Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/105691
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics
Author: Palci, A.
Lee, M.
Hutchinson, M.
Citation: Journal of Anatomy, 2016; 229(6):723-754
Publisher: Wiley-Blackwell
Issue Date: 2016
ISSN: 0021-8782
1469-7580
Statement of
Responsibility: 
Alessandro Palci, Michael S. Y. Lee and Mark N. Hutchinson
Abstract: We compared the head skeleton (skull and lower jaw) of juvenile and adult specimens of five snake species [Anilios (=Ramphotyphlops) bicolor, Cylindrophis ruffus, Aspidites melanocephalus, Acrochordus arafurae, and Notechis scutatus] and two lizard outgroups (Ctenophorus decresii, Varanus gilleni). All major ontogenetic changes observed were documented both qualitatively and quantitatively. Qualitative comparisons were based on high-resolution micro-CT scanning of the specimens, and detailed quantitative analyses were performed using three-dimensional geometric morphometrics. Two sets of landmarks were used, one for accurate representation of the intraspecific transformations of each skull and jaw configuration, and the other for comparison between taxa. Our results document the ontogenetic elaboration of crests and processes for muscle attachment (especially for cervical and adductor muscles); negative allometry in the braincase of all taxa; approximately isometric growth of the snout of all taxa except Varanus and Anilios (positively allometric); and positive allometry in the quadrates of the macrostomatan snakes Aspidites, Acrochordus and Notechis, but also, surprisingly, in the iguanian lizard Ctenophorus. Ontogenetic trajectories from principal component analysis provide evidence for paedomorphosis in Anilios and peramorphosis in Acrochordus. Some primitive (lizard-like) features are described for the first time in the juvenile Cylindrophis. Two distinct developmental trajectories for the achievement of the macrostomatan (large-gaped) condition in adult snakes are documented, driven either by positive allometry of supratemporal and quadrate (in pythons), or of quadrate alone (in sampled caenophidians); this is consistent with hypothesised homoplasy in this adaptive complex. Certain traits (e.g. shape of coronoid process, marginal tooth counts) are more stable throughout postnatal ontogeny than others (e.g. basisphenoid keel), with implications for their reliability as phylogenetic characters.
Keywords: Australian snakes
Squamata
allometry
cranium
ontogeny
osteology
wireframe diagrams
Rights: © 2016 Anatomical Society
DOI: 10.1111/joa.12509
Grant ID: ARC
Published version: http://dx.doi.org/10.1111/joa.12509
Appears in Collections:Aurora harvest 3
Zoology publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.