Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/88472
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms
Author: Sofat, R.
Hingorani, A.
Smeeth, L.
Humphries, S.
Talmud, P.
Cooper, J.
Shah, T.
Sandhu, M.
Ricketts, S.
Matthijs Boekholdt, S.
Wareham, N.
Khaw, K.
Kumari, M.
Kivimaki, M.
Marmot, M.
Asselbergs, F.
van der Harst, P.
Dullaart, R.
Navis, G.
van Veldhuisen, D.
et al.
Citation: Circulation, 2010; 121(1):52-62
Publisher: Lippincott Williams & Wilkins
Issue Date: 2010
ISSN: 0009-7322
1524-4539
Statement of
Responsibility: 
Reecha Sofat ... Lyle J. Palmer ... et al.
Abstract: BACKGROUND— Cholesteryl ester transfer protein (CETP) inhibitors raise high-density lipoprotein (HDL) cholesterol, but torcetrapib, the first-in-class inhibitor tested in a large outcome trial, caused an unexpected blood pressure elevation and increased cardiovascular events. Whether the hypertensive effect resulted from CETP inhibition or an off-target action of torcetrapib has been debated. We hypothesized that common single-nucleotide polymorphisms in the CETP gene could help distinguish mechanism-based from off-target actions of CETP inhibitors to inform on the validity of CETP as a therapeutic target. METHODS AND RESULTS— We compared the effect of CETP single-nucleotide polymorphisms and torcetrapib treatment on lipid fractions, blood pressure, and electrolytes in up to 67 687 individuals from genetic studies and 17 911 from randomized trials. CETP single-nucleotide polymorphisms and torcetrapib treatment reduced CETP activity and had a directionally concordant effect on 8 lipid and lipoprotein traits (total, low-density lipoprotein, and HDL cholesterol; HDL2; HDL3; apolipoproteins A-I and B; and triglycerides), with the genetic effect on HDL cholesterol (0.13 mmol/L, 95% confidence interval [CI] 0.11 to 0.14 mmol/L) being consistent with that expected of a 10-mg dose of torcetrapib (0.13 mmol/L, 95% CI 0.10 to 0.15). In trials, 60 mg of torcetrapib elevated systolic and diastolic blood pressure by 4.47 mm Hg (95% CI 4.10 to 4.84 mm Hg) and 2.08 mm Hg (95% CI 1.84 to 2.31 mm Hg), respectively. However, the effect of CETP single-nucleotide polymorphisms on systolic blood pressure (0.16 mm Hg, 95% CI −0.28 to 0.60 mm Hg) and diastolic blood pressure (−0.04 mm Hg, 95% CI −0.36 to 0.28 mm Hg) was null and significantly different from that expected of 10 mg of torcetrapib. CONCLUSIONS— Discordance in the effects of CETP single-nucleotide polymorphisms and torcetrapib treatment on blood pressure despite the concordant effects on lipids indicates the hypertensive action of torcetrapib is unlikely to be due to CETP inhibition or shared by chemically dissimilar CETP inhibitors. Genetic studies could find a place in drug-development programs as a new source of randomized evidence for drug-target validation in humans.
Keywords: genetics; pharmacology; epidemiology; high-density lipoproteins
Rights: © 2009 American Heart Association, Inc.
DOI: 10.1161/CIRCULATIONAHA.109.865444
Published version: http://dx.doi.org/10.1161/circulationaha.109.865444
Appears in Collections:Aurora harvest 7
Translational Health Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.