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Abstract

We investigate a previously overlooked bottom quark contribution to the spin-dependent cross section 
for Dark Matter (DM) scattering from the nucleon. While the mechanism is relevant to any supersymmetric 
extension of the Standard Model, for illustrative purposes we explore the consequences within the frame-
work of the Minimal Supersymmetric Standard Model (MSSM). We study two cases, namely those where 
the DM is predominantly Gaugino or Higgsino. In both cases, there is a substantial, viable region in param-
eter space (m

b̃
− mχ � O(100) GeV) in which the bottom contribution becomes important. We show that 

a relatively large contribution from the bottom quark is consistent with constraints from spin-independent 
DM searches, as well as some incidental model dependent constraints.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The existence of non-baryonic Dark Matter (DM) has been established by many astronomi-
cal observations [1,2]. Amongst the many candidates for DM, the so-called Weakly Interacting 
Massive Particles (WIMPs), which would have a mass in the range O(1) GeV–O(1) TeV, are 
one of the most attractive. These particles would only interact with Standard Model (SM) 
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particles through weak interactions (and gravity), in order to yield a DM relic density consis-
tent with measurement �DMh2 = 0.1199 ± 0.0027 [3].

Direct detection of DM relies on observing the recoil energy after scattering from normal 
matter through weak interactions. Several DM direct detection experiments have claimed a pos-
sible excess, namely DAMA [4], CoGeNT [5], CRESST [6] and CDMS [7]. On the other hand, 
these results are challenged by the absence of signals at XENON100 [8] and LUX [9], as well as 
CDMSlite [10] in the light DM region. The coherent, spin-independent (SI) interaction between 
a DM particle, generically labelled χ , and a nucleus is proportional to the nucleon number. Be-
cause of the relatively heavy nuclei chosen for most of the above mentioned experiments, both 
the observed excess and stringent exclusion limits are based on SI χ–p scattering.

As for spin-dependent (SD) DM detection [11], in a simple shell model the spin of the nucleus 
is that of a single, unpaired nucleon. As a consequence, the matrix element for SD χ -nucleus 
scattering will be roughly comparable with that for SI χ -nucleon scattering, with no enhancement 
by the nucleon number. As a result, the current DM direct searches place only very loose bounds 
on the SD cross section [12–14].

In the standard calculation of SD DM-nucleon scattering the heavy quark contribution is usu-
ally neglected. That is, only the contributions from �u, �d and �s are included. However, as 
explained in the context of the proton weak charge [15], the usual decoupling of heavy quarks 
through the Appelquist–Carrazone theorem [16] does not apply to quantities influenced by the 
U(1) axial anomaly [17–21]. In that case, rather than being suppressed by inverse powers of the 
heavy quark mass, the suppression is only logarithmic. These logarithmic corrections were stud-
ied in considerable detail by Bass et al. in Refs. [15,22,23], at both leading and next-to-leading 
order. As we shall explain here, there are interesting scenarios of supersymmetry (SUSY), gen-
erally involving a relatively light sbottom, where the logarithmic radiative correction involving 
the b-quark that is further enhanced by resonant effect may make a significant contribution to SD 
DM-nucleon scattering.

Indeed, SUSY [24,25] is widely believed to provide the most promising explanation for new 
physics beyond SM. In SUSY models with R-parity conservation, the lightest supersymmetric 
particle (LSP) is stable and can become a DM candidate. On the other hand, both the LHC SUSY 
searches [26,27] and naturalness arguments [28,29] suggest that only the third generation super-
symmetric quarks (squarks) can be light. In Ref. [30], it has been argued that an sbottom with a 
mass as light as ∼ O(15) GeV might still be consistent with current searches. In other models, 
such as the simplified model framework [31] and flavored DM models [32,33], the DM can only 
couple to the bottom quark, as motivated by the recent DM indirect signals [34]. Studying the 
bottom quark contribution to the DM-nucleon SD cross section is crucial in models of this type.

