Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/57327
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Identification and characterization of Ambroxol as an enzyme enhancement agent for Gaucher Disease
Author: Maegawa, G.
Tropak, M.
Buttner, J.
Rigat, B.
Fuller, M.
Pandit, D.
Tang, L.
Kornhaber, G.
Hamuro, Y.
Clarke, J.
Mahuran, D.
Citation: Journal of Biological Chemistry, 2009; 284(35):23502-23516
Publisher: Amer Soc Biochemistry Molecular Biology Inc
Issue Date: 2009
ISSN: 0021-9258
1083-351X
Statement of
Responsibility: 
Gustavo H. B. Maegawa, Michael B. Tropak, Justin D. Buttner, Brigitte A. Rigat, Maria Fuller, Deepangi Pandit, Liangiie Tang, Gregory J. Kornhaber, Yoshitomo Hamuro, Joe T. R. Clarke and Don J. Mahuran
Abstract: Gaucher disease (GD), the most prevalent lysosomal storage disease, is caused by a deficiency of glucocerebrosidase (GCase). The identification of small molecules acting as agents for enzyme enhancement therapy is an attractive approach for treating different forms of GD. A thermal denaturation assay utilizing wild type GCase was developed to screen a library of 1,040 Food and Drug Administration-approved drugs. Ambroxol (ABX), a drug used to treat airway mucus hypersecretion and hyaline membrane disease in newborns, was identified and found to be a pH-dependent, mixed-type inhibitor of GCase. Its inhibitory activity was maximal at neutral pH, found in the endoplasmic reticulum, and undetectable at the acidic pH of lysosomes. The pH dependence of ABX to bind and stabilize the enzyme was confirmed by monitoring the rate of hydrogen/deuterium exchange at increasing guanidine hydrochloride concentrations. ABX treatment significantly increased N370S and F213I mutant GCase activity and protein levels in GD fibroblasts. These increases were primarily confined to the lysosome-enriched fraction of treated cells, a finding confirmed by confocal immunofluorescence microscopy. Additionally, enhancement of GCase activity and a reduction in glucosylceramide storage was verified in ABX-treated GD lymphoblasts (N370S/N370S). Hydrogen/deuterium exchange mass spectrometry revealed that upon binding of ABX, amino acid segments 243–249, 310–312, and 386–400 near the active site of GCase are stabilized. Consistent with its mixed-type inhibition of GCase, modeling studies indicated that ABX interacts with both active and non-active site residues. Thus, ABX has the biochemical characteristics of a safe and effective enzyme enhancement therapy agent for the treatment of patients with the most common GD genotypes.
Keywords: Cells, Cultured
Fibroblasts
Humans
Gaucher Disease
Ambroxol
Glucosylceramidase
Enzyme Inhibitors
Drug Evaluation, Preclinical
Enzyme Stability
Binding Sites
Amino Acid Sequence
Catalytic Domain
Molecular Conformation
Molecular Sequence Data
Description: Copyright © 2009 by American Society for Biochemistry and Molecular Biology
DOI: 10.1074/jbc.M109.012393
Published version: http://dx.doi.org/10.1074/jbc.m109.012393
Appears in Collections:Aurora harvest
Paediatrics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.