Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/79665
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Using the power of C-13 NMR to interpret infrared spectra of soil organic matter: A two-dimensional correlation spectroscopy approach
Author: Forouzangohar, M.
Cozzolino, D.
Smernik, R.
Baldock, J.
Forrester, S.
Chittleborough, D.
Kookana, R.
Citation: Vibrational Spectroscopy, 2013; 66:76-82
Publisher: Elsevier Science BV
Issue Date: 2013
ISSN: 0924-2031
1873-3697
Statement of
Responsibility: 
Mohsen Forouzangohar, Daniel Cozzolino, Ronald J. Smernik, Jeffrey A. Baldock, Sean T. Forrester, David J. Chittleborough, Rai S. Kookana
Abstract: Soil organic matter (SOM) is a complex mixture containing a variety of organic molecular structures. As a consequence, interpretation of the infrared (IR) spectra of SOM is difficult and ambiguous and there is a necessity to establish more reliable IR spectral band assignments. We investigated a novel approach to identify IR spectral bands based on correlation with more easily interpreted nuclear magnetic resonance (NMR) spectra. The IR spectra of HF-treated soils were obtained in both near- and mid-infrared (NIR and MIR) regions and generalized two-dimensional (2D) correlation spectroscopy was employed as the computational correlation tool. 2D NMR/NIR and 2D NMR/MIR heterospectral correlation analyses were performed, separately. We found that NIR spectroscopy could identify aliphatic carbon in SOM as a broad peak occupying the entire NIR region. On the other hand, the MIR spectra contained stronger and more distinct signals than NIR from most of the major carbon types. Bands due to aromatic carbon and carboxyl groups were identified in the regions 4000-3500 cm-1 and 850-500 cm-1, respectively, and bands due to aliphatic carbon appeared around 3500-2600 cm-1 and 2000-1000 cm-1. Most (but not all) of these assignments are consistent with assignments based on MIR spectra of model compounds. These findings will assist in developing new IR spectroscopy tools for characterizing the chemistry of SOM more accurately and, perhaps, for monitoring its changes more sensitively. © 2013 Elsevier B.V.
Rights: © 2013 Elsevier B.V. All rights reserved.
DOI: 10.1016/j.vibspec.2013.02.002
Published version: http://dx.doi.org/10.1016/j.vibspec.2013.02.002
Appears in Collections:Aurora harvest
Earth and Environmental Sciences publications
Environment Institute publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.