In this work, we focus on the Minimal Supersymmetric Standard Model (MSSM) with a rela-
tively light sbottom, showing when and how the bottom contribution becomes important. When 
the DM is Wino, there is no coupling between DM and the Z-boson and only squark mediated 
processes can contribute to χ -nucleon scattering. We investigate the parameter space where the 
sbottom contribution is comparable to, or larger than, the first generation squark contribution. 
When the DM is Higgsino, the first two generation squark mediated processes are greatly sup-
pressed by their small Yukawa couplings. However, the Higgsino can couple to the Z-boson. The 
constructive and destructive interference effects between Z and sbottom (b̃) mediated processes 
are discussed in detail for a number of variations on the structure of the neutralino.

Any sbottom mediated process that contributes to the SD scattering cross section can also 
contribute to SI scattering. We consider the stringent LUX constraint on SI DM detection for 
light sbottom scenarios of interest. A relatively large SD bottom contribution can indeed be 
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Fig. 1. Processes that contribute to the Dark Matter spin dependent cross section for scattering from a nucleon.

found, while maintaining consistency with the LUX constraint. We also consider several model 
dependent constraints from collider searches. We stress that our conclusion has implications 
beyond the MSSM, which is used here purely for purposes of illustration.

This paper is organised as follows. In Sec. 2, we explain the theoretical framework for the 
calculation of the SD DM-nucleon scattering cross section. Sec. 3 discusses the bottom contri-
bution for Wino and Higgsino DM. The corresponding SI detection and LHC constraints on the 
light sbottom scenario are considered in Sec. 4 and Sec. 5. In Sec. 6 we present some concluding 
remarks.

2. Effective interaction for Spin-Dependent DM-nucleon scattering in MSSM

Given a general effective Lagrangian

Leff
SD = dqχ̄γ μγ5χq̄γμγ5q , (1)

the spin-dependent χ -nucleon scattering cross section can be written as

σ
p,n

SD = 12

π
(

mχmp,n

mχ + mp,n

)2|ap,n|2 , (2)

where

ap,n =
∑
q

dq�qp,n . (3)

The factors �qp,n parameterise the corresponding quark spin content of the nucleon:

2sμ�qN =< N |ψ̄qγμγ5ψq |N > , (4)

where sμ is the nucleon spin. The preferred values of the light quark contributions in the proton 
and neutron are:

�
(p)
u = �

(n)
d = 0.84, �

(p)
d = �(n)

u = −0.43,

�
(p)
s = �(n)

s = −0.02 , (5)

where the strange quark contribution is motivated by a recent lattice QCD calculation [35].
In the MSSM at tree level, there are two processes which can contribute to the effective La-

grangian. The corresponding Feynman diagrams are given in Fig. 1. From those processes, we are 
able to calculate the coefficients of the effective Lagrangian from the renormalisable Lagrangian 
below:

L = q̄(aq + bqγ5)χq̃ + cq̄γ μγ 5qZμ + dχ̄γ μγ5χZμ . (6)

The corresponding couplings in the MSSM are written as [36]
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au = i
ZL

ũ

2
(

−g√
2cw

(
1

3
Z11

N sw + Z21
N cw) − YuZ

41
N )

+ i
ZR

ũ

2
(
2
√

2gsw

3cw

Z11
N − YuZ

41
N ) (7)

bu = i
ZL

ũ

2
(

g√
2cw

(
1

3
Z11

N sw + Z21
N cw) − YuZ

41
N )

+ i
ZR

ũ

2
(
2
√

2gsw

3cw

Z11
N + YuZ

41
N ) (8)

ad = i
ZL

d̃

2
(

−g√
2cw

(
1

3
Z11

N sw − Z21
N cw) + YdZ31

N )

+ i
ZR

d̃

2
(
−√

2gsw

3cw

Z11
N + YdZ31

N ) (9)

bd = i
ZL

d̃

2
(

g√
2cw

(
1

3
Z11

N sw − Z21
N cw) + YdZ31

N )

+ i
ZR

d̃

2
(
−√

2gsw

3cw

Z11
N − YdZ31

N ) (10)

c = i

2

g

cw

T3q (11)

d = − i

4

g

cw

((Z41
N )2 − (Z31

N )2) (12)

We consider first the Z boson mediated amplitude in the non-relativistic limit:

MZ
SD = c d χ̄γ μγ5χ

−igμν

Q2 − m2
Z

q̄γ νγ5q

∼ c d
i

m2
Z

(1 +O(m−2
Z ))χ̄γ μγ5χγμγ5q

∼ c d
i

m2
Z

χ̄γ μγ5χγμγ5q , (13)

so that the effective coupling dq in Eq. (1) is:

dq = cd

m2
Z

= g2

4m2
W

T3q((Z41
N )2 − (Z31

N )2). (14)

