Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/56962
Citations
Scopus Web of ScienceĀ® Altmetric
?
?
Type: Journal article
Title: Recovering subtidal forests in human-dominated landscapes
Author: Gorman, D.
Connell, S.
Citation: Journal of Applied Ecology, 2009; 46(6):1258-1265
Publisher: Blackwell Publishing Ltd
Issue Date: 2009
ISSN: 0021-8901
1365-2664
Statement of
Responsibility: 
Daniel Gorman and Sean D. Connell
Abstract: 1. Policy initiatives that seek to recover lost habitats require the capacity to anticipate and suppress the mechanisms that drive loss. The replacement of forested landscapes by simple landscapes comprising of opportunistic or 'weedy' species represents an increasingly common phenomenon across human-dominated systems. The failure of subtidal forests to recover from natural and human disturbance and their ultimate replacement by degraded habitats is recognized globally. The current lack of knowledge on whether such shifts can be reversed jeopardizes considerations of restoration policy within increasingly human-dominated landscapes. 2. We critically assessed the model that recovery of canopies within remnant kelp forests in degraded landscapes (i.e. turf-forming algae that carpet space) is slower than in adjacent forested landscapes, but may be increased by removing turfs. 3. After generating experimental disturbance, canopies recovered to their former state within forested landscapes, but not in remnant forests in degraded landscapes. Removal of turfs from spaces between remnant forests, however, enabled canopies to recruit and subsequently develop covers that matched those in remnant forests. 4. Whilst the supply of canopy-forming propagules to degraded landscapes is likely to decline with gap expansion, we show that improvements to forest resilience and restoration are possible via policies that result in a reduction of turf covers. These results also support the model that regime-shifts need not be a product of synchronized loss, but can occur as a result of reduced rates of canopy-recruitment over broad areas and many years. Indeed, patterns of canopy-loss over several decades redouble attention to the human-mediated conditions that enable turfs to retain space (i.e. elevated nutrient and sediment loads via coastal runoff). 5. Synthesis and applications. We demonstrate that future restoration is a possible outcome of polices that promote ecosystem recovery. In doing so, we reduce uncertainty about policy initiatives that aim to upgrade the recycling potential of wastewater treatment plants (e.g. nearly 45% of South Australia's metropolitan wastewater) to improve the quality of water needed to restore subtidal forests. Uncertainty about resilience-building and restoration management are redressed by demonstrating that the feedbacks maintaining regime-shifted landscapes are not necessarily permanent.
Keywords: habitat loss
inhibition
recruitment
regime-shift
restoration
state
turf
DOI: 10.1111/j.1365-2664.2009.01711.x
Grant ID: ARC
Description (link): http://www3.interscience.wiley.com/journal/122600579/abstract?CRETRY=1&SRETRY=0
Published version: http://dx.doi.org/10.1111/j.1365-2664.2009.01711.x
Appears in Collections:Aurora harvest 5
Earth and Environmental Sciences publications
Environment Institute Leaders publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.