Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/103969
Citations
Scopus Web of ScienceĀ® Altmetric
?
?
Type: Journal article
Title: Simulation of hydraulic fracturing with propane-based fluid using a fracture propagation model coupled with multiphase flow simulation in the Cooper Basin, South Australia
Author: Fei, Y.
Gonzalez, M.
Nguyen, M.
Lei, Z.
Pokalai, K.
Sarkar, S.
Haghighi, M.
Citation: APPEA Journal, 2016; 56(1):415-426
Publisher: CSIRO for Australian Petroleum Production and Exploration Association
Issue Date: 2016
ISSN: 2206-8996
Statement of
Responsibility: 
Y. Fei, M.E. Gonzalez Perdomo, V.Q. Nguyen, Z.Y. Lei, K. Pokalai, S. Sarkar and M. Haghighi
Abstract: In many unconventional reservoirs, gas wells do not perform to their potential when water-based fracturing fluids are used for treatments. The sub-optimal fracture productivity can be attributed to many factors such as effective fracture length loss, low load fluid recovery, flowback time, and water availability. The development of unconventional reservoirs has, therefore, prompted the industry to reconsider waterless fracturing treatments as viable alternatives to water-based fracturing fluids. In this paper, a simulation approach was used by coupling a fracture propagation model with a multiphase flow model. The Toolachee Formation is a tight sand in the Cooper Basin, around 7,200 ft in depth, and has been targeted for gas production. In this study, a 3D hydraulic fracture propagation model was first developed to provide fracture dimensions and conductivity. Then, from an offset well injection fall off test, the model was tuned by using different calibration parameters such as fracture gradient and closure pressure to validate the model. Finally, fracture propagation model outputs were used as the inputs for multiphase flow reservoir simulation. A large number of cases were simulated based on different fraccing fluids and the concept of permeability jail to represent several water-induced damage effects. It was found that LPG was a successful treatment, especially in a reservoir where the authors suspected the presence of permeability jails. The authors also observed that total flowback recovery approached 76% within 60 days in the case of using gelled LPG. Modelling predictions also support the need for high-quality foam, and LPG can be expected to bring long-term productivity gains in normal tight gas relative permeability behaviour.
Keywords: Tight gas; Cooper Basin; LPG fracturing fluid
Rights: Copyright Commonwealth Scientific and Industrial Research Organisation (CSIRO) and third parties
DOI: 10.1071/AJ15030
Published version: http://www.publish.csiro.au/aj/AJ15030
Appears in Collections:Aurora harvest 7
Australian School of Petroleum publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.