Next, for the q̃ mediated process we find:

Mq̃

SD = χ̄ (a − bγ5)q
i

(pχ + pq)2 − m2
q̃

q̄(a + bγ5)χ

∼ −i

m2
q̃

− (mχ + mq)2
χ̄ (a − bγ5)q q̄(a + bγ5)χ
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= −i

m2
q̃

− (mχ + mq)2
(a2χ̄q q̄χ − b2χ̄γ5q q̄γ5χ)

� −i

m2
q̃

− (mχ + mq)2
(
a2 + b2

4
χ̄γ μγ5χ q̄γμγ5q) . (15)

In this case the effective coupling in Eq. (1) is:

dq = −1

4

a2 + b2

m2
q̃

− (mχ + mq)2
. (16)

Note that the tree level effective coupling dq is only reliable when mq̃ −mχ is significantly larger 
than mq . Some discussions regarding the precision of the tree level approximation are given in 
Appendix A. And we have also checked that the result calculated from Eq. (16) matches well 
with numerical tool micrOMEGAs for light flavor quark.

3. Light sbottom contribution

For most processes of physical interest the Appelquist–Carrazone theorem tells us that heavy 
quark contributions are suppressed by order 1/m2

Q. However, as explained in the introduction, 
because of the U(1) axial anomaly, the heavy quark contributions to spin-dependent quantities 
are only logarithmically suppressed. The particular case where this has been explored in great 
detail is the neutral weak charge of the proton. Without heavy quarks this is just �u − �d − �s, 
which has been used to infer values of �s. However, for a precise determination one must include 
the radiative corrections involving heavy quark loops which enter at order 1/ lnmQ. For example, 
one finds a LO correction from the b-quark equal to [15]:

�
(p)
b = − 6

23π
α̃b(�

(p)
u + �

(p)
d + �

(p)
s ) ∼ −0.0066 . (17)

We note that Eq. (17) is second order in the strong coupling at the b mass, as is evident in the 
residual 5-flavor factor 6/23 appearing there. However, the regularisation of the triangle diagram 
leads to a logarithm in mb in the numerator which has been used to cancel the logarithm in one 
factor of α̃b . The logarithmic radiative correction �(p)

b is around 2 order of magnitude below 

the �(p)
u . We will show later that with further enhancement from resonant effect the contribution 

from �(p)
b can easily become dominant in the spin-dependent χ -nucleon scattering.

Provided that the difference between the sbottom mass and that of the DM candidate is signif-
icantly larger than the mass of the b-quark, the q̃ propagator in Fig. 1 can be effectively factored 
out, leaving the familiar triangle diagram which involves the U(1) axial anomaly. In this case the 
bottom contribution to the axial charge of the target proton can be taken directly from Eq. (17). 
We shall take the running coupling α̃b = 0.2. As a result, for the Z-mediated process, the contri-
bution of �(p)

b can only change the result by a factor of

(
�

(p)
u − �

(p)
d − �

(p)
s − �

(p)
b

�
(p)
u − �

(p)
d − �

(p)
s

)2 ∼ 1.01 , (18)

which is clearly very small.
On the other hand, the term involving �(p)

b can give a significant contribution to the spin-
dependent χ -nucleon cross section when b̃ is relatively close in mass to the DM candidate, i.e. 
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Fig. 2. Sbottom contribution to the SD scattering cross section for Wino and Higgsino Dark Matter from the proton.

with resonant enhancement. For simplicity we study the cases where the DM particle is either 
pure Wino or pure Higgsino. The corresponding couplings are:

a
(W̃)
b = ig

2
√

2
ZL

b̃
, a

(H̃ )
b = i

2
YbZ

31
N (ZL

b̃
+ ZR

b̃
) (19)

b
(W̃)
b = − ig

2
√

2
ZL

b̃
, b

(H̃ )
b = i

2
YbZ

31
N (ZL

b̃
− ZR

b̃
) (20)

where Yb = g√
2mW cos β

mb . So, the cross section can be written as

σ b̃−W̃
SD = 12

π
(

mχmp

mχ + mp

)2(−
g2(T3bZ

L

b̃
)2

4(m2
b̃
− (mχ + mb)2)

