Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/85990
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome
Author: Barlow, J.
Drynan, L.
Hewett, D.
Holmes, L.
Lorenzo-Abalde, S.
Lane, A.
Jolin, H.
Pannell, R.
Middleton, A.
Wong, S.
Warren, A.
Wainscoat, J.
Boultwood, J.
McKenzie, A.
Citation: Nature Medicine, 2010; 16(1):59-66
Publisher: Nature Publishing Group
Issue Date: 2010
ISSN: 1078-8956
1546-170X
Statement of
Responsibility: 
Jillian L Barlow, Lesley F Drynan, Duncan R Hewett, Luke R Holmes, Silvia Lorenzo-Abalde, Alison L Lane, Helen E Jolin, Richard Pannell, Angela J Middleton, See Heng Wong, Alan J Warren, James S Wainscoat, Jacqueline Boultwood & Andrew N J McKenzie
Abstract: The identification of the genes associated with chromosomal translocation breakpoints has fundamentally changed understanding of the molecular basis of hematological malignancies. By contrast, the study of chromosomal deletions has been hampered by the large number of genes deleted and the complexity of their analysis. We report the generation of a mouse model for human 5q– syndrome using large-scale chromosomal engineering. Haploinsufficiency of the Cd74–Nid67 interval (containing Rps14, encoding the ribosomal protein S14) caused macrocytic anemia, prominent erythroid dysplasia and monolobulated megakaryocytes in the bone marrow. These effects were associated with defective bone marrow progenitor development, the appearance of bone marrow cells expressing high amounts of the tumor suppressor p53 and increased bone marrow cell apoptosis. Notably, intercrossing with p53-deficient mice completely rescued the progenitor cell defect, restoring common myeloid progenitor and megakaryocytic-erythroid progenitor, granulocyte-monocyte progenitor and hematopoietic stem cell bone marrow populations. This mouse model suggests that a p53-dependent mechanism underlies the pathophysiology of the 5q– syndrome.
Keywords: Hematopoietic Stem Cells
Chromosomes, Mammalian
Animals
Humans
Mice
Anemia, Macrocytic
Myelodysplastic Syndromes
Disease Models, Animal
Chromosome Deletion
Apoptosis
Synteny
Genes, p53
Rights: © 2010 Nature America, Inc.
DOI: 10.1038/nm.2063
Published version: http://dx.doi.org/10.1038/nm.2063
Appears in Collections:Aurora harvest 2
Genetics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.