Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/92771
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: PVTX characteristics of oil inclusions from Asmari formation in Kuh-e-Mond heavy oil field in Iran
Author: Shariatinia, Z.
Haghighi, M.
Shafiei, A.
Feiznia, S.
Zendehboudi, S.
Citation: International Journal of Earth Sciences, 2015; 104(3):603-623
Publisher: Springer Berlin Heidelberg
Issue Date: 2015
ISSN: 1437-3262
1437-3254
Statement of
Responsibility: 
Zeinab Shariatinia, Manouchehr Haghighi, Ali Shafiei, Sadat Feiznia, Sohrab Zendehboudi
Abstract: Incorporating PVT properties and compositional evolution of oil inclusions into reservoir engineering simulator protocols can enhance understanding of oil accumulation, reservoir charge history, and migration events. Microthermometry and volumetric analysis have proven to be useful tools in compositional reconstitution and PT studies of oil inclusions and were used to determine composition, thermodynamic conditions, physical properties, and gas-to-oil ratios of heavy oil samples from Asmari carbonate reservoir in Kuh-e-Mond heavy oil field in Iran. PVT properties were predicted using a PVT black-oil model, and an acceptable agreement was observed between the experiments and the simulations. Homogenization temperatures were determined using microthermometry techniques in dolomite and calcite cements of the Asmari Formation, as well. Based on the homogenization temperature data, the undersaturated hydrocarbon mixture prior to formation of the gas cap migrated with a higher gas-to-oil ratio from a source rock. According to the oil inclusion data, the onset of carbonate cementation occurred at temperatures above 45 °C and that cementation was progressive through burial diagenesis. PVT black-oil simulator results showed that the reservoir pressure and temperature were set at 100 bar and 54 °C during the initial stages of oil migration. Compositional modeling implies that primary and secondary cracking in source rocks were responsible for retention of heavy components and migration of miscible three-phase flow during hydrocarbon evolution. The PT evolution of the petroleum inclusions indicates changes in thermodynamic properties and mobility due to phenomena such as cracking, mixing, or/and transport at various stages of oil migration.
Keywords: Petroleum inclusions; Compositional history; PVT properties; Black-oil simulator; Kuh-e-Mond heavy oil field
Rights: © Springer-Verlag Berlin Heidelberg 2014
DOI: 10.1007/s00531-014-1101-y
Published version: http://dx.doi.org/10.1007/s00531-014-1101-y
Appears in Collections:Aurora harvest 7
Australian School of Petroleum publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.