�
(p)
b )2 (21)

σ b̃−H̃
SD = 12

π
(

mχmp

mχ + mp

)2(− 0.5Y 2
b (Z31

N )2

4(m2
b̃
− (mχ + mb)2)

�
(p)
b )2 (22)

where we have assumed the gauge eigenstate limit and only the sbottom mediated process is 
contributing. By fixing mχ at either 10 or 100 GeV and taking ZL

b̃
= 1 and tanβ = 40, Z31

N = 1√
2

for Wino and Higgsino DM, respectively, we can calculate the corresponding cross section as a 
function of m

b̃
. The result is shown in Fig. 2. From Fig. 2 we see that the sbottom can give a very 

large contribution when the mass splitting m
b̃
− mχ is � 100 GeV.

3.1. Comparison with the contribution from the first generation squarks

First, we study the simpler case where the DM is gaugino. In this case there is no coupling 
between the Z boson and DM and only the squark mediated process can contribute to the SD 
interaction. In this subsection, we investigate the extent to which the sbottom should be lighter 
than first generation squark, so that they at least have comparable cross sections. In the following 
we consider the sum of the contributions of all first generation squarks (ũL, ũR , d̃L, d̃R), with 
their masses taken to be degenerate for simplicity.

Assuming that the DM is either pure Wino or Bino, the ratio of the corresponding SD cross 
section for sbottom to the sum of the contributions from all the first generation squarks can be 
calculated as
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Fig. 3. Contours of constant m
b̃

which show where the sbottom and degenerate first generation squarks give the same 
contribution for Wino (red solid line) and Bino (blue dashed line) DM. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

σ b̃−W̃
SD

σ
q̃u,d−H̃

SD

=
(ZL

b̃
)2|�(p)

b |
m2

b̃
− (mχ + mb)2

/
�

(p)
u + �

(p)
d

m2
q̃u,d

− m2
χ

(23)

σ b̃−B̃
SD

σ
q̃u,d−B̃

SD

= (a2 + b2)
b̃1

m2
b̃
− (mχ + mb)2

×

(

∑
ũL,R

(a2 + b2)�
(p)
u + ∑

d̃L,R
(a2 + b2)�

(p)
d

m2
q̃u,d

− m2
χ

)−1 . (24)

The corresponding contours of σ b̃−χ
SD = σ

q̃u,d−χ

SD are shown in Fig. 3. The case of Wino DM is 
more interesting than that of Bino DM because of its larger g2 coupling. In this case, for 1.5 TeV 
first generation squarks and O(100) GeV DM, an sbottom lighter than about 200 GeV gives a 
larger cross section than the first generation squarks. On the other hand, for Bino DM, a much 
lighter sbottom (∼ 110 GeV) is required – too light for the present calculation to be reliable.

3.2. Contribution coherent with that of the Z-boson

When the DM is predominantly Higgsino, the first two generation squark mediated processes 
are greatly suppressed by their small Yukawa couplings. Its couplings to the Z boson and sbottom 
are dependent on the mixing between the two Higgsino states.

Firstly, we briefly discuss the Higgsino mixing in the MSSM. In the basis (B̃, W̃ , H̃ 0
d , H̃ 0

u ), 
the neutralino mass matrix is given by:

MN =

⎛
⎜⎜⎝

M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ 0 −μ

sβsWmZ −sβcWmZ −μ 0

⎞
⎟⎟⎠ (25)

From the mass matrix we conclude that if
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mZ � μ,M1,M2 , (26)

the four neutralino mass eigenstates Ñi will be Bino B̃ dominated, Wino W̃ dominated and 
Higgsino (H̃ 0

u ± H̃ 0
d )/

√
2 dominated, respectively. For example, if we also decouple the Bino 

and Wino from the mass matrix, the component difference between H̃ 0
u and H̃ 0

d , for a given mass 
eigenstate is

�N
H̃ 0

u −H̃ 0
d

∝ m2
Z

Miμ
(27)

For a few TeV gaugino and a few hundred GeV Higgsino, �N
H̃ 0

u−H̃ 0
d

∼ O(10−2). Then, the 
contribution from the Z boson mediated process can be estimated by

