Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/125037
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Nonlinear hydrodynamics analysis of a submerged spherical point absorber with asymmetric mass distribution
Author: Meng, F.
Rafiee, A.
Ding, B.
Cazzolato, B.
Arjomandi, M.
Citation: Renewable Energy, 2020; 147(1):1895-1908
Publisher: Elsevier
Issue Date: 2020
ISSN: 0960-1481
1879-0682
Statement of
Responsibility: 
Fantai Meng, Ashkan Rafiee, Boyin Ding, Benjamin Cazzolato, Maziar Arjomandi
Abstract: In previous work, a frequency-domain model was developed from linear potential theory to investigate the oscillation modes and efficiency of a single-tether 3 degree-of-freedom submerged spherical point absorber with asymmetric mass distribution (SPAMD). It was found that the trajectory of the device has a strong correlation with the performance of the wave energy converter. Specifically, the SPAMD can generate unique circular trajectories under long waves, producing up to 3 times power that of a generic single-tether point absorber (PA). However, this conclusion might not be valid for large buoy displacements due to increased nonlinear hydrodynamic effects (e.g. surface piercing, overtopping water, and vortex shedding). In this study, the trajectory of the SPAMD was analysed to determine the dominant nonlinear hydrodynamic effect that degrades the performance of a fully submerged system. The analysis was conducted in a numerical wave tank experiment (NWT), based on the Navier-Stokes equation and using the computational fluid dynamic toolbox OpenFOAM and the open-source library OLAFLOW for wave generation and absorption. The results obtained from NWT experiments show that surface piercing has the largest negative impact on the system’s performance, which compromises the efficiency of the SPAMD by modifying the trajectory and dissipating energy. As a result, the efficiency of the SPAMD significantly decreases for long waves when surface piercing is most likely to occur, which implies that submerged point absorbers are less efficient than the floating ones in this scenario. Furthermore, although the performance of the SPAMD were significantly compromised due to the effect of surface piercing, the resulting power improvement in comparison to the submerged generic point absorber was still considerable for some wave periods.
Keywords: Numerical wave tank; nonlinear hydrodynamics; point absorber; wave energy
Rights: © 2019 Elsevier Ltd. All rights reserved.
DOI: 10.1016/j.renene.2019.09.101
Grant ID: http://purl.org/au-research/grants/arc/LP130100117
Published version: http://dx.doi.org/10.1016/j.renene.2019.09.101
Appears in Collections:Aurora harvest 4
Mechanical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.