Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/79937
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model
Author: Douglass, M.
Bezak, E.
Penfold, S.
Citation: Medical Physics, 2013; 40(7):1-9
Publisher: Amer AssocPhysicists Amer Inst Physics
Issue Date: 2013
ISSN: 0094-2405
2473-4209
Statement of
Responsibility: 
Michael Douglass, Eva Bezak, and Scott Penfold
Abstract: PURPOSE: Investigation of increased radiation dose deposition due to gold nanoparticles (GNPs) using a 3D computational cell model during x-ray radiotherapy. METHODS: Two GNP simulation scenarios were set up in Geant4; a single 400 nm diameter gold cluster randomly positioned in the cytoplasm and a 300 nm gold layer around the nucleus of the cell. Using an 80 kVp photon beam, the effect of GNP on the dose deposition in five modeled regions of the cell including cytoplasm, membrane, and nucleus was simulated. Two Geant4 physics lists were tested: the default Livermore and custom built Livermore/DNA hybrid physics list. 106 particles were simulated at 840 cells in the simulation. Each cell was randomly placed with random orientation and a diameter varying between 9 and 13 μm. A mathematical algorithm was used to ensure that none of the 840 cells overlapped. The energy dependence of the GNP physical dose enhancement effect was calculated by simulating the dose deposition in the cells with two energy spectra of 80 kVp and 6 MV. The contribution from Auger electrons was investigated by comparing the two GNP simulation scenarios while activating and deactivating atomic de-excitation processes in Geant4. RESULTS: The physical dose enhancement ratio (DER) of GNP was calculated using the Monte Carlo model. The model has demonstrated that the DER depends on the amount of gold and the position of the gold cluster within the cell. Individual cell regions experienced statistically significant (p < 0.05) change in absorbed dose (DER between 1 and 10) depending on the type of gold geometry used. The DER resulting from gold clusters attached to the cell nucleus had the more significant effect of the two cases (DER ∼ 55). The DER value calculated at 6 MV was shown to be at least an order of magnitude smaller than the DER values calculated for the 80 kVp spectrum. Based on simulations, when 80 kVp photons are used, Auger electrons have a statistically insignificant (p < 0.05) effect on the overall dose increase in the cell. The low energy of the Auger electrons produced prevents them from propagating more than 250–500 nm from the gold cluster and, therefore, has a negligible effect on the overall dose increase due to GNP. CONCLUSIONS: The results presented in the current work show that the primary dose enhancement is due to the production of additional photoelectrons.
Keywords: radiotherapy
Monte Carlo
Geant4
MATLAB
cell level model
microdosimetry
gold nanoparticles
Rights: © 2013 American Association of Physicists in Medicine
DOI: 10.1118/1.4808150
Published version: http://dx.doi.org/10.1118/1.4808150
Appears in Collections:Aurora harvest 7
Chemistry and Physics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.