Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/124818
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJafari, A.-
dc.contributor.authorGhanadi, F.-
dc.contributor.authorArjomandi, M.-
dc.contributor.authorEmes, M.J.-
dc.contributor.authorCazzolato, B.S.-
dc.date.issued2019-
dc.identifier.citationJournal of Wind Engineering and Industrial Aerodynamics, 2019; 189:218-230-
dc.identifier.issn0167-6105-
dc.identifier.issn1872-8197-
dc.identifier.urihttp://hdl.handle.net/2440/124818-
dc.descriptionAvailable online 11 April 2019-
dc.description.abstractThe correlation between turbulence intensity and length scale and the lift force on a horizontal flat plate in an atmospheric boundary layer flow is investigated in this study. Experiments were conducted in a large-scale wind tunnel to measure the peak loads on flat plate models of various chord length dimensions at different heights within simulated atmospheric boundary layers. The peak lift force coefficient on the flat plates was correlated with both turbulence intensity and length scale. The results show that the peak lift force coefficient on the flat plate is a function of vertical integral length scale (Lxw) and vertical turbulence intensity (Iw) in terms of a parameter defined as Iw (Lxw/c)²·⁴, where is the chord length of the plate. An increase in this turbulence parameter from 0.005 to 0.054, increases the peak lift force coefficient from 0.146 to 0.787. The established relationship is then used to predict the peak wind loads on full-scale heliostats within the atmospheric surface layer as a case study. It is found that decreasing the ratio of heliostat height to the chord length dimension of the mirror panel from 0.5 to 0.2 leads to a reduction of 80% in the peak stow lift force coefficient, independent of the terrain roughness.-
dc.description.statementofresponsibilityAzadeh Jafari, Farzin Ghanadi, Maziar Arjomandi, Matthew J. Emes, Benjamin S. Cazzolato-
dc.language.isoen-
dc.publisherElsevier-
dc.rights© 2019 Elsevier Ltd. All rights reserved.-
dc.source.urihttp://dx.doi.org/10.1016/j.jweia.2019.03.029-
dc.subjectWind load; Turbulence intensity; Integral length scale; Atmospheric boundary layer; Heliostat-
dc.titleCorrelating turbulence intensity and length scale with the unsteady lift force on flat plates in an atmospheric boundary layer flow-
dc.typeJournal article-
dc.identifier.doi10.1016/j.jweia.2019.03.029-
pubs.publication-statusPublished-
dc.identifier.orcidJafari, A. [0000-0003-1951-6106]-
dc.identifier.orcidArjomandi, M. [0000-0002-7669-2221]-
dc.identifier.orcidEmes, M.J. [0000-0003-4147-4387]-
dc.identifier.orcidCazzolato, B.S. [0000-0003-2308-799X]-
Appears in Collections:Aurora harvest 8
Mechanical Engineering publications

Files in This Item:
File Description SizeFormat 
hdl_124818.pdfAccepted version1.85 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.