Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/139620
Citations
Scopus Web of ScienceĀ® Altmetric
?
?
Type: Journal article
Title: When push comes to shove - RNA polymerase and DNA-bound protein roadblocks
Author: Hao, N.
Donnelly, A.J.
Dodd, I.B.
Shearwin, K.E.
Citation: Biophysical Reviews, 2023; 15(3):355-366
Publisher: Springer Science and Business Media LLC
Issue Date: 2023
ISSN: 1867-2450
1867-2469
Statement of
Responsibility: 
Nan Hao, Alana J. Donnelly, Ian B. Dodd, Keith E. Shearwin
Abstract: In recent years, transcriptional roadblocking has emerged as a crucial regulatory mechanism in gene expression, whereby other DNA-bound obstacles can block the progression of transcribing RNA polymerase (RNAP), leading to RNAP pausing and ultimately dissociation from the DNA template. In this review, we discuss the mechanisms by which transcriptional roadblocks can impede RNAP progression, as well as how RNAP can overcome these obstacles to continue transcription. We examine different DNA-binding proteins involved in transcriptional roadblocking and their biophysical properties that determine their effectiveness in blocking RNAP progression. The catalytically dead CRISPR-Cas (dCas) protein is used as an example of an engineered programmable roadblock, and the current literature in understanding the polarity of dCas roadblocking is also discussed. Finally, we delve into a stochastic model of transcriptional roadblocking and highlight the importance of transcription factor binding kinetics and its resistance to dislodgement by an elongating RNAP in determining the strength of a roadblock.
Keywords: RNA polymerase, Transcriptional roadblocking, Transcriptional interference, DNA binding kinetics, CRISPR
Rights: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
DOI: 10.1007/s12551-023-01064-7
Grant ID: http://purl.org/au-research/grants/arc/DP160101450
Published version: http://dx.doi.org/10.1007/s12551-023-01064-7
Appears in Collections:Biochemistry publications

Files in This Item:
File Description SizeFormat 
hdl_139620.pdfPublished version1.68 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.