Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/124477
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWeerasekera, C.S.-
dc.contributor.authorGarg, R.-
dc.contributor.authorLatif, Y.-
dc.contributor.authorReid, I.-
dc.contributor.editorJawahar, C.V.-
dc.contributor.editorLi, H.-
dc.contributor.editorMori, G.-
dc.contributor.editorSchindler, K.-
dc.date.issued2019-
dc.identifier.citationLecture Notes in Artificial Intelligence, 2019 / Jawahar, C.V., Li, H., Mori, G., Schindler, K. (ed./s), vol.11365, pp.609-624-
dc.identifier.isbn9783030208721-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/2440/124477-
dc.description.abstractVisual SLAM (Simultaneous Localization and Mapping) methods typically rely on handcrafted visual features or raw RGB values for establishing correspondences between images. These features, while suitable for sparse mapping, often lead to ambiguous matches in texture-less regions when performing dense reconstruction due to the aperture problem. In this work, we explore the use of learned features for the matching task in dense monocular reconstruction. We propose a novel convolutional neural network (CNN) architecture along with a deeply supervised feature learning scheme for pixel-wise regression of visual descriptors from an image which are best suited for dense monocular SLAM. In particular, our learning scheme minimizes a multi-view matching cost-volume loss with respect to the regressed features at multiple stages within the network, for explicitly learning contextual features that are suitable for dense matching between images captured by a moving monocular camera along the epipolar line. We integrate the learned features from our model for depth estimation inside a real-time dense monocular SLAM framework, where photometric error is replaced by our learned descriptor error. Our extensive evaluation on several challenging indoor datasets demonstrate greatly improved accuracy in dense reconstructions of the well celebrated dense SLAM systems like DTAM, without compromising their real-time performance.-
dc.description.statementofresponsibilityChamara Saroj Weerasekera, B, Ravi Garg, Yasir Latif, and Ian Reid-
dc.language.isoen-
dc.publisherSpringer-
dc.relation.ispartofseriesLecture Notes in Computer Science ; 11365-
dc.rights© Springer Nature Switzerland AG 2019-
dc.source.urihttp://dx.doi.org/10.1007/978-3-030-20873-8_39-
dc.subjectMapping; Visual learning; 3D reconstruction; SLAM-
dc.titleLearning deeply supervised good features to match for dense monocular reconstruction-
dc.typeConference paper-
dc.contributor.conferenceAsian Conference on Computer Vision (ACCV) (2 Dec 2018 - 6 Dec 2018 : Perth, Australia)-
dc.identifier.doi10.1007/978-3-030-20873-8_39-
dc.publisher.placeSwitzerland-
dc.relation.granthttp://purl.org/au-research/grants/arc/FL130100102-
dc.relation.granthttp://purl.org/au-research/grants/arc/CE140100016-
pubs.publication-statusPublished-
dc.identifier.orcidGarg, R. [0000-0002-9422-8086]-
dc.identifier.orcidLatif, Y. [0000-0002-2529-5322]-
dc.identifier.orcidReid, I. [0000-0001-7790-6423]-
Appears in Collections:Aurora harvest 8
Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.