Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/388
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Reynolds number effects in a simple planetary mixer
Author: Clifford, M.
Cox, S.
Finn, M.
Citation: Chemical Engineering Science, 2004; 59(16):3371-3379
Publisher: Pergamon-Elsevier Science Ltd
Issue Date: 2004
ISSN: 0009-2509
Statement of
Responsibility: 
M.J Clifford, S.M Cox, M.D Finn
Abstract: Planetary mixers are widely used in a diverse range of industrial applications. This paper presents an experimental investigation of mixing in a planetary mixer, and a comparison with numerical simulations based on a simple mathematical model of the flow. The model allows an exact expression for the velocity field in the Stokes flow regime, apparently the first for a mixer with genuinely moving parts, which permits accurate numerical tracking of material interfaces. Experiments performed at low Reynolds number (Re1) show good agreement with corresponding numerical simulations, but as the Reynolds number is increased, the agreement between experiments and Stokes-flow numerics worsens, in a manner that reflects improving experimental mixing quality. Specifically, we find that islands of poor mixing shrink as Re increases. Our results suggest that, while numerical simulations in the Stokes flow regime may be used as a ‘sieve’ to select good mixing protocols at small Re, experiments or computational fluid dynamics simulations are required properly to evaluate mixing protocols operated at finite Reynolds numbers.
Keywords: Mixing
Stokes flow
Nonlinear dynamics
Laminar flow
Chaotic advection
Fluid mechanics
DOI: 10.1016/j.ces.2004.03.043
Description (link): http://www.elsevier.com/wps/find/journaldescription.cws_home/215/description#description
Published version: http://dx.doi.org/10.1016/j.ces.2004.03.043
Appears in Collections:Applied Mathematics publications
Aurora harvest

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.