Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/100132
Type: Thesis
Title: Structure and geochronology of the Alpine Schist, New Zealand
Author: Haggar, W. P.
Issue Date: 2013
School/Discipline: School of Physical Sciences
Abstract: The Alpine Schist is located on the eastern margin of the Alpine Fault, which accommodates oblique collision between the Pacific and Australian plates in New Zealand. Collision has been active since the Cenozoic and exhumation models predict that surface rocks were buried ~20km in the Pliocene. Despite this, fabrics of Mesozoic age are inferred to be preserved at the surface. In order to test the age of fabric formation, transects were conducted across the Alpine Schist to measure the foliation. Rock samples were collected to date the age of zircon and 40Ar/39Ar age of muscovite in order to constrain the age of metamorphism and fabric formation within the Alpine Schist. The structural data displayed two populations of foliations: a dominant foliation tracking towards the orientation of the Alpine Fault and a minor shallower orientation. The geochronological data highlighted ages for the formation and deposition of the Alpine Schist protolith and metamorphism associated with the Rangitata Orogeny. Muscovite 40Ar/39Ar data analysis yielded Pleistocene closure temperatures of the argon system. The heterogeneous foliation orientation and muscovite age suggested differential strain and fabric formation with the Alpine Schist during Plesitocene uplift along the Alpine Fault. The study of the active Southern Alps orogen and constraining the structural and geochronological features will enable more accurate interpretation of fossil orogens and their relationship with plate tectonics.
Dissertation Note: Thesis (B.Sc.(Hons)) -- University of Adelaide, School of Earth and Environmental Sciences, 2013
Where: New Zealand
Keywords: Honours; Geology; geochronology; structure; Alpine Schist; New Zealand; Southern Alps; zircon; muscovite
Description: This item is only available electronically.
Provenance: This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the author of this thesis and do not wish it to be made publicly available, or you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals
Appears in Collections:School of Physical Sciences

Files in This Item:
File Description SizeFormat 
01frontGeoHon.pdf437.03 kBAdobe PDFView/Open
02wholeGeoHon.pdf5.35 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.