σZ
SD = 12

π
(

mχmp

mχ + mp

)2(
∑

q=u,d,s

dq�q(p))2

= 12

π
(

mχmp

mχ + mp

)2(
g2

8m2
W

((Z41
N )2 − (Z31

N )2))2 (28)

(�
(p)
u × 1

2
+ �

(p)
d × (−1

2
) + �

(p)
s × (−1

2
))2 , (29)

which is ∼ 10−6 pb. From Fig. 2, we conclude that this corresponds to m
b̃
∼ 150 GeV for mχ ∼

100 GeV.
To have a closer look at the coherent effects of Z boson and sbottom mediated processes, we 

have chosen the decoupled Wino/Bino limit, with the Higgsino DM mixing:

χ = aH̃d + bH̃u , (30)

where a2 + b2 = 1 and b = 1.01a, as argued previously. This corresponds to a cross section for 
the Z mediated process of order ∼ 3 × 10−6 pb.

In this region, the b̃ mediated process may also give a competitive contribution. As a result, 
the DM will have opposite sign coherent effects for the proton and neutron:

σ
χ−(p,n)

SD = 12

π
(

mχmp

mχ + mp

)2((
g2((Z41

N )2 − (Z31
N )2)

8m2
W

)(T3u�
(p,n)
u

+ T3d�
(p,n)
d + T3s�

(p,n)
s ) − 0.5Y 2

b (Z31
N )2

4(m2
b̃
− (mχ + mb)2)

�
(p,n)
b )2 . (31)

This makes the detailed consequences for SD DM scattering from real nuclei [37] potentially 
very complex.

We show the importance of the b-quark contribution through its coherent effects between Z
mediated and sbottom mediated processes in Fig. 4. There we have marked out the compressed 
spectrum region (�(m

b̃
− mχ) � 20 GeV) where our tree level calculation cannot be considered 

reliable. According to the Eq. (31) with assumed Z41
N = 1.01Z31

N , the first term in the parenthesis 
is positive for proton and negative for neutron, while the second term is always negative because 
�

(p)
b = �

(n)
b < 0. As a result, the interference terms for proton and neutron are constructive 

and destructive, respectively. We find that for the DM mass around O(10–100) GeV an sbottom 
with mass � 300 GeV can make a non-negligible contribution. In some specific regions, the 
corresponding cross section for the Z-mediated process may even be enhanced or reduced by 
several orders of magnitude.
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Fig. 4. Constructive and destructive coherence effects between Z mediated and b̃ mediated processes for mχ = 10 GeV
(left) and mχ = 100 GeV (right), respectively. The vertical arrowed lines at m

b̃
= 30 GeV and m

b̃
= 120 GeV indicate 

the value below which the calculation should not be considered reliable.

4. Spin-independent DM detection constraint from LUX

The same process shown in the right panel of Fig. 1, which can give rise to an enhancement of 
the spin-dependent scattering cross section, can also contribute to spin-independent scattering. 
As a result, the very stringent spin-independent DM search bound from LUX [9] may already 
exclude some of the parameter region found to be of interest here.

We start with the following effective Lagrangian [38–41]:

LSI =
∑
q

(fqmqχ̄χq̄q + g
(1)
q

mχ

χ̄i∂μγ νχOq
μν

+ g
(2)
q

m2
χ

χ̄(i∂μ)(i∂ν)χOq
μν) + fGχ̄χGa

μνG
aμν (32)

where χ is the DM field, mχ its mass and the twist-2 operator:

Oq
μν = 1

2
q̄i(Dμγν + Dνγμ − 1

2
gμν/D)q . (33)

The corresponding spin-independent scattering cross section of DM with a proton can be written 
as

σ
χ−p

SI = 4

π
μ2(fN)2 (34)

where μ = mχmN/(mχ + mN) and

fN

mN

=
∑

q=u,d,s

fqfTq +
∑

q=u,d,s,c,b

3

4
(q(2) + q̄(2))(g(1)

q + g(2)
q )

− 8π

9αs

fTG
fG (35)

∼
∑

q=u,d,s

fqfTq +
∑

q=u,d,s,c,b

3

4
(q(2) + q̄(2))(g(1)

q + g(2)
q )

