Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/80981
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Wave-ice interactions in the marginal ice zone. Part 1: Theoretical foundations
Author: Williams, T.
Bennetts, L.
Squire, V.
Dumont, D.
Bertino, L.
Citation: Ocean Modelling, 2013; 71:81-91
Publisher: Elsevier Inc
Issue Date: 2013
ISSN: 1463-5003
1463-5011
Statement of
Responsibility: 
Timothy D. Williams, Luke G. Bennetts, Vernon A. Squire, Dany Dumont, Laurent Bertino
Abstract: A wave-ice interaction model for the marginal ice zone (MIZ) is reported that calculates the attenuation of ocean surface waves by sea ice and the concomitant breaking of the ice into smaller floes by the waves. Physical issues are highlighted that must be considered when ice breakage and wave attenuation are embedded in a numerical wave model or an ice/ocean model.The theoretical foundations of the model are introduced in this paper, forming the first of a two-part series. The wave spectrum is transported through the ice-covered ocean according to the wave energy balance equation, which includes a term to parameterize the wave dissipation that arises from the presence of the ice cover. The rate of attenuation is calculated using a thin-elastic-plate scattering model and a probabilistic approach is used to derive a breaking criterion in terms of the significant strain. This determines if the local wave field is sufficient to break the ice cover. An estimate of the maximum allowable floe size when ice breakage occurs is used as a parameter in a floe size distribution model, and the MIZ is defined in the model as the area of broken ice cover. Key uncertainties in the model are discussed. © 2013 Elsevier Ltd.
Keywords: Marginal ice zone
Wave attenuation
Ice breakage
Ice/ocean modelling
Rights: Copyright © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/j.ocemod.2013.05.010
Published version: http://dx.doi.org/10.1016/j.ocemod.2013.05.010
Appears in Collections:Aurora harvest
Mathematical Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.