Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/49145
Type: Thesis
Title: Functional analysis of the deubiquitylating enzyme fat facets in mouse in protein trafficking.
Author: Prodoehl, Mark
Issue Date: 2008
School/Discipline: School of Molecular and Biomedical Science : Biochemistry
Abstract: Fat facets in Mouse (FAM) or mUSP9x is a deubiquitylating enzyme of the USP class. Knockdown of FAM protein levels in mouse pre-implantation embryos by antisense oligonucleotides is known to prevent embryos from progressing to the blastocyst stage indicating an important role for FAM in early mammalian development. In mammals, the Fam gene is located on the X-chromosome. In mice, the Y homologue, Dffry or usp9y, is expressed exclusively in the testes and maps to the Sxrb deletion (Brown et al., 1998). Sxrb is associated with an early post-natal blockage of spermatogonial proliferation and differentiation leading to absence of germ cells (Bishop et al., 1988; Mardon et al., 1989). The human Y homologue of Fam is closely associated with oligozoospermia (Sargent et al., 1999; Sun et al., 1999) and the human X homologue has been linked to the failure of oocytes to pass through the first meitoc prophase in Turner syndrome (Cockwell et al., 1991; Speed, 1986) Despite these associations, the substrates and precise role of Fam and its homologues in these processes have not yet been defined. Due to the complex nature of Fam expression and the lack of data tying FAM to specific cellular functions, much attention has been paid in identifying interacting partners and cellular targets of FAM activity to aid in the definition of its role in the cell and development. Three common molecular biology techniques were applied here in an attempt to further characterise known interactions of FAM, including interactions with the cell adhesion molecule β-catenin and the protein trafficking pathway proteins epsin-1 and itch. The aim of these investigations was to generate FAM mutants that could abolish individual interactions, enabling investigation of individual interactions in cellular function and development. These experiments failed to identify the amino acids of FAM that were critical for its interactions with β-catenin, epsin-1, or itch. Experiments aimed at characterising a novel ubiquitin-like domain located in the N-terminal half of the FAM protein, did however identify novel interactions of FAM with the three Golgi associated adaptor proteins GGA1, GGA2, and GGA3. Further investigations prompted by this interaction, examined the role of FAM in the trafficking of proteins from the Golgi apparatus. Cellular FAM protein levels were altered either by exogenous expression of FAM protein or knockdown of endogenous FAM using FAM specific shRNA triggers. The cellular protein levels and extent of post-translational modification of eleven lysosomal proteins were monitored in each case. It was found that increased FAM protein levels resulted in decreased cellular protein levels of five of the eleven lysosomal proteins studied. In contrast, a reduction in FAM protein levels was found to result in an increase in the cellular protein levels of eight of the eleven lysosomal proteins. This study provides the first evidence of a deubiquitylating enzyme that is able to interact with the GGA proteins. It is also the first to describe a deubiquitylating enzyme that can affect the biosynthesis of lysosomal proteins and provides valuable new insight into the cellular function of FAM/USP9X.
Advisor: Wood, Stephen
Dissertation Note: Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Sciences, 2008
Subject: Lysosomes.
Proteins.
Enzymes.
Keywords: deubiquitylation; protein trafficking; lysomal hydrolase
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
01front.pdf76.26 kBAdobe PDFView/Open
02chapters1-2.pdf825.61 kBAdobe PDFView/Open
03chapters3-4.pdf2.98 MBAdobe PDFView/Open
04append-bib.pdf1.16 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.