Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/65877
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Can a seed bank provide demographic and genetic rescue in a declining population of the endangered shrub Acacia pinguifolia?
Author: Ottewell, K.
Bickerton, D.
Lowe, A.
Citation: Conservation Genetics, 2011; 12(3):669-678
Publisher: Springer-Verlag Dordrecht
Issue Date: 2011
ISSN: 1566-0621
1572-9737
Statement of
Responsibility: 
Kym M. Ottewell, Doug Bickerton, Andrew J. Lowe
Abstract: Many threatened species suffer reduced genetic diversity as a result of small population size and isolation. However, species with a persistent seed bank may be buffered against genetic loss as seed banks are expected to accumulate the reproductive output of many seasons. For fire-dependent species in decline, prescribed ecological burning may be a means to stimulate germination and recover genetic diversity stored in the seed bank, providing a demographic and genetic rescue effect. Here we investigated the effectiveness of this strategy in a small, isolated and inbred population of the endangered shrub, Acacia pinguifolia. We surveyed genetic diversity and structure of remnant populations of A. pinguifolia and monitored regeneration before and after burning. Germination was stimulated by fire, but seedling numbers 18 months post-fire were low and barely above the number of adults killed by the fire. Genetic diversity was marginally higher in the post-fire seedling cohort than the pre-fire adults (HE = 0.1 vs. 0.09, respectively). Outcrossing rates of open-pollinated seed from surrounding plants suggested moderately high levels of self-fertilisation (t m = 0.65) and analysis of fine-scale genetic structure implied pollen and seed dispersal over distances of several metres, suggesting that restricted gene flow and inbreeding may act to limit genetic diversity in the seed bank. We conclude that prescribed burning has not been immediately successful as a recovery strategy for this relictual population of A. pinguifolia, though future monitoring may detect additional recruits. Alternative conservation strategies, including performing inter-population crosses, may be required to restore genetic diversity and ameliorate extinction risks.
Keywords: Seed bank
Regeneration
Prescribed burn
Genetic diversity
Mating system
Restoration genetics
Rights: © Springer Science+Business Media B.V. 2010
DOI: 10.1007/s10592-010-0173-x
Published version: http://dx.doi.org/10.1007/s10592-010-0173-x
Appears in Collections:Aurora harvest 5
Earth and Environmental Sciences publications
Environment Institute Leaders publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.