+ 2

27

∑
Q=c,b,t

fTG
fQ (36)
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The light quark parameters fTq are defined by

fTq mN =< N |mqq̄q|N > , (37)

and fTG
= 1 − ∑

q=u,d,s fTq . Recent lattice simulations give [42–45]:

f
p
u = 0.023, f

p
d = 0.033, f

p
s = 0.026 . (38)

The second moments of the parton distribution functions (PDFs) can be used to evaluate the 
matrix element of Oq

μν :

(pμpν − 1

4
m2

Ngμν)(q(2) + q̄(2)) = mN < N(p)|Oq
μν |N(p) >, (39)

which from the CTEQ PDFs [46] yields

b(2) = 0.012, b̄(2) = 0.012 , (40)

at the Z boson mass scale.
Using a similar technique to that used in calculating the SD effective coefficient, dq , above, 

we can find the corresponding effective coefficient for the spin-independent case. Based on the 
renormalizable Lagrangian Eq. (6), we have

fq = mχ

(m2
q̃

− (mχ + mq)2)2

a2
q + b2

q

8

− 1

mq(m2
q̃

− (mχ + mq)2)

a2
q − b2

q

4
(41)

g(1)
q + g(2)

q = mχ

(m2
q̃

− (mχ + mq)2)2

a2
q + b2

q

2
. (42)

As a result the twist-2 operator, Oq
μν , gives a much larger contribution than fq in most cases. For 

Higgsino DM, where aq �= bq , the second term of fq can easily become dominant. However in 
this case it is negative, so a cancellation between fq and gq may happen in some of the parameter 
regions.

We first consider the pure Wino DM case, with only b̃L mediated scattering. From Eq. (36), 
we have

fN = mp(
3

4
(b(2) + b̄(2))(g

b̃L−W̃
b ) + 2

27
fTG

f
b̃L−W̃
b ) (43)

where

f
b̃L−W̃
b = g2mχ

32

1

(m2
b̃
− m2

χ )2
(44)

g
b̃L−W̃
b = g2mχ

8

1

(m2
b̃
− m2

χ )2
(45)

The tree level calculation for the spin-independent and spin-dependent cross sections is shown 
in Fig. 5. We conclude from the figure that m

b̃
− mχ � 50 GeV is required to evade the spin-

independent bound from LUX for Wino DM. It has to be noted that the pole at m
b̃
= mb + mχ , 

for SI tree level results, will not show up when the full NLO effects are taken into account [47]. 
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Fig. 5. SD and SI scattering cross section for Wino DM from the proton, with mχ = 10 GeV and mχ = 100 GeV, 
respectively.

We have checked that our results fit the numerical results from micrOMEGAs [48,49] quite well, 
outside the pole region.

Next, we discuss the more interesting case where the DM is predominantly Higgsino. As 
discussed above, in this case the relatively large spin dependent cross section from the sbottom 
mediated process can interfere coherently with the Z mediated process, leading to very different 
SD scattering rates for protons and neutrons.

The SI DM-proton effective coupling is

fN = mp(
3

4
(b(2) + b̄(2))(g

b̃1−H̃
b ) + 2

27
fTG

f
b̃1−H̃
b ) (46)

where

f
b̃1−H̃
b = mχ

(m2
b̃
− (mχ + mb)2)2

0.5Y 2
b (Z31

N )2

8

− 1

mb(m
2
b̃
− (mχ + mb)2)

Y 2
b (Z31

N )2ZL

b̃
ZR

b̃

4
(47)

g
b̃1−H̃
b = mχ

(m2
b̃
− (mχ + mb)2)2

0.5Y 2
b (Z31

N )2

2
. (48)

The corresponding tree level calculation for the spin-dependent and spin-independent cross sec-
tions is shown in Fig. 6. From that figure we see that a small component of left-handed sbottom 
is favoured in order to evade the LUX bound. When the left-handed sbottom component is rela-
tively large, a large SD cross section may also be consistent with the LUX experiment if there is 
a cancellation in σSI.

5. Model dependent constraints and a general argument

We have presented a representative study of the potential importance of the bottom quark 
contribution to DM spin-dependent detection within the framework of the MSSM. This particular 
contribution has hitherto been overlooked. However, in a realistic model such as MSSM, there 
are many other incidental constraints. We will briefly outline how these may be evaded, while 
keeping our discussion as general as possible in this section.

