Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/70833
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: BNC105: a novel tubulin polymerization inhibitor that selectively disrupts tumor vasculature and displays single-agent antitumor efficacy
Author: Kremmidiotis, G.
Leske, A.
Lavranos, T.
Beaumont, D.
Gasic, J.
Hall, A.
O’Callaghan, M.
Matthews, C.
Flynn, B.
Citation: Molecular Cancer Therapeutics, 2010; 9(6):1562-1573
Publisher: American Association for Cancer Research
Issue Date: 2010
ISSN: 1535-7163
1538-8514
Statement of
Responsibility: 
Gabriel Kremmidiotis, Annabell F. Leske, Tina C. Lavranos, Donna Beaumont, Jelena Gasic, Allison Hall, Michael O'Callaghan, Clayton A. Matthews and Bernard Flynn
Abstract: Vascular disruption agents (VDA) cause occlusion of tumor vasculature, resulting in hypoxia-driven tumor cell necrosis. Tumor vascular disruption is a therapeutic strategy of great potential; however, VDAs currently under development display a narrow therapeutic margin, with cardiovascular toxicity posing a dose-limiting obstacle. Discovery of new VDAs, which display a wider therapeutic margin, may allow attainment of improved clinical outcomes. To identify such compounds, we used an in vitro selectivity screening approach that exploits the fact that tumor endothelial cells are in a constant state of activation and angiogenesis and do not undergo senescence. Our effort yielded the compound BNC105. This compound acts as a tubulin polymerization inhibitor and displays 80-fold higher potency against endothelial cells that are actively proliferating or are engaged in the formation of in vitro capillaries compared with nonproliferating endothelial cells or endothelium found in stable capillaries. This selectivity was not observed with CA4, a VDA currently under evaluation in phase III clinical trials. BNC105 is more potent and offers a wider therapeutic window. CA4 produces 90% vascular disruption at its no observed adverse event level (NOAEL), whereas BNC105 causes 95% vascular disruption at 1/8th of its NOAEL. Tissue distribution analysis of BNC105 in tumor-bearing mice showed that while the drug is cleared from all tissues 24 hours after administration, it is still present at high concentrations within the solid tumor mass. Furthermore, BNC105 treatment causes tumor regressions with complete tumor clearance in 20% of treated animals.
Keywords: Capillaries
Cell Line
Cell Surface Extensions
Endothelial Cells
Animals
Humans
Mice
Neoplasms
Neovascularization, Pathologic
Anisoles
Benzofurans
Antineoplastic Agents
Treatment Outcome
Remission Induction
Xenograft Model Antitumor Assays
Cell Proliferation
Cell Membrane Permeability
Tubulin Modulators
Rights: ©2010 AACR
DOI: 10.1158/1535-7163.MCT-09-0815
Published version: http://dx.doi.org/10.1158/1535-7163.mct-09-0815
Appears in Collections:Aurora harvest
Obstetrics and Gynaecology publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.