Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/118236
Type: Thesis
Title: Physical volcanology and geochemistry of the lower Gawler Range Volcanics in the southern Gawler Ranges
Author: Ross, A.
Issue Date: 2015
School/Discipline: School of Physical Sciences
Abstract: The Gawler Range Volcanics are a Silicic Large Igneous Province that has been extensively studied due to the atypical nature of its widespread felsic lava flows. These low viscosity lavas form the upper sequence of the GRV, termed the Upper Gawler Range Volcanics (UGRV). The older sequence or Lower Gawler Range Volcanics (LGRV) are readily distinguished from the UGRV as they appear as numerous discrete volcanic centres, the best exposed of which are at Kokatha and Lake Everard. A much less discussed volcanic area of the LGRV are the Southern Gawler Ranges Area Volcanics (SGRAV), which form a curvilinear belt along the southern margin of the GRV. The SGRAV are dominantly represented by two volcanic units, the Bittali Rhyolite (BR) and Waganny Dacite (WD) which are exposed discontinuously for ~200km E-W. The SGRAV may be divided into a western section of dominantly effusive volcanism, with elevated temperatures and halogen contents comparable to that of the UGRV, and a central-eastern section where explosive volcanism predominates. Petrogenetic modelling suggests that assimilation fractional crystallization (AFC) processes which played a role in the development of the LGRV, were active in the formation of the SGRAV. However, using AFC modelling, the SGRAV can be reconstructed through a dominant fractional crystallization process with late stage crustal assimilation, as opposed to continual crustal assimilation in the other LGRV magma systems.
Dissertation Note: Thesis (B.Sc.(Hons)) -- University of Adelaide, School of Physical Sciences, 2015
Where: Gawler Craton, South Australia
Keywords: Honours; Geology; Lower Gawler Range Volcanics; Bittali Rhyolite; Waganny Dacite; volcanology; geochemistry; SLIP; felsic
Description: This item is only available electronically.
Provenance: This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the author of this thesis and do not wish it to be made publicly available, or you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals
Appears in Collections:School of Physical Sciences

Files in This Item:
File Description SizeFormat 
01frontGeoHon.pdf537.37 kBAdobe PDFView/Open
02wholeGeoHon.pdf4.89 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.