LEP placed a very stringent bound on the chargino mass (m
H̃±(W̃±)

> 92.4(91.9) GeV) [50]. 
Because for either Wino and Higgsino DM there is a charged partner (chargino), which has very 
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Fig. 6. SD and SI scattering cross section for different mixing of Higgsino DM from the proton. Left: mχ = 10 GeV, 
ZL

b̃
= 0.01. Right: mχ = 10 GeV, ZL

b̃
= 0.04.

Fig. 7. LHC exclusion bound on sbottom mass versus DM mass. The grey, green and cyan shaded regions correspond 
to the exclusion limits given by LHC searches for sbottom at 8 TeV [51], 13 TeV [51] and searches for mono-jet at 
8 TeV [53], respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

similar mass with the DM, we cannot have Wino and Higgsino DM of mχ � 90 GeV in a typical 
MSSM framework.

As for mχ � 100 GeV, on the other hand, it will be constrained by LHC sbottom searches 
[51,52] and mono-jet search [53], since we usually need a relatively light sbottom to enhance 
the bottom quark spin dependent contribution. The corresponding LHC exclusion bounds and 
spin-dependent χ–p scattering cross section in the m

b̃
–mχ plane are shown in Fig. 7. To gen-

erate this figure we have used Eq. (21) and (22), where only the sbottom mediated process is 
considered. The contours of σχ−p

SD show the condition when the sbottom mediated contribution 
is half the size of Z mediated process for Wino DM and a typical Higgsino DM candidate with 
Z41

N = 1.01Z31
N . This figure suggests that a large portion of parameter space is excluded by the 

LHC sbottom searches.
However, there are several ways to avoid these constraints:

• For mχ � 100 GeV, we can work in a more general framework, where the dark matter does 
not have any charged partners. Its couplings to the Z boson and b̃ may be of the same order; 
e.g. the simplified model framework [31] or flavored dark matter models [32,33].
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Fig. 8. Constructive and destructive interference effects between Z mediated and b̃ mediated processes for Higgsino DM 
with mχ = 300 GeV.

• For mχ � 100 GeV, if the charged Higgsino decays into DM and a relatively long lived 
particle, with lifetime of O(10–100) cm, similar to Ref. [54]. As a result, the reconstructed 
track will not point to the interaction point and would therefore be unlikely to be considered a 
“good” track. In this case, the LEP constraints on charginos can be evaded. The light sbottom 
constraint can also be evaded by tuning appropriate mixing – see e.g. Refs. [30,55].

• For mχ � 100 GeV, if the sbottom is decayed in more complicate modes other than b̃ → bχ , 
the corresponding LHC bound on sbottom mass can be loosened.

• We can also work with heavier DM, e.g. mχ = 300 GeV, for example, as shown in Fig. 8. In 
this case, m

b̃
� 350 GeV is consistent with the LHC searches, while the sbottom mediated 

process can give a significant contribution to spin-dependent scattering.

6. Conclusion

In this work, we have demonstrated the potential importance of the bottom quark contribution 
to the DM spin-dependent cross section due to the axial anomaly and resonant enhancement, 
which has hitherto been overlooked. Even though our calculation was carried out within the 
framework of the MSSM, the general conclusion will be relevant to any models with similar 
particle content, since the only relevant ingredients are χ , b̃ and the Z-boson.

In the MSSM, we calculated the bottom quark contribution to spin-dependent χ–p scatter-
ing. Firstly, we considered Gaugino DM, where there is no coupling between the Z-boson and 
DM. Assuming mχ = 100 GeV and degenerate first generation squarks with a mass of 1.5 TeV, 
we found that an sbottom of mass m

b̃
� 200 GeV can give rise to a larger spin-dependent cross 

section for Wino DM. By contrast, for Bino DM a much lighter sbottom mass (m
b̃
∼ 110 GeV) 

is required to give a competitive cross section. As for Higgsino DM, the first generation squark 
contributions are suppressed by their small Yukawa couplings. However, the Z-boson medi-
ated process does contribute. For a given Higgsino mixing of DM the sbottom mediated process 
may interfere either constructively or destructively with Z-boson mediated processes, with dif-
ferent signs for protons and neutrons. For a typical mixing of Higgsino DM with mass around 
O(10–100) GeV, we find that an sbottom of mass below 300 GeV can have non-negligible ef-
fects.

