Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/100639
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, G.-
dc.contributor.authorChen, H.-
dc.contributor.authorXia, L.-
dc.contributor.authorWang, S.-
dc.contributor.authorDing, L.-
dc.contributor.authorLi, D.-
dc.contributor.authorXiao, K.-
dc.contributor.authorDai, S.-
dc.contributor.authorWang, H.-
dc.date.issued2015-
dc.identifier.citationACS Applied Materials and Interfaces, 2015; 7(40):22478-22486-
dc.identifier.issn1944-8244-
dc.identifier.issn1944-8252-
dc.identifier.urihttp://hdl.handle.net/2440/100639-
dc.description.abstractPerovskites show excellent specific catalytic activity toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline solutions; however, small surface areas of the perovskites synthesized by traditional sol−gel methods lead to low utilization of catalytic sites, which gives rise to poor Li−O2 batteries performance and restricts their application. Herein, a hierarchical mesporous/macroporous perovskite La0.5Sr0.5CoO3‑x (HPN-LSC) nanotube is developed to promote its application in Li−O2 batteries. The HPNLSC nanotubes were synthesized via electrospinning technique followed by postannealing. The as-prepared HPN-LSC catalyst exhibits outstanding intrinsic ORR and OER catalytic activity. The HPN-LSC/KB electrode displays excellent performance toward both discharge and charge processes for Li−O2 batteries, which enhances the reversibility, the round-trip efficiency, and the capacity of resultant batteries. The synergy of high catalytic activity and hierarchical mesoporous/macroporous nanotubular structure results in the Li−O2 batteries with good rate capability and excellent cycle stability of sustaining 50 cycles at a current density of 0.1 mA cm−2 with an upperlimit capacity of 500 mAh g−1. The results will benefit for the future development of high-performance Li−O2 batteries using hierarchical mesoporous/macroporous nanostructured perovskite-type catalysts.-
dc.description.statementofresponsibilityGuoxue Liu, Hongbin Chen, Lu Xia, Suqing Wang, Liang-Xin Ding, Dongdong Li, Kang Xiao, Sheng Dai and Haihui Wang-
dc.language.isoen-
dc.publisherAmerican Chemical Society-
dc.rightsCopyright © 2015 American Chemical Society-
dc.source.urihttp://dx.doi.org/10.1021/acsami.5b06587-
dc.subjectBifunctional catalysts-
dc.subjectelectrospinning-
dc.subjecthierarchical mesoporous/macroporous nanotubes-
dc.subjectlithium−oxygen batteries-
dc.subjectperovskites-
dc.titleHierarchical mesoporous/macroporous perovskite La₀.₅Sr₀.₅CoO₃-ₓ nanotubes: a bifunctional catalyst with enhanced activity and cycle stability for rechargeable lithium oxygen batteries-
dc.title.alternativeHierarchical mesoporous/macroporous perovskite La(0).(5)Sr(0).(5)CoO(3)-(x) nanotubes: a bifunctional catalyst with enhanced activity and cycle stability for rechargeable lithium oxygen batteries-
dc.typeJournal article-
dc.identifier.doi10.1021/acsami.5b06587-
dc.relation.granthttp://purl.org/au-research/grants/arc/FT140100757-
pubs.publication-statusPublished-
Appears in Collections:Aurora harvest 3
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.