Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/82996
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Structure guided design of biotin protein ligase inhibitors for antibiotic discovery
Author: Paparella, A.
Soares Da Costa, T.
Yap, M.
Tieu, W.
Wilce, M.
Booker, G.
Abell, A.
Polyak, S.
Citation: Current Topics in Medicinal Chemistry, 2014; 14(1):4-20
Publisher: Bentham Science
Issue Date: 2014
ISSN: 1568-0266
1873-4294
Organisation: Institute for Photonics & Advanced Sensing (IPAS)
Statement of
Responsibility: 
Ashleigh S. Paparella, Tatiana P. Soares da Costa, Min Y. Yap, William Tieu, Matthew C. J. Wilce, Grant W. Booker, Andrew D. Abell and Steven W. Polyak
Abstract: Biotin protein ligase (BPL) represents a promising target for the discovery of new antibacterial chemotherapeutics. Here we review the central role of BPL for the survival and virulence of clinically important Staphylococcus aureus in support of this claim. X-ray crystallography structures of BPLs in complex with ligands and small molecule inhibitors provide new insights into the mechanism of protein biotinylation, and a template for structure guided approaches to the design of inhibitors for antibacterial discovery. Most BPLs employ an ordered ligand binding mechanism for the synthesis of the reaction intermediate biotinyl-5´-AMP from substrates biotin and ATP. Recent studies reporting chemical analogs of biotin and biotinyl-5´-AMP as BPL inhibitors that represent new classes of anti-S. aureus agents are reviewed. We highlight strategies to selectively inhibit bacterial BPL over the mammalian equivalent using a 1,2,3-triazole isostere to replace the labile phosphoanhydride naturally present in biotinyl-5´-AMP. A novel in situ approach to improve the detection of triazole-based inhibitors is also presented that could potentially be widely applied to other protein targets.
Keywords: Antibiotic, biotin, biotin protein ligase, Staphylococcus aureus, structure guided drug design, inhibitor design, Xray crystallography.
Rights: © 2014 Bentham Science Publishers
DOI: 10.2174/1568026613666131111103149
Published version: http://dx.doi.org/10.2174/1568026613666131111103149
Appears in Collections:Aurora harvest 4
IPAS publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.