Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/60952
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Scaling of heat production by thermogenic flowers: limits to floral size and maximum rate of respiration
Author: Seymour, R.
Citation: Plant, Cell and Environment, 2010; 33(9):1474-1485
Publisher: Blackwell Publishing Ltd
Issue Date: 2010
ISSN: 0140-7791
1365-3040
Statement of
Responsibility: 
Roger S. Seymour
Abstract: Effect of size of inflorescences, flowers and cones on maximum rate of heat production is analysed allometrically in 23 species of thermogenic plants having diverse structures and ranging between 1.8 and 600 g. Total respiration rate (, micromol s(-1)) varies with spadix mass (M, g) according to in 15 species of Araceae. Thermal conductance (C, mW degrees C(-1)) for spadices scales according to C = 18.5M(0.73). Mass does not significantly affect the difference between floral and air temperature. Aroids with exposed appendices with high surface area have high thermal conductance, consistent with the need to vaporize attractive scents. True flowers have significantly lower heat production and thermal conductance, because closed petals retain heat that benefits resident insects. The florets on aroid spadices, either within a floral chamber or spathe, have intermediate thermal conductance, consistent with mixed roles. Mass-specific rates of respiration are variable between species, but reach 900 nmol s(-1) g(-1) in aroid male florets, exceeding rates of all other plants and even most animals. Maximum mass-specific respiration appears to be limited by oxygen delivery through individual cells. Reducing mass-specific respiration may be one selective influence on the evolution of large size of thermogenic flowers.
Keywords: allometry
cone
flower
inflorescence
temperature
Rights: © 2010 Blackwell Publishing Ltd
DOI: 10.1111/j.1365-3040.2010.02190.x
Grant ID: ARC
Published version: http://dx.doi.org/10.1111/j.1365-3040.2010.02190.x
Appears in Collections:Aurora harvest
Earth and Environmental Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.