The squark mediated process that gives rise to an increase in spin-dependent DM scattering 
can also contribute to the spin-independent cross section. Our calculation shows that �(m

b̃
−

mχ) � 50 GeV is required to evade the LUX constraint for Wino DM, while for Higgsino DM, 
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Fig. 9. Bottom quark contribution to the axial current.

either a small component of left-handed sbottom or a large cancellation in σSI is needed. Some 
incidental model dependent constraints from LEP and the LHC are considered as well. Those 
constraints, however, can be evaded in more general theoretical frameworks.

As pointed out earlier, our tree level results may break down as the sbottom and DM masses 
become degenerate (�(m

b̃
− mχ) � 20 GeV). We leave the higher order calculation for this 

small region for future work. Finally, while the calculations for the top quark case will be more 
complicated because there is no clear separation of mass scales for interesting ranges of DM 
mass, there is a clear need to investigate the role of the axial anomaly for that case too.
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Appendix A. Precision of tree level approximation

The heavy quark contributions to the axial charge start at two loop level through the process 
shown in Fig. 9. A detailed calculation of this diagram is given in Refs. [22,23]. In this study, all 
we need to know is the mq̃ dependence of the amplitude. Then we can derive the range of mq̃ for 
which the tree level effective coupling Eq. (16) is justified.

The mq̃ dependence only exists in the triangle loop that is marked by the grey shaded ellipse 
in Fig. 9. The vertex amplitude is


ab
μαβ = a2 + b2

4
(−1)g2

∫
d4q

(2π)4
Tr{ γμγ5

(q + pχ)2 − m2
q̃

·

i

/q − m
(iγα

1

2
λa)

i

/q − m
(iγβ

1

2
λb)

i

/q − m
} , (A.1)

where m, q are the quark mass and momentum in the triangle, pχ is the dark matter four momen-
tum and mq̃ is the squark mass. After introducing Feynman parameter x and the substitution:

lμ = qμ + xpμ
χ , (A.2)

� = x2p2
χ − xp2

χ + m2(1 − x) + xm2
q̃ , (A.3)
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Fig. 10. Left: The m� dependence of the ratio for several given DM masses. Right: In the shaded region, the tree level 
approximation matches the loop level results within required precision.

the vertex amplitude Eq. (A.1) can be simplified to


ab
μαβ ∝ 3! εαβμρ

1∫

0

dx {−2x(pχ)σ

∫
d4l

(2π)4

lρ lσ

(l2 − �)4
− xpρ

χ ·
∫

d4l

(2π)4

l2

(l2 − �)4
− xpρ

χ(x2p2
χ − m2)

∫
d4l

(2π)4

1

(l2 − �)4
. (A.4)

Finally, after integrating out the lμ, we will get a simple mq̃ and pχ dependence of 
ab
μαβ :


loop(mq̃,pχ) =
1∫

0

dx(
3xp

ρ
χ

�
− xp

ρ
χ(x2p2

χ − m2)

�2
) (A.5)

On the other hand, the mq̃ dependence of the tree level effective coupling can be factored out 
as


tree ∝ 1

(m2 − m2
χ )2 − m2

q̃

. (A.6)

So we can define the ratio

Ratio ∝ 
loop/
tree

= ((m2 − m2
χ )2 − m2

q̃ ) · 
loop(mq̃,pχ) . (A.7)

Taking the non-relativistic limit for the DM momentum, i.e. pχ = (mχ, 0, 0, 0), m = mb and 
mq̃ = m� +mχ , we solve the ratio numerically. The results are shown in the left panel of Fig. 10. 
From the figure we find that the ratio tends to a constant in the heavy squark region for given mχ , 
which means the tree level description is accurate. While in the region of small mass splitting, 
the tree level results deviate from the full loop calculation considerably by a amount.

The range of m� that permits the tree level approximation in required precision P can be 
solved by using the inequality

Ratio(m�)/Ratio(m� = 500) > (1 − P) (A.8)

at each given DM mass. In the right panel of Fig. 10, we show the m� region in which the tree 
level approximation matches the loop level result within 20% and 50% precision, respectively. 
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For example, when mχ ∼ 10 GeV, m� � 20 GeV is sufficient to guarantee that the tree level 
approximation is accurate within 20%.
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