Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/23655
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWatling, J.-
dc.contributor.authorRobinson, S.-
dc.contributor.authorSeymour, R.-
dc.date.issued2006-
dc.identifier.citationPlant Physiology, 2006; 140(4):1367-1373-
dc.identifier.issn0032-0889-
dc.identifier.issn1532-2548-
dc.identifier.urihttp://hdl.handle.net/2440/23655-
dc.description.abstractWe report results from in vivo measurements, using oxygen isotope discrimination techniques, of fluxes through the alternative and cytochrome respiratory pathways in thermogenic plant tissue, the floral receptacle of the sacred lotus (Nelumbo nucifera). Fluxes through both pathways were measured in thermoregulating flowers undergoing varying degrees of thermogenesis in response to ambient temperature. Significant increases in alternative pathway flux were found in lotus receptacles with temperatures 16°C to 20°C above ambient, but not in those with lesser amounts of heating. Alternative pathway flux in the hottest receptacles was 75% of the total respiratory flux. In contrast, fluxes through the cytochrome pathway did not change significantly during thermogenesis. These data support the hypothesis that increased flux through the alternative pathway is responsible for heating in the lotus and that it is unlikely that uncoupling proteins, which would have produced increased fluxes through the cytochrome pathway, contribute significantly to heating in this tissue. Comparisons of actual flux, with capacity determined using inhibitors, suggested that the alternative pathway was operating at close to maximum capacity in heating tissues of lotus. However, in nonheating tissues the inhibitor data significantly overestimated the alternative pathway flux. This confirms that isotopic measurements are necessary for accurate determination of fluxes through the two pathways.-
dc.description.statementofresponsibilityJennifer R. Watling, Sharon A. Robinson and Roger S. Seymour-
dc.language.isoen-
dc.publisherAmer Soc Plant Physiologists-
dc.source.urihttp://dx.doi.org/10.1104/pp.105.075523-
dc.subjectNelumbo-
dc.subjectFlowers-
dc.subjectOxygen-
dc.subjectOxygen Isotopes-
dc.subjectCytochromes-
dc.subjectOxidoreductases-
dc.subjectMembrane Transport Proteins-
dc.subjectMitochondrial Proteins-
dc.subjectPlant Proteins-
dc.subjectTemperature-
dc.titleContribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus-
dc.typeJournal article-
dc.provenanceThis work was supported by the Australian Research Council (grant no. DP0451617).-
dc.identifier.doi10.1104/pp.105.075523-
pubs.publication-statusPublished-
dc.identifier.orcidWatling, J. [0000-0001-6305-9905]-
dc.identifier.orcidSeymour, R. [0000-0002-3395-0059]-
Appears in Collections:Aurora harvest 2
Earth and Environmental Sciences publications
Environment Institute Leaders publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.