Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/133204
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: The Role of miR-181c in Mechanisms of Diabetes-Impaired Angiogenesis: An Emerging Therapeutic Target for Diabetic Vascular Complications
Author: Solly, E.L.
Psaltis, P.J.
Bursill, C.A.
Tan, J.T.M.
Citation: Frontiers in Pharmacology, 2021; 12:718679-1-718679-16
Publisher: Frontiers Media
Issue Date: 2021
ISSN: 1663-9812
1663-9812
Statement of
Responsibility: 
Emma L. Solly, Peter J. Psaltis, Christina A. Bursill, and Joanne T. M. Tan
Abstract: Diabetes mellitus is estimated to affect up to 700 million people by the year 2045, contributing to an immense health and economic burden. People living with diabetes have a higher risk of developing numerous debilitating vascular complications, leading to an increased need for medical care, a reduced quality of life and increased risk of early death. Current treatments are not satisfactory for many patients who suffer from impaired angiogenesis in response to ischaemia, increasing their risk of ischaemic cardiovascular conditions. These vascular pathologies are characterised by endothelial dysfunction and abnormal angiogenesis, amongst a host of impaired signaling pathways. Therapeutic stimulation of angiogenesis holds promise for the treatment of diabetic vascular complications that stem from impaired ischaemic responses. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis to improve ischaemic complications such as ischaemic heart disease and peripheral artery disease, highlighting the immense unmet need. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis in a clinical setting, highlighting the immense unmet need. MicroRNAs (miRNAs) are emerging as powerful targets for multifaceted diseases including diabetes and cardiovascular disease. This review highlights the potential role of microRNAs as therapeutic targets for rescuing diabetes-impaired angiogenesis, with a specific focus on miR-181c, which we have previously identified as an important angiogenic regulator. Here we summarise the pathways currently known to be regulated by miR-181c, which include the classical angiogenesis pathways that are dysregulated in diabetes, mitochondrial function and axonal guidance, and describe how these relate both directly and indirectly to angiogenesis. The pleiotropic actions of miR-181c across multiple key angiogenic signaling pathways and critical cellular processes highlight its therapeutic potential as a novel target for treating diabetic vascular complications.
Keywords: hypoxia
endothelial dysfunction
migration
proliferation
apoptosis
mitochondrial function
axon guidance
Rights: Copyright © 2021 Solly, Psaltis, Bursill and Tan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
DOI: 10.3389/fphar.2021.718679
Grant ID: http://purl.org/au-research/grants/nhmrc/1161506
Published version: http://dx.doi.org/10.3389/fphar.2021.718679
Appears in Collections:Medicine publications

Files in This Item:
File Description SizeFormat 
hdl_133204.pdfPublished version1.42 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.