| Figure 3 Typical MAS of a breeding program for disease resistance                | 34 |
| Figure 4 Pedigree relationship for durum population investigated                 | 45 |
| Figure 5 Bird-proof enclosure layout                                             | 48 |
| Figure 6 Crown rot assessment scale                                              | 50 |
| Figure 7 Viability of <i>Fusarium</i> in the soil                                | 55 |
| Figure 8 Molecular analysis of <i>Fusarium</i> in the soil                       | 56 |
| Figure 9 Phenotypic assessment of CR severity                                    | 60 |
| Figure 10 'Yield X CR score' scatter plots                                       | 64 |
| Figure 11 Viability of <i>Fusarium</i> infecting the main stem                   | 65 |
| Figure 12 Molecular analysis of <i>Fusarium</i> isolated infecting the main stem | 66 |
| Figure 13 GenomeStudio charts                                                    | 67 |

### List of Tables

| Table 1 Example of diseases caused by Fusarium species                          | 20 |
|---------------------------------------------------------------------------------|----|
| Table 2 Optimum climate parameters for F. graminearum, F. pseudograminearum     |    |
| and F. culmorum collected in Australia                                          | 26 |
| Table 3 Partially resistant lines identified across all the populations studied | 61 |
| Table 4 Yield losses between NI and I treatments                                | 62 |
| Table 5 Association analysis across all the families                            | 69 |
| Table 6 Published QTL for partial resistance to CR                              | 70 |

#### Abstract

Crown rot in durum, caused by Fusarium pseudograminearum and Fusarium culmorum, can reduce yields up to 90% in seasons characterised by limited spring rainfall. To decrease this potential loss, breeding of partially resistant cultivars could complement agronomic approaches. However, the limited variation in durum has meant that development of partially resistant lines is still a major objective to overcome. The aim of this study was to evaluate, through genotypic and phenotypic-based approaches, durum lines with partial resistance to crown rot. The germplasm under study consisted of 252 durum lines obtained by crossing durum parents with partially resistant bread wheat varieties. Phenotypic assessment of the symptoms, accomplished by visual assessment of the fungal necrosis of the stems, led to the identification of 120 partially resistant lines. Genotypic assessment, performed through a SNP array, identified associations between marker genotype and crown rot severity for the family originating from the parents EGA Bellaroi 38a and Sumai 3. Moreover, the frequency of QTL for crown rot partial resistance already published was investigated in the populations under study through the multiplex ready PCR technique. These findings confirm that bread wheat varieties can be exploited to reduce crown rot severity in durum.

#### Declaration

The presented thesis does not contain any material already accepted for the award of any other degree or diploma in any University or tertiary institution. To the best of my knowledge and belief, this work does not contain material already published, excepted for everything that is cited.

I give consent to this copy of the thesis when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the copyright Act 1968.

The author acknowledges that copyright of the published works contained within this thesis resides with the copyright holder(s) of those works.

Domenico Deserio

December 2013

#### Acknowledgements

At the end of this challenging journey, I would like to thank my principal supervisor, Dr Jason A. Able, for his precious advice, practical and moral support. Moreover, I wish to acknowledge the meticulous and patient supervision of Professor Diane Mather, who has helped me approaching the genotypic analysis.

I would like to thank also the University of Adelaide, the School of Agriculture, Food and Wine and the Australian Centre for Plant Functional Genomics, especially Professor Peter Langridge for the opportunity to study in Australia. Furthermore, I wish to acknowledge the significant technical support of the Prof. Mather's 'Marker Lab' staff (Elysia Vassos, Rebecca Fox, Genet Mekuria, Greg Lott, Shashi Goonetilleke and Kelvin Khoo). Additionally, I would like to express my gratitude to all the members of the 'Able Lab' and to A/Professor Amanda Able.

The present work has been possible thanks to the help of the seed provider Dr Gururaj Kadkol (New South Wales Department of Primary Industry), the advice of A/Professor Hugh Wallwork and staff (South Australian Research and Development Institute), the suggestions of Professor Eileen Scott and the supply of biological material by Dr Cassandra Malligan (Leslie Research Centre, Toowoomba, Queensland).

As a scholarship recipient, my gratitude goes to all the people and institutions that allowed this experience. Particularly, I thank the Apulia Region for the scholarship 'Ritorno al Futuro – Sud Australia', Dr Nicola Sasanelli for support, help and welcome to Australia. Moreover, I express my gratitude to Dr Angelo Visconti and Dr Antonio Moretti (Institute of Science of Food Production,

7

CNR, Bari) for the opportunity and scientific support. Finally, a huge and warm thank you to Dr Federico Baruzzi, Dr Leonardo Caputo, Dr Maria Morea and (last but not least!) Dr Laura Quintieri, for their regular support despite the distance during my time in Australia, and since the very beginning of my scientific experience which started 10 years ago.

This achievement would not have been possible to reach without the support that my parents gave me from the other side of the world. I'm also grateful to my brother and his family, my grandmother, my uncles and cousins, and all of my friends back home to whom I have felt close to during these years. Thank you to all my new friends in Australia, all the people that lived with me during this deep experience, sharing the precious value of friendship far away from home.

Above all, this is for you, N.

# **Glossary of Abbreviations**

| Abbreviation | Full term                                  |
|--------------|--------------------------------------------|
| AGRF         | Australian Genome Research Facility        |
| ANOVA        | Analysis of variance                       |
| ASOs         | Allele-specific oligonucleotides           |
| AUD          | Australian Dollars                         |
| cDNA         | Complementary deoxyribonucleic acid        |
| CGIAR        | Consultative Group for International       |
|              | Agricultural Research                      |
| CIMMYT       | International Maize and Wheat              |
|              | Improvement Centre                         |
| CR           | Crown rot                                  |
| DArT         | Diversity arrays technology                |
| DNA          | Deoxyribonucleic acid                      |
| EDTA         | Ethylenediaminetetraacetic acid            |
| EST          | Expressed sequence tags                    |
| FHB          | Fusarium Head Blight                       |
| GxE          | Genotype by environment                    |
| Ι            | Inoculated treatment                       |
| IARCs        | International Agricultural Research Centre |
| ICARDA       | International Centre for Agricultural      |
|              | Research in the Dry Areas                  |
| LOD          | Logarithm of odds                          |
| LSD          | Least significant difference               |
| LSO          | Locus specific oligonucleotide             |
| MAS          | Marker assisted selection                  |
| mRNA         | messenger ribonucleic acid                 |

| Abbreviation | Full term                                |
|--------------|------------------------------------------|
| MRT          | Multiplex Ready Technology               |
| NI           | Not inoculated treatment                 |
| PCNB         | Pentachloronitrobenzene                  |
| PCR          | Polymerase chain reaction                |
| PDA          | Potato Dextrose Agar                     |
| Ph1          | Pairing homoeologous 1                   |
| QTL          | Quantitative trait loci                  |
| R            | Correlation coefficient                  |
| RCF          | Rotation centrifugal force               |
| RFLP         | Restriction fragment length polymorphism |
| S            | Susceptible line                         |
| SARDI        | South Australian Research and            |
|              | Development Institute                    |
| SNP          | Single nucleotide polymorphism           |
| SSR          | Simple sequence repeat                   |