Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/131072
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Electron-injection-engineering induced phase transition toward stabilized 1T-MoS₂ with extraordinary sodium storage performance
Other Titles: Electron-injection-engineering induced phase transition toward stabilized 1T-MoS(2) with extraordinary sodium storage performance
Author: He, H.
Li, X.
Huang, D.
Luan, J.
Liu, S.
Pang, W.K.
Sun, D.
Tang, Y.
Zhou, W.
He, L.
Zhang, C.
Wang, H.
Guo, Z.
Citation: ACS Nano, 2021; 15(5):8896-8906
Publisher: American Chemical Society
Issue Date: 2021
ISSN: 1936-0851
1936-086X
Statement of
Responsibility: 
Hanna He, Xiaolong Li, Dan Huang, Jinyi Luan, Sailin Liu, Wei Kong Pang ... et al.
Abstract: Phase transition engineering, with the ability to alter the electronic structure and physicochemical properties of materials, has been widely used to achieve the thermodynamically unstable metallic phase MoS2 (1T-MoS2), although the complex operating conditions and low yield of previous strategies make the large-scale fabrication of 1T-MoS2 a big challenge. Herein, we report a facile electron injection strategy for phase transition engineering and fabricate a composite of conductive TiO chemically bonded to 1T-MoS2 nanoflowers (TiO-1T-MoS2 NFs) on a large scale. The underlying mechanism analysis reveals that electron-injection-engineering triggers a reorganization of the Mo 4d orbitals and results in a 100% phase transition of MoS2 from 2H to 1T. In the TiO-1T-MoS2 NFs composite, the 1T-MoS2 demonstrates a higher electronic conductivity, a lower Na+ diffusion barrier, and a more restricted S release than 2H-MoS2. In addition, conductive TiO bonding successfully resolves the stability challenge of the 1T phase. These merits endow TiO-1T-MoS2 NFs electrodes with an excellent rate capability (650/288 mAh g–1 at 50/20 000 mA g–1, respectively) and an outstanding cyclability (501 mAh g–1 at 1000 mA g–1 after 700 cycles) in sodium ion batteries. Such an improvement signifies that this facile and scalable phase-transition engineering combined with a deep mechanism analysis offers an important reference for designing advanced materials for various applications.
Keywords: metallic-phase molybdenum disulfide
phase-transition engineering
rate performance
sulfur release
titanium monoxide chemical bonding
Rights: © 2021 American Chemical Society
DOI: 10.1021/acsnano.1c01518
Grant ID: http://purl.org/au-research/grants/arc/DP210101486
Published version: http://dx.doi.org/10.1021/acsnano.1c01518
Appears in Collections:Aurora harvest 8
Chemistry and Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.