Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/82871
Citations
Scopus Web of Science® Altmetric
?
?
Type: Conference paper
Title: A transform space filtered, wide frequency-range implementation of the parabolic equation method
Author: Salamon, S.
Hansen, H.
Abbott, D.
Citation: Proceedings of the International Conference on Radar, RADAR 2013, 9-12 September 2013, Adelaide, Australia: pp.341-345
Publisher: IEEE
Publisher Place: USA/CD
Issue Date: 2013
ISBN: 9781467351782
Conference Name: International Conference on Radar (2013 : Adelaide, Australia)
Statement of
Responsibility: 
Steve J. Salamon, Hedley J. Hansen, Derek Abbott
Abstract: Modelling of point-to-point radio propagation over terrain is of interest in the design of radio systems working over obstructed radio paths, or which may be subject to sub-refractive fading, or in estimating the visibility of radar targets close to terrain. Practical implementation of Fourier split-step PEM to provide accurate prediction of field-strength deep into the terrain diffraction region, over a wide frequency range, faces significant challenges. At high frequencies a large transform size is required, and at low frequencies the artificial upper boundary must be sufficiently high and the absorber layer sufficiently thick, to prevent spurious reflections from the upper boundary interfering with the weak terrain diffracted field. An adaptation to the PE method is described, and tested for the canonical problems of wedge and smooth-Earth diffraction over the frequency range of 10 MHz to 100 GHz, and compared with path measurements from 150 MHz to 1.5 GHz.
Rights: © 2013 IEEE
DOI: 10.1109/RADAR.2013.6652010
Published version: http://dx.doi.org/10.1109/radar.2013.6652010
Appears in Collections:Aurora harvest 4
Electrical and Electronic Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.