Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/130862
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde Mendoza, A.-
dc.contributor.authorPoppe, D.-
dc.contributor.authorBuckberry, S.-
dc.contributor.authorPflueger, J.-
dc.contributor.authorAlbertin, C.B.-
dc.contributor.authorDaish, T.-
dc.contributor.authorBertrand, S.-
dc.contributor.authorde la Calle-Mustienes, E.-
dc.contributor.authorGómez-Skarmeta, J.L.-
dc.contributor.authorNery, J.R.-
dc.contributor.authorEcker, J.R.-
dc.contributor.authorBaer, B.-
dc.contributor.authorRagsdale, C.W.-
dc.contributor.authorGrützner, F.-
dc.contributor.authorEscriva, H.-
dc.contributor.authorVenkatesh, B.-
dc.contributor.authorBogdanovic, O.-
dc.contributor.authorLister, R.-
dc.date.issued2021-
dc.identifier.citationNature Ecology and Evolution, 2021; 5(3):369-378-
dc.identifier.issn2397-334X-
dc.identifier.issn2397-334X-
dc.identifier.urihttp://hdl.handle.net/2440/130862-
dc.descriptionPublished online: 18 January 2021-
dc.description.abstractMammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett syndrome. However, it is unclear whether the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins. To test this, we investigated brain DNA methylation across 12 distantly related animal lineages, revealing that non-CpG methylation is restricted to vertebrates. We discovered that in vertebrates, non-CpG methylation is enriched within a highly conserved set of developmental genes transcriptionally repressed in adult brains, indicating that it demarcates a deeply conserved regulatory program. We also found that the writer of non-CpG methylation, DNMT3A, and the reader, MeCP2, originated at the onset of vertebrates as a result of the ancestral vertebrate whole-genome duplication. Together, we demonstrate how this novel layer of epigenetic information assembled at the root of vertebrates and gained new regulatory roles independent of the ancestral form of the canonical CpG methylation. This suggests that the emergence of non-CpG methylation may have fostered the evolution of sophisticated cognitive abilities found in the vertebrate lineage.-
dc.description.statementofresponsibilityAlex de Mendoza, Daniel Poppe, Sam Buckberry, Jahnvi Pflueger, Caroline B. Albertin, Tasman Daish ... et al.-
dc.language.isoen-
dc.publisherSpringer Nature-
dc.rightsCopyright © 2021, The Author(s), under exclusive licence to Springer Nature Limited-
dc.source.urihttp://dx.doi.org/10.1038/s41559-020-01371-2-
dc.subjectComparative genomics; epigenomics; evolutionary developmental biology; molecular evolution-
dc.titleThe emergence of the brain non-CpG methylation system in vertebrates-
dc.typeJournal article-
dc.identifier.doi10.1038/s41559-020-01371-2-
dc.relation.granthttp://purl.org/au-research/grants/arc/FT160100267-
dc.relation.granthttp://purl.org/au-research/grants/arc/DE140101962-
pubs.publication-statusPublished-
Appears in Collections:Aurora harvest 8
Environment Institute publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.